backend-infra-engineer: Release v0.3.2 snapshot

This commit is contained in:
scawful
2025-10-17 12:10:25 -04:00
parent 4371618a9b
commit 3d71417f62
857 changed files with 174954 additions and 45626 deletions

View File

@@ -0,0 +1,360 @@
# C3 - z3ed Agent Architecture Guide
**Date**: October 12, 2025
**Version**: v0.2.2-alpha
**Status**: Core Features Integrated
## Overview
This guide documents the architecture of the z3ed AI agent system, including learned knowledge, TODO management, advanced routing, pretraining, and agent handoff capabilities.
## Architecture Overview
```
┌───────────────────────────────────────────────────────────────┐
│ User / AI Agent │
└────────────┬──────────────────────────────────────────────────┘
│ z3ed CLI commands
┌────────────▼──────────────────────────────────────────────────┐
│ CLI Command Router (agent.cc) │
│ │
│ Routes to: │
│ ├─ agent simple-chat → SimpleChatCommand │
│ ├─ agent learn → HandleLearnCommand │
│ ├─ agent todo → HandleTodoCommand │
│ ├─ agent test → HandleTestCommand │
│ ├─ agent plan/run/diff → Proposal system │
│ └─ emulator-* → EmulatorCommandHandler │
└───────────┬───────────────────────────────────────────────────┘
┌───────────▼───────────────────────────────────────────────────┐
│ ConversationalAgentService │
│ │
│ Integrates: │
│ ├─ LearnedKnowledgeService (preferences, patterns, memory) │
│ ├─ TodoManager (task tracking, dependencies) │
│ ├─ AdvancedRouter (response enhancement) │
│ ├─ AgentPretraining (knowledge injection) │
│ └─ ToolDispatcher (command execution) │
└────────────┬──────────────────────────────────────────────────┘
┌────────────▼──────────────────────────────────────────────────┐
│ Tool Dispatcher │
│ │
│ Routes tool calls to: │
│ ├─ Resource Commands (dungeon, overworld, sprites) │
│ ├─ Emulator Commands (breakpoints, memory, step) │
│ ├─ GUI Commands (automation, screenshots) │
│ └─ Custom Tools (extensible via CommandHandler) │
└────────────┬──────────────────────────────────────────────────┘
┌────────────▼──────────────────────────────────────────────────┐
│ Command Handlers (CommandHandler base class) │
│ │
│ Unified pattern: │
│ 1. Parse arguments (ArgumentParser) │
│ 2. Get ROM context (CommandContext) │
│ 3. Execute business logic │
│ 4. Format output (OutputFormatter) │
└────────────┬──────────────────────────────────────────────────┘
┌────────────▼──────────────────────────────────────────────────┐
│ Persistent Storage │
│ │
│ ~/.yaze/agent/ │
│ ├─ preferences.json (user preferences) │
│ ├─ patterns.json (learned ROM patterns) │
│ ├─ projects.json (project contexts) │
│ ├─ memories.json (conversation summaries) │
│ ├─ todos.json (task management) │
│ └─ sessions/ (collaborative chat history) │
└────────────────────────────────────────────────────────────────┘
```
## Feature 1: Learned Knowledge Service
### What It Does
Persists information across agent sessions:
- **Preferences**: User's default settings (palette, tool choices)
- **ROM Patterns**: Learned behaviors (frequently accessed rooms, sprite patterns)
- **Project Context**: ROM-specific goals and notes
- **Conversation Memory**: Summaries of past discussions for continuity
### Integration Status: Complete
**Files**:
- `cli/service/agent/learned_knowledge_service.{h,cc}` - Core service
- `cli/handlers/agent/general_commands.cc` - CLI handlers
- `cli/handlers/agent.cc` - Routing
### Usage Examples
```bash
# Save preference
z3ed agent learn --preference default_palette=2
# Get preference
z3ed agent learn --get-preference default_palette
# Save project context
z3ed agent learn --project "myrom" --context "Vanilla+ difficulty hack"
# Get project details
z3ed agent learn --get-project "myrom"
# Search past conversations
z3ed agent learn --search-memories "dungeon room 5"
# Export all learned data
z3ed agent learn --export learned_data.json
# View statistics
z3ed agent learn --stats
```
### AI Agent Integration
The ConversationalAgentService now:
1. Initializes `LearnedKnowledgeService` on startup
2. Can inject learned context into prompts (when `inject_learned_context_=true`)
3. Can access preferences/patterns/memories during tool execution
**API**:
```cpp
ConversationalAgentService service;
service.learned_knowledge().SetPreference("palette", "2");
auto pref = service.learned_knowledge().GetPreference("palette");
```
### Data Persistence
**Location**: `~/.yaze/agent/`
**Format**: JSON
**Files**:
- `preferences.json` - Key-value pairs
- `patterns.json` - Timestamped ROM patterns with confidence scores
- `projects.json` - Project metadata and context
- `memories.json` - Conversation summaries (last 100)
### Current Integration
- `cli/service/agent/learned_knowledge_service.{h,cc}` is constructed inside `ConversationalAgentService`.
- CLI commands such as `z3ed agent learn …` and `agent recall …` exercise this API.
- JSON artifacts persist under `~/.yaze/agent/`.
## Feature 2: TODO Management System
### What It Does
Enables AI agents to break down complex tasks into executable steps with dependency tracking and prioritization.
### Current Integration
- Core service in `cli/service/agent/todo_manager.{h,cc}`.
- CLI routing in `cli/handlers/agent/todo_commands.{h,cc}` and `cli/handlers/agent.cc`.
- JSON storage at `~/.yaze/agent/todos.json`.
### Usage Examples
```bash
# Create TODO
z3ed agent todo create "Fix input handling" --category=emulator --priority=1
# List TODOs
z3ed agent todo list
# Filter by status
z3ed agent todo list --status=in_progress
# Update status
z3ed agent todo update 1 --status=completed
# Get next actionable task
z3ed agent todo next
# Generate dependency-aware execution plan
z3ed agent todo plan
# Clear completed
z3ed agent todo clear-completed
```
### AI Agent Integration
```cpp
ConversationalAgentService service;
service.todo_manager().CreateTodo("Debug A button", "emulator", 1);
auto next = service.todo_manager().GetNextActionableTodo();
```
### Storage
**Location**: `~/.yaze/agent/todos.json`
**Format**: JSON array with dependencies:
```json
{
"todos": [
{
"id": "1",
"description": "Debug input handling",
"status": "in_progress",
"category": "emulator",
"priority": 1,
"dependencies": [],
"tools_needed": ["emulator-set-breakpoint", "emulator-read-memory"]
}
]
}
```
## Feature 3: Advanced Routing
### What It Does
Optimizes tool responses for AI consumption with:
- **Data type inference** (sprite data vs tile data vs palette)
- **Pattern extraction** (repeating values, structures)
- **Structured summaries** (high-level + detailed + next steps)
- **GUI action generation** (converts analysis → automation script)
### Status
- Implementation lives in `cli/service/agent/advanced_routing.{h,cc}` and is compiled via `cli/agent.cmake`.
- Hook-ups to `ToolDispatcher` / `ConversationalAgentService` remain on the backlog.
### How to Integrate
**Option 1: In ToolDispatcher (Automatic)**
```cpp
// In tool_dispatcher.cc, after tool execution:
auto result = handler->Run(args, rom_context_);
if (result.ok()) {
std::string output = output_buffer.str();
// Route through advanced router for enhanced response
AdvancedRouter::RouteContext ctx;
ctx.rom = rom_context_;
ctx.tool_calls_made = {call.tool_name};
if (call.tool_name == "hex-read") {
auto routed = AdvancedRouter::RouteHexAnalysis(data, address, ctx);
return absl::StrCat(routed.summary, "\n\n", routed.detailed_data);
}
return output;
}
```
**Option 2: In ConversationalAgentService (Selective)**
```cpp
// After getting tool results, enhance the response:
ChatMessage ConversationalAgentService::EnhanceResponse(
const ChatMessage& response,
const std::string& user_message) {
AdvancedRouter::RouteContext ctx;
ctx.rom = rom_context_;
ctx.user_intent = user_message;
// Use advanced router to synthesize multi-tool responses
auto routed = AdvancedRouter::SynthesizeMultiToolResponse(
tool_results_, ctx);
ChatMessage enhanced = response;
enhanced.message = routed.summary;
// Attach routed.gui_actions as metadata
return enhanced;
}
```
## Feature 4: Agent Pretraining
### What It Does
Injects structured knowledge into the agent's first message to teach it about:
- ROM structure (memory map, data formats)
- Hex analysis patterns (how to recognize sprites, tiles, palettes)
- Map editing workflows (tile placement, warp creation)
- Tool usage best practices
### Status
- Pretraining scaffolding (`cli/service/agent/agent_pretraining.{h,cc}`) builds today.
- The one-time injection step in `ConversationalAgentService` is still disabled.
### How to Integrate
**In ConversationalAgentService::SendMessage()**:
```cpp
absl::StatusOr<ChatMessage> ConversationalAgentService::SendMessage(
const std::string& message) {
// One-time pretraining injection on first message
if (inject_pretraining_ && !pretraining_injected_ && rom_context_) {
std::string pretraining = AgentPretraining::GeneratePretrainingPrompt(rom_context_);
ChatMessage pretraining_msg;
pretraining_msg.sender = ChatMessage::Sender::kUser;
pretraining_msg.message = pretraining;
pretraining_msg.is_internal = true; // Don't show to user
history_.insert(history_.begin(), pretraining_msg);
pretraining_injected_ = true;
}
// Continue with normal message processing...
}
```
### Knowledge Modules
```cpp
auto modules = AgentPretraining::GetModules();
for (const auto& module : modules) {
std::cout << "Module: " << module.name << std::endl;
std::cout << "Required: " << (module.required ? "Yes" : "No") << std::endl;
std::cout << module.content << std::endl;
}
```
Modules include:
- `rom_structure` - Memory map, data formats
- `hex_analysis` - Pattern recognition for sprites/tiles/palettes
- `map_editing` - Overworld/dungeon editing workflows
- `tool_usage` - Best practices for tool calling
## Feature 5: Agent Handoff
Handoff covers CLI ↔ GUI transfers, specialised agent delegation, and human/AI ownership changes. The proposed `HandoffContext` structure (see code listing earlier) captures conversation history, ROM state, TODOs, and transient tool data. Serialization, cross-surface loading, and persona-specific workflows remain unimplemented.
## Current Integration Snapshot
Integrated components:
- Learned knowledge service (`cli/service/agent/learned_knowledge_service.{h,cc}`) with CLI commands and JSON persistence under `~/.yaze/agent/`.
- TODO manager (`cli/service/agent/todo_manager.{h,cc}` plus CLI handlers) with storage at `~/.yaze/agent/todos.json`.
- Emulator debugging gRPC service; 20 of 24 methods are implemented (see `E9-ai-agent-debugging-guide.md`).
Pending integration:
- Advanced router (`cli/service/agent/advanced_routing.{h,cc}`) needs wiring into `ToolDispatcher` or `ConversationalAgentService`.
- Agent pretraining (`cli/service/agent/agent_pretraining.{h,cc}`) needs the one-time injection path enabled.
- Handoff serialization and import/export tooling are still design-only.
## References
- **Main CLI Guide**: C1-z3ed-agent-guide.md
- **Debugging Guide**: E9-ai-agent-debugging-guide.md
- **Changelog**: H1-changelog.md (v0.2.2 section)
- **Learned Knowledge**: `cli/service/agent/learned_knowledge_service.{h,cc}`
- **TODO Manager**: `cli/service/agent/todo_manager.{h,cc}`
- **Advanced Routing**: `cli/service/agent/advanced_routing.{h,cc}`
- **Pretraining**: `cli/service/agent/agent_pretraining.{h,cc}`
- **Agent Service**: `cli/service/agent/conversational_agent_service.{h,cc}`
---
**Last Updated**: October 12, 2025
**In progress**: Context injection for pretraining, advanced routing integration, agent handoff implementation.