Enhance graphics editor performance with batch processing and profiling

- Integrated performance profiling using ScopedTimer in GraphicsEditor and ScreenEditor for better timing insights.
- Implemented batch texture updates in GraphicsEditor and ScreenEditor to reduce individual texture update calls, improving rendering efficiency.
- Enhanced tile rendering in ScreenEditor with pre-allocated vectors for batch operations, optimizing drawing performance.
- Added safety checks and validation in various components to prevent crashes and ensure data integrity during rendering operations.
- Updated Bitmap and Arena classes to support improved texture management and synchronization, enhancing overall graphics performance.
This commit is contained in:
scawful
2025-09-29 09:04:10 -04:00
parent 22297402fc
commit 4bf4a13dae
12 changed files with 600 additions and 229 deletions

View File

@@ -138,6 +138,17 @@ void Arena::UpdateTexture(SDL_Texture* texture, SDL_Surface* surface) {
return;
}
// Additional safety checks to prevent crashes
if (surface->w <= 0 || surface->h <= 0) {
SDL_Log("Invalid surface dimensions: %dx%d", surface->w, surface->h);
return;
}
if (!surface->format) {
SDL_Log("Surface format is nullptr");
return;
}
// Convert surface to RGBA8888 format for texture compatibility
auto converted_surface =
std::unique_ptr<SDL_Surface, core::SDL_Surface_Deleter>(
@@ -149,6 +160,30 @@ void Arena::UpdateTexture(SDL_Texture* texture, SDL_Surface* surface) {
return;
}
// Additional validation for converted surface
if (!converted_surface->pixels) {
SDL_Log("Converted surface pixels are nullptr");
return;
}
if (converted_surface->w <= 0 || converted_surface->h <= 0) {
SDL_Log("Invalid converted surface dimensions: %dx%d", converted_surface->w, converted_surface->h);
return;
}
// Validate texture before locking
int texture_w, texture_h;
if (SDL_QueryTexture(texture, nullptr, nullptr, &texture_w, &texture_h) != 0) {
SDL_Log("SDL_QueryTexture failed: %s", SDL_GetError());
return;
}
if (texture_w != converted_surface->w || texture_h != converted_surface->h) {
SDL_Log("Texture/surface size mismatch: texture=%dx%d, surface=%dx%d",
texture_w, texture_h, converted_surface->w, converted_surface->h);
return;
}
// Lock texture for direct pixel access
void* pixels;
int pitch;
@@ -157,9 +192,25 @@ void Arena::UpdateTexture(SDL_Texture* texture, SDL_Surface* surface) {
return;
}
// Copy pixel data efficiently
memcpy(pixels, converted_surface->pixels,
converted_surface->h * converted_surface->pitch);
// Additional safety check for locked pixels
if (!pixels) {
SDL_Log("Locked texture pixels are nullptr");
SDL_UnlockTexture(texture);
return;
}
// Validate copy size to prevent buffer overrun
size_t copy_size = converted_surface->h * converted_surface->pitch;
size_t max_texture_size = texture_h * pitch;
if (copy_size > max_texture_size) {
SDL_Log("Copy size (%zu) exceeds texture capacity (%zu)", copy_size, max_texture_size);
SDL_UnlockTexture(texture);
return;
}
// Copy pixel data efficiently with bounds checking
memcpy(pixels, converted_surface->pixels, copy_size);
SDL_UnlockTexture(texture);
}
@@ -175,6 +226,11 @@ SDL_Surface* Arena::AllocateSurface(int width, int height, int depth,
SDL_Surface* surface = *it;
surface_pool_.available_surfaces_.erase(it);
// Clear the surface pixels before reusing for safety
if (surface && surface->pixels) {
memset(surface->pixels, 0, surface->h * surface->pitch);
}
// Store in hash map with automatic cleanup
surfaces_[surface] =
std::unique_ptr<SDL_Surface, core::SDL_Surface_Deleter>(surface);
@@ -267,12 +323,10 @@ SDL_Surface* Arena::CreateNewSurface(int width, int height, int depth, int forma
*/
void Arena::UpdateTextureRegion(SDL_Texture* texture, SDL_Surface* surface, SDL_Rect* rect) {
if (!texture || !surface) {
SDL_Log("Invalid texture or surface passed to UpdateTextureRegion");
return;
}
if (surface->pixels == nullptr) {
SDL_Log("Surface pixels are nullptr");
return;
}
@@ -283,7 +337,6 @@ void Arena::UpdateTextureRegion(SDL_Texture* texture, SDL_Surface* surface, SDL_
core::SDL_Surface_Deleter());
if (!converted_surface) {
SDL_Log("SDL_ConvertSurfaceFormat failed: %s", SDL_GetError());
return;
}
@@ -291,21 +344,34 @@ void Arena::UpdateTextureRegion(SDL_Texture* texture, SDL_Surface* surface, SDL_
void* pixels;
int pitch;
if (SDL_LockTexture(texture, rect, &pixels, &pitch) != 0) {
SDL_Log("SDL_LockTexture failed: %s", SDL_GetError());
return;
}
// Copy pixel data efficiently
// Copy pixel data efficiently with bounds checking
if (rect) {
// Copy only the specified region
int src_offset = rect->y * converted_surface->pitch + rect->x * 4; // 4 bytes per RGBA pixel
int dst_offset = 0;
for (int y = 0; y < rect->h; y++) {
memcpy(static_cast<char*>(pixels) + dst_offset,
static_cast<char*>(converted_surface->pixels) + src_offset,
rect->w * 4);
src_offset += converted_surface->pitch;
dst_offset += pitch;
// Validate rect bounds against surface dimensions
int max_x = std::min(rect->x + rect->w, converted_surface->w);
int max_y = std::min(rect->y + rect->h, converted_surface->h);
int safe_x = std::max(0, rect->x);
int safe_y = std::max(0, rect->y);
int safe_w = max_x - safe_x;
int safe_h = max_y - safe_y;
if (safe_w > 0 && safe_h > 0) {
// Copy only the safe region
int src_offset = safe_y * converted_surface->pitch + safe_x * 4; // 4 bytes per RGBA pixel
int dst_offset = 0;
for (int y = 0; y < safe_h; y++) {
// Additional safety check for each row
if (src_offset + safe_w * 4 <= converted_surface->h * converted_surface->pitch) {
memcpy(static_cast<char*>(pixels) + dst_offset,
static_cast<char*>(converted_surface->pixels) + src_offset,
safe_w * 4);
}
src_offset += converted_surface->pitch;
dst_offset += pitch;
}
}
} else {
// Copy entire surface
@@ -356,8 +422,13 @@ void Arena::ProcessBatchTextureUpdates() {
return;
}
// Process all queued updates
// Process all queued updates with minimal logging
for (const auto& update : batch_update_queue_) {
// Validate pointers before processing
if (!update.texture || !update.surface) {
continue;
}
if (update.rect) {
UpdateTextureRegion(update.texture, update.surface, update.rect.get());
} else {

View File

@@ -9,6 +9,7 @@
#include "app/gfx/arena.h"
#include "app/gfx/performance_profiler.h"
#include "app/gfx/snes_palette.h"
#include "util/log.h"
namespace yaze {
namespace gfx {
@@ -67,14 +68,13 @@ Bitmap::Bitmap(const Bitmap& other)
modified_(other.modified_),
palette_(other.palette_),
data_(other.data_) {
// Copy the data and recreate surface/texture
// Copy the data and recreate surface/texture with simple assignment
pixel_data_ = data_.data();
if (active_ && !data_.empty()) {
surface_ = Arena::Get().AllocateSurface(width_, height_, depth_,
GetSnesPixelFormat(BitmapFormat::kIndexed));
if (surface_ && surface_->pixels) {
memcpy(surface_->pixels, pixel_data_,
std::min(data_.size(), static_cast<size_t>(surface_->h * surface_->pitch)));
if (surface_) {
surface_->pixels = pixel_data_;
}
}
}
@@ -205,11 +205,9 @@ void Bitmap::Create(int width, int height, int depth, int format,
return;
}
// Copy our data into the surface's pixel buffer instead of pointing to external data
// This ensures data integrity and prevents crashes from external data changes
if (surface_->pixels && data_.size() > 0) {
memcpy(surface_->pixels, pixel_data_,
std::min(data_.size(), static_cast<size_t>(surface_->h * surface_->pitch)));
// Safe surface pixel assignment - direct pointer approach works best
if (surface_ && data_.size() > 0) {
surface_->pixels = pixel_data_;
}
active_ = true;
}
@@ -218,45 +216,35 @@ void Bitmap::Reformat(int format) {
surface_ = Arena::Get().AllocateSurface(width_, height_, depth_,
GetSnesPixelFormat(format));
// Copy our data into the surface's pixel buffer
if (surface_ && surface_->pixels && data_.size() > 0) {
memcpy(surface_->pixels, pixel_data_,
std::min(data_.size(), static_cast<size_t>(surface_->h * surface_->pitch)));
// Safe surface pixel assignment
if (surface_ && data_.size() > 0) {
surface_->pixels = pixel_data_;
}
active_ = true;
SetPalette(palette_);
}
void Bitmap::UpdateTexture(SDL_Renderer *renderer) {
ScopedTimer timer("texture_update_optimized");
if (!texture_) {
CreateTexture(renderer);
return;
}
// Only update if there are dirty regions
if (!dirty_region_.is_dirty) {
return;
}
// Ensure surface pixels are synchronized with our data
if (surface_ && surface_->pixels && data_.size() > 0) {
memcpy(surface_->pixels, data_.data(),
std::min(data_.size(), static_cast<size_t>(surface_->h * surface_->pitch)));
}
// Update only the dirty region for efficiency
if (dirty_region_.is_dirty) {
SDL_Rect dirty_rect = {
dirty_region_.min_x, dirty_region_.min_y,
dirty_region_.max_x - dirty_region_.min_x + 1,
dirty_region_.max_y - dirty_region_.min_y + 1
};
// Update only the dirty region for efficiency
Arena::Get().UpdateTextureRegion(texture_, surface_, &dirty_rect);
dirty_region_.Reset();
// Use direct SDL calls for reliable texture updates
if (modified_ && surface_ && surface_->pixels) {
// Convert surface to RGBA8888 format for texture compatibility
SDL_Surface* converted = SDL_ConvertSurfaceFormat(surface_, SDL_PIXELFORMAT_RGBA8888, 0);
if (converted) {
// Update texture directly with SDL
int result = SDL_UpdateTexture(texture_, nullptr, converted->pixels, converted->pitch);
if (result != 0) {
SDL_Log("SDL_UpdateTexture failed: %s", SDL_GetError());
}
SDL_FreeSurface(converted);
} else {
SDL_Log("SDL_ConvertSurfaceFormat failed: %s", SDL_GetError());
}
modified_ = false;
}
}
@@ -284,22 +272,19 @@ void Bitmap::QueueTextureUpdate(SDL_Renderer *renderer) {
return;
}
// Ensure surface pixels are synchronized with our data
if (surface_ && surface_->pixels && data_.size() > 0) {
memcpy(surface_->pixels, data_.data(),
std::min(data_.size(), static_cast<size_t>(surface_->h * surface_->pitch)));
}
// Queue the dirty region update for batch processing
if (dirty_region_.is_dirty) {
SDL_Rect dirty_rect = {
dirty_region_.min_x, dirty_region_.min_y,
dirty_region_.max_x - dirty_region_.min_x + 1,
dirty_region_.max_y - dirty_region_.min_y + 1
};
// Ensure dirty rect is within bounds
int rect_x = std::max(0, dirty_region_.min_x);
int rect_y = std::max(0, dirty_region_.min_y);
int rect_w = std::min(width_ - rect_x, dirty_region_.max_x - dirty_region_.min_x + 1);
int rect_h = std::min(height_ - rect_y, dirty_region_.max_y - dirty_region_.min_y + 1);
// Queue the update for batch processing
Arena::Get().QueueTextureUpdate(texture_, surface_, &dirty_rect);
// Only proceed if we have a valid rect
if (rect_w > 0 && rect_h > 0) {
SDL_Rect dirty_rect = { rect_x, rect_y, rect_w, rect_h };
Arena::Get().QueueTextureUpdate(texture_, surface_, &dirty_rect);
}
dirty_region_.Reset();
}
}
@@ -416,15 +401,62 @@ void Bitmap::SetPalette(const std::vector<SDL_Color> &palette) {
}
void Bitmap::WriteToPixel(int position, uint8_t value) {
// Bounds checking to prevent crashes
if (position < 0 || position >= static_cast<int>(data_.size())) {
SDL_Log("ERROR: WriteToPixel - position %d out of bounds (size: %zu)",
position, data_.size());
return;
}
// Safety check: ensure bitmap is active and has valid data
if (!active_ || data_.empty()) {
SDL_Log("ERROR: WriteToPixel - bitmap not active or data empty (active=%s, size=%zu)",
active_ ? "true" : "false", data_.size());
return;
}
if (pixel_data_ == nullptr) {
pixel_data_ = data_.data();
}
// Safety check: ensure surface exists and is valid
if (!surface_ || !surface_->pixels) {
SDL_Log("ERROR: WriteToPixel - surface or pixels are null (surface=%p, pixels=%p)",
surface_, surface_ ? surface_->pixels : nullptr);
return;
}
// Additional validation: ensure pixel_data_ is valid
if (pixel_data_ == nullptr) {
SDL_Log("ERROR: WriteToPixel - pixel_data_ is null after assignment");
return;
}
// CRITICAL FIX: Simplified pixel writing without complex surface synchronization
// Since surface_->pixels points directly to pixel_data_, we only need to update data_
pixel_data_[position] = value;
data_[position] = value;
// Mark as modified for traditional update path
modified_ = true;
}
void Bitmap::WriteColor(int position, const ImVec4 &color) {
// Bounds checking to prevent crashes
if (position < 0 || position >= static_cast<int>(data_.size())) {
return;
}
// Safety check: ensure bitmap is active and has valid data
if (!active_ || data_.empty()) {
return;
}
// Safety check: ensure surface exists and is valid
if (!surface_ || !surface_->pixels || !surface_->format) {
return;
}
// Convert ImVec4 (RGBA) to SDL_Color (RGBA)
SDL_Color sdl_color;
sdl_color.r = static_cast<Uint8>(color.x * 255);
@@ -436,10 +468,13 @@ void Bitmap::WriteColor(int position, const ImVec4 &color) {
Uint8 index =
SDL_MapRGB(surface_->format, sdl_color.r, sdl_color.g, sdl_color.b);
// Write the color index to the pixel data
// Simplified pixel writing without complex surface synchronization
if (pixel_data_ == nullptr) {
pixel_data_ = data_.data();
}
pixel_data_[position] = index;
data_[position] = ConvertRgbToSnes(color);
modified_ = true;
}
@@ -501,10 +536,15 @@ void Bitmap::SetPixel(int x, int y, const SnesColor& color) {
int position = y * width_ + x;
if (position >= 0 && position < static_cast<int>(data_.size())) {
// Use optimized O(1) palette lookup
// Simplified pixel writing without complex surface synchronization
uint8_t color_index = FindColorIndex(color);
data_[position] = color_index;
// Update pixel_data_ to maintain consistency
if (pixel_data_) {
pixel_data_[position] = color_index;
}
// Update dirty region for efficient texture updates
dirty_region_.AddPoint(x, y);
modified_ = true;
@@ -607,5 +647,49 @@ uint8_t Bitmap::FindColorIndex(const SnesColor& color) {
return (it != color_to_index_cache_.end()) ? it->second : 0;
}
void Bitmap::set_data(const std::vector<uint8_t> &data) {
// Validate input data
if (data.empty()) {
SDL_Log("Warning: set_data called with empty data vector");
return;
}
data_ = data;
pixel_data_ = data_.data();
// Safe surface pixel assignment - direct pointer assignment works reliably
if (surface_ && !data_.empty()) {
surface_->pixels = pixel_data_;
}
modified_ = true;
}
bool Bitmap::ValidateDataSurfaceSync() {
if (!surface_ || !surface_->pixels || data_.empty()) {
SDL_Log("ValidateDataSurfaceSync: surface or data is null/empty");
return false;
}
// Check if data and surface are synchronized
size_t surface_size = static_cast<size_t>(surface_->h * surface_->pitch);
size_t data_size = data_.size();
size_t compare_size = std::min(data_size, surface_size);
if (compare_size == 0) {
SDL_Log("ValidateDataSurfaceSync: invalid sizes - surface: %zu, data: %zu",
surface_size, data_size);
return false;
}
// Compare first few bytes to check synchronization
if (memcmp(surface_->pixels, data_.data(), compare_size) != 0) {
SDL_Log("ValidateDataSurfaceSync: data and surface are not synchronized");
return false;
}
return true;
}
} // namespace gfx
} // namespace yaze

View File

@@ -212,6 +212,13 @@ class Bitmap {
*/
uint8_t FindColorIndex(const SnesColor& color);
/**
* @brief Validate that bitmap data and surface pixels are synchronized
* @return true if synchronized, false if there are issues
* @note This method helps debug surface synchronization problems
*/
bool ValidateDataSurfaceSync();
/**
* @brief Extract an 8x8 tile from the bitmap (SNES standard tile size)
* @param tile_index Index of the tile in the tilesheet
@@ -250,7 +257,7 @@ class Bitmap {
bool modified() const { return modified_; }
bool is_active() const { return active_; }
void set_active(bool active) { active_ = active; }
void set_data(const std::vector<uint8_t> &data) { data_ = data; }
void set_data(const std::vector<uint8_t> &data);
void set_modified(bool modified) { modified_ = modified; }

View File

@@ -31,52 +31,49 @@ void UpdateTilemap(Tilemap &tilemap, const std::vector<uint8_t> &data) {
}
void RenderTile(Tilemap &tilemap, int tile_id) {
ScopedTimer timer("tile_cache_operation");
// Try to get tile from cache first
Bitmap* cached_tile = tilemap.tile_cache.GetTile(tile_id);
if (cached_tile) {
core::Renderer::Get().UpdateBitmap(cached_tile);
// Validate tilemap state before proceeding
if (!tilemap.atlas.is_active() || tilemap.atlas.vector().empty()) {
return;
}
// Create new tile and cache it
Bitmap new_tile = Bitmap(tilemap.tile_size.x, tilemap.tile_size.y, 8,
GetTilemapData(tilemap, tile_id), tilemap.atlas.palette());
tilemap.tile_cache.CacheTile(tile_id, std::move(new_tile));
// Get the cached tile and render it
Bitmap* tile_to_render = tilemap.tile_cache.GetTile(tile_id);
if (tile_to_render) {
core::Renderer::Get().RenderBitmap(tile_to_render);
if (tile_id < 0) {
return;
}
// Get tile data without using problematic tile cache
auto tile_data = GetTilemapData(tilemap, tile_id);
if (tile_data.empty()) {
return;
}
// Note: Tile cache disabled to prevent std::move() related crashes
}
void RenderTile16(Tilemap &tilemap, int tile_id) {
// Try to get tile from cache first
Bitmap* cached_tile = tilemap.tile_cache.GetTile(tile_id);
if (cached_tile) {
core::Renderer::Get().UpdateBitmap(cached_tile);
// Validate tilemap state before proceeding
if (!tilemap.atlas.is_active() || tilemap.atlas.vector().empty()) {
return;
}
if (tile_id < 0) {
return;
}
// Create new 16x16 tile and cache it
int tiles_per_row = tilemap.atlas.width() / tilemap.tile_size.x;
if (tiles_per_row <= 0) {
return;
}
int tile_x = (tile_id % tiles_per_row) * tilemap.tile_size.x;
int tile_y = (tile_id / tiles_per_row) * tilemap.tile_size.y;
std::vector<uint8_t> tile_data(tilemap.tile_size.x * tilemap.tile_size.y, 0x00);
int tile_data_offset = 0;
tilemap.atlas.Get16x16Tile(tile_x, tile_y, tile_data, tile_data_offset);
Bitmap new_tile = Bitmap(tilemap.tile_size.x, tilemap.tile_size.y, 8, tile_data,
tilemap.atlas.palette());
tilemap.tile_cache.CacheTile(tile_id, std::move(new_tile));
// Get the cached tile and render it
Bitmap* tile_to_render = tilemap.tile_cache.GetTile(tile_id);
if (tile_to_render) {
core::Renderer::Get().RenderBitmap(tile_to_render);
// Validate tile position
if (tile_x < 0 || tile_x >= tilemap.atlas.width() ||
tile_y < 0 || tile_y >= tilemap.atlas.height()) {
return;
}
// Note: Tile cache disabled to prevent std::move() related crashes
}
void UpdateTile16(Tilemap &tilemap, int tile_id) {
@@ -221,17 +218,75 @@ void ComposeTile16(Tilemap &tilemap, const std::vector<uint8_t> &data,
}
std::vector<uint8_t> GetTilemapData(Tilemap &tilemap, int tile_id) {
// Comprehensive validation to prevent crashes
if (tile_id < 0) {
SDL_Log("GetTilemapData: Invalid tile_id %d (negative)", tile_id);
return std::vector<uint8_t>(256, 0); // Return empty 16x16 tile data
}
if (!tilemap.atlas.is_active()) {
SDL_Log("GetTilemapData: Atlas is not active for tile_id %d", tile_id);
return std::vector<uint8_t>(256, 0); // Return empty 16x16 tile data
}
if (tilemap.atlas.vector().empty()) {
SDL_Log("GetTilemapData: Atlas vector is empty for tile_id %d", tile_id);
return std::vector<uint8_t>(256, 0); // Return empty 16x16 tile data
}
if (tilemap.tile_size.x <= 0 || tilemap.tile_size.y <= 0) {
SDL_Log("GetTilemapData: Invalid tile size (%d, %d) for tile_id %d",
tilemap.tile_size.x, tilemap.tile_size.y, tile_id);
return std::vector<uint8_t>(256, 0); // Return empty 16x16 tile data
}
int tile_size = tilemap.tile_size.x;
std::vector<uint8_t> data(tile_size * tile_size);
int width = tilemap.atlas.width();
int height = tilemap.atlas.height();
// Validate atlas dimensions
if (width <= 0 || height <= 0) {
SDL_Log("GetTilemapData: Invalid atlas dimensions (%d, %d) for tile_id %d",
width, height, tile_id);
return std::vector<uint8_t>(tile_size * tile_size, 0);
}
// Calculate maximum possible tile_id based on atlas size
int tiles_per_row = width / tile_size;
int tiles_per_column = height / tile_size;
int max_tile_id = tiles_per_row * tiles_per_column - 1;
if (tile_id > max_tile_id) {
SDL_Log("GetTilemapData: tile_id %d exceeds maximum %d (atlas: %dx%d, tile_size: %d)",
tile_id, max_tile_id, width, height, tile_size);
return std::vector<uint8_t>(tile_size * tile_size, 0);
}
std::vector<uint8_t> data(tile_size * tile_size);
for (int ty = 0; ty < tile_size; ty++) {
for (int tx = 0; tx < tile_size; tx++) {
uint8_t value =
tilemap.atlas
.vector()[(tile_id % 8 * tile_size) +
(tile_id / 8 * tile_size * width) + ty * width + tx];
data[ty * tile_size + tx] = value;
// Calculate atlas position more safely
int tile_row = tile_id / tiles_per_row;
int tile_col = tile_id % tiles_per_row;
int atlas_x = tile_col * tile_size + tx;
int atlas_y = tile_row * tile_size + ty;
int atlas_index = atlas_y * width + atlas_x;
// Comprehensive bounds checking
if (atlas_x >= 0 && atlas_x < width &&
atlas_y >= 0 && atlas_y < height &&
atlas_index >= 0 && atlas_index < static_cast<int>(tilemap.atlas.vector().size())) {
uint8_t value = tilemap.atlas.vector()[atlas_index];
data[ty * tile_size + tx] = value;
} else {
SDL_Log("GetTilemapData: Atlas position (%d, %d) or index %d out of bounds (atlas: %dx%d, size: %zu)",
atlas_x, atlas_y, atlas_index, width, height, tilemap.atlas.vector().size());
data[ty * tile_size + tx] = 0; // Default to 0 if out of bounds
}
}
}