backend-infra-engineer: Post v0.3.9-hotfix7 snapshot (build cleanup)

This commit is contained in:
scawful
2025-12-22 00:20:49 +00:00
parent 2934c82b75
commit 5c4cd57ff8
1259 changed files with 239160 additions and 43801 deletions

View File

@@ -0,0 +1,366 @@
// Audio Timing Tests for yaze MusicEditor
//
// These tests verify the APU and DSP timing accuracy to diagnose
// and prevent audio playback speed issues (e.g., 1.5x speed bug).
//
// All tests are ROM-dependent to ensure realistic audio driver behavior.
#ifndef IMGUI_DEFINE_MATH_OPERATORS
#define IMGUI_DEFINE_MATH_OPERATORS
#endif
#include <gtest/gtest.h>
#include <chrono>
#include <cmath>
#include <memory>
#include "app/emu/audio/apu.h"
#include "app/emu/audio/dsp.h"
#include "app/emu/memory/memory.h"
#include "app/emu/snes.h"
#include "rom/rom.h"
#include "test_utils.h"
#include "util/log.h"
namespace yaze {
namespace test {
// =============================================================================
// Audio Timing Constants
// =============================================================================
namespace audio_constants {
// SNES master clock frequency (NTSC)
constexpr uint64_t kMasterClock = 21477272;
// APU clock frequency (~1.024 MHz)
// Derived from: (32040 * 32) = 1,025,280 Hz
constexpr uint64_t kApuClock = 1025280;
// DSP native sample rate
constexpr int kNativeSampleRate = 32040;
// NTSC frame rate
constexpr double kNtscFrameRate = 60.0988;
// Master cycles per NTSC frame
constexpr uint64_t kMasterCyclesPerFrame = 357366; // 21477272 / 60.0988
// Expected samples per NTSC frame
constexpr int kSamplesPerFrame = 533; // 32040 / 60.0988
// APU/Master clock ratio numerator and denominator (from apu.cc)
constexpr uint64_t kApuCyclesNumerator = 32040 * 32; // 1,025,280
constexpr uint64_t kApuCyclesDenominator = 1364 * 262 * 60; // 21,437,280
// Tolerance percentages for timing tests
constexpr double kApuCycleRateTolerance = 0.01; // 1%
constexpr double kDspSampleRateTolerance = 0.005; // 0.5%
constexpr int kSamplesPerFrameTolerance = 2; // +/- 2 samples
} // namespace audio_constants
// =============================================================================
// Audio Timing Test Fixture
// =============================================================================
class AudioTimingTest : public TestRomManager::BoundRomTest {
protected:
void SetUp() override {
BoundRomTest::SetUp();
// Reset cumulative cycle counter for each test
cumulative_master_cycles_ = 0;
// Initialize SNES with ROM
snes_ = std::make_unique<emu::Snes>();
snes_->Init(rom()->vector());
// Get reference to APU
apu_ = &snes_->apu();
// Reset APU cycle tracking to ensure fresh start for timing tests
// Snes::Init() runs bootstrap cycles which advances the APU's
// last_master_cycles_, so we need to reset it for our tests.
apu_->Reset();
}
void TearDown() override {
apu_ = nullptr;
snes_.reset();
BoundRomTest::TearDown();
}
// Run APU for a specified number of master clock cycles
// Returns the number of APU cycles actually executed
uint64_t RunApuForMasterCycles(uint64_t master_cycles) {
uint64_t apu_before = apu_->GetCycles();
// APU expects cumulative master cycles
cumulative_master_cycles_ += master_cycles;
apu_->RunCycles(cumulative_master_cycles_);
return apu_->GetCycles() - apu_before;
}
// Get current DSP sample offset (for counting samples)
uint32_t GetDspSampleOffset() const {
return apu_->dsp().GetSampleOffset();
}
// Count samples generated over a number of frames
int CountSamplesOverFrames(int frame_count) {
uint32_t start_offset = GetDspSampleOffset();
for (int i = 0; i < frame_count; ++i) {
// APU expects cumulative master cycles, not per-frame delta
cumulative_master_cycles_ += audio_constants::kMasterCyclesPerFrame;
apu_->RunCycles(cumulative_master_cycles_);
}
uint32_t end_offset = GetDspSampleOffset();
// Handle wrap-around (DSP buffer is 2048 samples with 0x7ff mask)
constexpr uint32_t kBufferSize = 2048;
if (end_offset >= start_offset) {
return end_offset - start_offset;
} else {
return (kBufferSize - start_offset) + end_offset;
}
}
// Track cumulative master cycles for APU calls
uint64_t cumulative_master_cycles_ = 0;
std::unique_ptr<emu::Snes> snes_;
emu::Apu* apu_ = nullptr;
};
// =============================================================================
// Core APU Timing Tests
// =============================================================================
TEST_F(AudioTimingTest, ApuCycleRateMatchesExpected) {
// Run APU for 1 second worth of master clock cycles
constexpr uint64_t kOneSecondMasterCycles = audio_constants::kMasterClock;
uint64_t apu_cycles = RunApuForMasterCycles(kOneSecondMasterCycles);
// Expected APU cycles: ~1,024,000
constexpr uint64_t kExpectedApuCycles = audio_constants::kApuClock;
const double ratio =
static_cast<double>(apu_cycles) / static_cast<double>(kExpectedApuCycles);
// Log results for debugging
LOG_INFO("AudioTiming",
"APU cycles in 1 second: %llu (expected: %llu, ratio: %.4f)",
apu_cycles, kExpectedApuCycles, ratio);
// Verify within 1% tolerance
EXPECT_NEAR(ratio, 1.0, audio_constants::kApuCycleRateTolerance)
<< "APU cycle rate mismatch! Got " << apu_cycles << " cycles, expected ~"
<< kExpectedApuCycles << " (ratio: " << ratio << ")";
}
TEST_F(AudioTimingTest, DspSampleRateMatchesNative) {
// Run APU for 1 second and count DSP samples
constexpr int kTestFrames = 60; // ~1 second at 60fps
int total_samples = CountSamplesOverFrames(kTestFrames);
// Expected: ~32,040 samples
constexpr int kExpectedSamples = audio_constants::kNativeSampleRate;
const double ratio =
static_cast<double>(total_samples) / static_cast<double>(kExpectedSamples);
LOG_INFO("AudioTiming",
"DSP samples in %d frames: %d (expected: %d, ratio: %.4f)",
kTestFrames, total_samples, kExpectedSamples, ratio);
EXPECT_NEAR(ratio, 1.0, audio_constants::kDspSampleRateTolerance)
<< "DSP sample rate mismatch! Got " << total_samples
<< " samples, expected ~" << kExpectedSamples << " (ratio: " << ratio
<< ")";
}
TEST_F(AudioTimingTest, FrameProducesCorrectSampleCount) {
// Run exactly one NTSC frame
uint32_t start_offset = GetDspSampleOffset();
apu_->RunCycles(audio_constants::kMasterCyclesPerFrame);
uint32_t end_offset = GetDspSampleOffset();
int samples = (end_offset >= start_offset)
? (end_offset - start_offset)
: (2048 - start_offset + end_offset);
LOG_INFO("AudioTiming", "Samples per frame: %d (expected: %d +/- %d)", samples,
audio_constants::kSamplesPerFrame,
audio_constants::kSamplesPerFrameTolerance);
EXPECT_NEAR(samples, audio_constants::kSamplesPerFrame,
audio_constants::kSamplesPerFrameTolerance)
<< "Frame sample count mismatch! Got " << samples << " samples";
}
TEST_F(AudioTimingTest, MultipleFramesAccumulateSamplesCorrectly) {
constexpr int kTestFrames = 60;
constexpr int kExpectedTotal =
audio_constants::kSamplesPerFrame * kTestFrames;
int total_samples = CountSamplesOverFrames(kTestFrames);
LOG_INFO("AudioTiming", "Total samples in %d frames: %d (expected: ~%d)",
kTestFrames, total_samples, kExpectedTotal);
// Allow 1% tolerance for accumulated drift
const double ratio =
static_cast<double>(total_samples) / static_cast<double>(kExpectedTotal);
EXPECT_NEAR(ratio, 1.0, 0.01)
<< "Accumulated sample count mismatch over " << kTestFrames << " frames";
}
TEST_F(AudioTimingTest, ApuMasterClockRatioIsCorrect) {
// Verify the fixed-point ratio used in APU::RunCycles
constexpr double kExpectedRatio =
static_cast<double>(audio_constants::kApuCyclesNumerator) /
static_cast<double>(audio_constants::kApuCyclesDenominator);
LOG_INFO("AudioTiming", "APU/Master ratio: %.6f (num=%llu, den=%llu)",
kExpectedRatio, audio_constants::kApuCyclesNumerator,
audio_constants::kApuCyclesDenominator);
// Run a small test to verify actual ratio matches expected
constexpr uint64_t kTestMasterCycles = 1000000; // 1M master cycles
uint64_t apu_cycles = RunApuForMasterCycles(kTestMasterCycles);
double actual_ratio =
static_cast<double>(apu_cycles) / static_cast<double>(kTestMasterCycles);
EXPECT_NEAR(actual_ratio, kExpectedRatio, 0.0001)
<< "APU/Master ratio mismatch! Actual: " << actual_ratio
<< ", Expected: " << kExpectedRatio;
}
TEST_F(AudioTimingTest, DspCyclesEvery32ApuCycles) {
// The DSP should cycle once every 32 APU cycles (from apu.cc:246)
// This is verified by checking sample generation rate
// Run 32000 APU cycles (should produce 1000 DSP cycles = 1000 samples)
uint64_t start_apu = apu_->GetCycles();
uint32_t start_samples = GetDspSampleOffset();
// We need to run enough master cycles to get 32000 APU cycles
// APU cycles = master * (1025280 / 21437280) ≈ master * 0.0478
// So master = 32000 / 0.0478 ≈ 669456
constexpr uint64_t kTargetApuCycles = 32000;
constexpr uint64_t kMasterCycles =
(kTargetApuCycles * audio_constants::kApuCyclesDenominator) /
audio_constants::kApuCyclesNumerator;
apu_->RunCycles(kMasterCycles);
uint64_t end_apu = apu_->GetCycles();
uint32_t end_samples = GetDspSampleOffset();
uint64_t apu_delta = end_apu - start_apu;
int sample_delta = (end_samples >= start_samples)
? (end_samples - start_samples)
: (2048 - start_samples + end_samples);
// Expected: 1 sample per 32 APU cycles
double cycles_per_sample = static_cast<double>(apu_delta) / sample_delta;
LOG_INFO("AudioTiming",
"APU cycles per DSP sample: %.2f (expected: 32.0), samples=%d, "
"apu_cycles=%llu",
cycles_per_sample, sample_delta, apu_delta);
EXPECT_NEAR(cycles_per_sample, 32.0, 0.5)
<< "DSP not cycling every 32 APU cycles!";
}
// =============================================================================
// Regression Tests for 1.5x Speed Bug
// =============================================================================
TEST_F(AudioTimingTest, PlaybackSpeedRegression_NotTooFast) {
// This test verifies that audio doesn't play at 1.5x speed
// If the bug is present, we'd see ~47,700 samples instead of ~32,040
constexpr int kTestFrames = 60; // 1 second
int total_samples = CountSamplesOverFrames(kTestFrames);
// At 1.5x speed, we'd get ~48,060 samples
constexpr int kBuggySpeed15x = 48060;
// Verify we're NOT close to the 1.5x buggy value
double speed_ratio =
static_cast<double>(total_samples) / audio_constants::kNativeSampleRate;
LOG_INFO("AudioTiming",
"Speed check: %d samples in 1 second (ratio: %.2fx, 1.0x expected)",
total_samples, speed_ratio);
// If speed is >= 1.3x, something is wrong
EXPECT_LT(speed_ratio, 1.3)
<< "Audio playback is too fast! Speed ratio: " << speed_ratio
<< "x (samples: " << total_samples << ", expected: ~32040)";
// Speed should be close to 1.0x
EXPECT_GT(speed_ratio, 0.9) << "Audio playback is too slow!";
}
// =============================================================================
// Extended Timing Stability Tests
// =============================================================================
TEST_F(AudioTimingTest, NoCycleDriftOver60Seconds) {
// Run for 60 seconds of simulated time and check for drift
constexpr int kTestSeconds = 60;
constexpr int kFramesPerSecond = 60;
uint64_t cumulative_apu_cycles = 0;
int cumulative_samples = 0;
for (int sec = 0; sec < kTestSeconds; ++sec) {
uint64_t apu_before = apu_->GetCycles();
int samples_before = GetDspSampleOffset();
// Run one second of frames
// APU expects cumulative master cycles, not per-frame delta
for (int frame = 0; frame < kFramesPerSecond; ++frame) {
cumulative_master_cycles_ += audio_constants::kMasterCyclesPerFrame;
apu_->RunCycles(cumulative_master_cycles_);
}
uint64_t apu_after = apu_->GetCycles();
int samples_after = GetDspSampleOffset();
cumulative_apu_cycles += (apu_after - apu_before);
int sample_delta = (samples_after >= samples_before)
? (samples_after - samples_before)
: (2048 - samples_before + samples_after);
cumulative_samples += sample_delta;
}
// After 60 seconds, we should have very close to expected values
constexpr uint64_t kExpectedApuCycles =
audio_constants::kApuClock * kTestSeconds;
constexpr int kExpectedSamples =
audio_constants::kNativeSampleRate * kTestSeconds;
double apu_ratio = static_cast<double>(cumulative_apu_cycles) / kExpectedApuCycles;
double sample_ratio = static_cast<double>(cumulative_samples) / kExpectedSamples;
LOG_INFO("AudioTiming",
"60-second drift test: APU ratio=%.6f, Sample ratio=%.6f",
apu_ratio, sample_ratio);
// Very tight tolerance for extended test - no drift should accumulate
EXPECT_NEAR(apu_ratio, 1.0, 0.001)
<< "APU cycle drift detected over 60 seconds!";
EXPECT_NEAR(sample_ratio, 1.0, 0.005)
<< "Sample count drift detected over 60 seconds!";
}
} // namespace test
} // namespace yaze

View File

@@ -0,0 +1,425 @@
// Headless Audio Debug Tests
//
// Comprehensive audio debugging tests for diagnosing timing issues.
// Collects timing metrics and verifies audio pipeline correctness.
#ifndef IMGUI_DEFINE_MATH_OPERATORS
#define IMGUI_DEFINE_MATH_OPERATORS
#endif
#include <gtest/gtest.h>
#include <chrono>
#include <fstream>
#include <iomanip>
#include <memory>
#include <sstream>
#include <vector>
#include "app/emu/audio/apu.h"
#include "app/emu/audio/dsp.h"
#include "app/emu/snes.h"
#include "rom/rom.h"
#include "test_utils.h"
#include "util/log.h"
namespace yaze {
namespace test {
// =============================================================================
// Timing Metrics Structure
// =============================================================================
struct AudioTimingMetrics {
// Cycle counts
uint64_t total_master_cycles = 0;
uint64_t total_apu_cycles = 0;
uint64_t total_dsp_samples = 0;
// Rates (calculated)
double apu_cycles_per_second = 0.0;
double dsp_samples_per_second = 0.0;
double apu_to_master_ratio = 0.0;
// Per-frame statistics
double samples_per_frame_avg = 0.0;
int samples_per_frame_min = INT_MAX;
int samples_per_frame_max = 0;
// Drift detection
std::vector<double> per_second_apu_rates;
std::vector<double> per_second_sample_rates;
double max_drift_percent = 0.0;
// Expected values for comparison
static constexpr uint64_t kExpectedApuCyclesPerSecond = 1025280;
static constexpr int kExpectedSamplesPerSecond = 32040;
static constexpr int kExpectedSamplesPerFrame = 533;
static constexpr double kExpectedApuMasterRatio = 0.0478;
std::string ToString() const {
std::ostringstream oss;
oss << std::fixed << std::setprecision(4);
oss << "=== Audio Timing Metrics ===\n";
oss << "Master cycles: " << total_master_cycles << "\n";
oss << "APU cycles: " << total_apu_cycles
<< " (expected/sec: " << kExpectedApuCyclesPerSecond << ")\n";
oss << "DSP samples: " << total_dsp_samples
<< " (expected/sec: " << kExpectedSamplesPerSecond << ")\n";
oss << "\n";
oss << "APU cycles/sec: " << apu_cycles_per_second
<< " (ratio to expected: "
<< (apu_cycles_per_second / kExpectedApuCyclesPerSecond) << ")\n";
oss << "DSP samples/sec: " << dsp_samples_per_second
<< " (ratio to expected: "
<< (dsp_samples_per_second / kExpectedSamplesPerSecond) << ")\n";
oss << "APU/Master ratio: " << apu_to_master_ratio
<< " (expected: " << kExpectedApuMasterRatio << ")\n";
oss << "\n";
oss << "Samples/frame: avg=" << samples_per_frame_avg
<< ", min=" << samples_per_frame_min << ", max=" << samples_per_frame_max
<< " (expected: " << kExpectedSamplesPerFrame << ")\n";
oss << "Max drift: " << (max_drift_percent * 100.0) << "%\n";
return oss.str();
}
};
// =============================================================================
// Headless Audio Debug Test Fixture
// =============================================================================
class HeadlessAudioDebugTest : public TestRomManager::BoundRomTest {
protected:
void SetUp() override {
BoundRomTest::SetUp();
snes_ = std::make_unique<emu::Snes>();
snes_->Init(rom()->vector());
apu_ = &snes_->apu();
// Reset APU cycle tracking for fresh start
// Snes::Init() runs bootstrap cycles which advances the APU's
// last_master_cycles_, so we need to reset for accurate timing tests.
apu_->Reset();
}
void TearDown() override {
apu_ = nullptr;
snes_.reset();
BoundRomTest::TearDown();
}
// Collect timing metrics over specified duration (in simulated seconds)
AudioTimingMetrics CollectMetrics(int duration_seconds) {
AudioTimingMetrics metrics;
constexpr int kFramesPerSecond = 60;
constexpr uint64_t kMasterCyclesPerFrame = 357366;
uint64_t start_apu = apu_->GetCycles();
uint32_t start_samples = apu_->dsp().GetSampleOffset();
// Track cumulative master cycles (APU expects monotonically increasing values)
uint64_t cumulative_master_cycles = 0;
for (int sec = 0; sec < duration_seconds; ++sec) {
uint64_t sec_start_apu = apu_->GetCycles();
uint32_t sec_start_samples = apu_->dsp().GetSampleOffset();
int sec_samples_min = INT_MAX;
int sec_samples_max = 0;
int sec_total_samples = 0;
for (int frame = 0; frame < kFramesPerSecond; ++frame) {
uint32_t frame_start = apu_->dsp().GetSampleOffset();
// APU expects cumulative master cycles, not per-frame delta
cumulative_master_cycles += kMasterCyclesPerFrame;
apu_->RunCycles(cumulative_master_cycles);
metrics.total_master_cycles += kMasterCyclesPerFrame;
uint32_t frame_end = apu_->dsp().GetSampleOffset();
int frame_samples = (frame_end >= frame_start)
? (frame_end - frame_start)
: (2048 - frame_start + frame_end);
sec_total_samples += frame_samples;
sec_samples_min = std::min(sec_samples_min, frame_samples);
sec_samples_max = std::max(sec_samples_max, frame_samples);
metrics.samples_per_frame_min =
std::min(metrics.samples_per_frame_min, frame_samples);
metrics.samples_per_frame_max =
std::max(metrics.samples_per_frame_max, frame_samples);
}
uint64_t sec_end_apu = apu_->GetCycles();
uint64_t sec_apu_delta = sec_end_apu - sec_start_apu;
double sec_apu_rate = static_cast<double>(sec_apu_delta);
double sec_sample_rate = static_cast<double>(sec_total_samples);
metrics.per_second_apu_rates.push_back(sec_apu_rate);
metrics.per_second_sample_rates.push_back(sec_sample_rate);
// Track max drift from expected
double apu_drift =
std::abs(sec_apu_rate - AudioTimingMetrics::kExpectedApuCyclesPerSecond) /
AudioTimingMetrics::kExpectedApuCyclesPerSecond;
double sample_drift =
std::abs(sec_sample_rate - AudioTimingMetrics::kExpectedSamplesPerSecond) /
AudioTimingMetrics::kExpectedSamplesPerSecond;
metrics.max_drift_percent =
std::max(metrics.max_drift_percent, std::max(apu_drift, sample_drift));
}
uint64_t end_apu = apu_->GetCycles();
uint32_t end_samples = apu_->dsp().GetSampleOffset();
metrics.total_apu_cycles = end_apu - start_apu;
metrics.total_dsp_samples = (end_samples >= start_samples)
? (end_samples - start_samples)
: (2048 - start_samples + end_samples);
// For long tests, we need to track cumulative samples differently
// since the ring buffer wraps. Use per-second totals instead.
if (duration_seconds > 0) {
double total_samples_from_rates = 0;
for (double rate : metrics.per_second_sample_rates) {
total_samples_from_rates += rate;
}
metrics.total_dsp_samples = static_cast<uint64_t>(total_samples_from_rates);
}
// Calculate rates
metrics.apu_cycles_per_second =
static_cast<double>(metrics.total_apu_cycles) / duration_seconds;
metrics.dsp_samples_per_second =
static_cast<double>(metrics.total_dsp_samples) / duration_seconds;
metrics.apu_to_master_ratio =
static_cast<double>(metrics.total_apu_cycles) / metrics.total_master_cycles;
// Calculate per-frame average
int total_frames = duration_seconds * kFramesPerSecond;
metrics.samples_per_frame_avg =
static_cast<double>(metrics.total_dsp_samples) / total_frames;
return metrics;
}
void LogMetricsToFile(const AudioTimingMetrics& metrics,
const std::string& filename) {
std::ofstream file(filename);
if (!file) {
LOG_ERROR("AudioDebug", "Failed to open metrics file: %s",
filename.c_str());
return;
}
file << metrics.ToString();
// CSV data for analysis
file << "\n=== Per-Second Data (CSV) ===\n";
file << "second,apu_cycles,dsp_samples,apu_ratio,sample_ratio\n";
for (size_t i = 0; i < metrics.per_second_apu_rates.size(); ++i) {
file << i << "," << metrics.per_second_apu_rates[i] << ","
<< metrics.per_second_sample_rates[i] << ","
<< (metrics.per_second_apu_rates[i] /
AudioTimingMetrics::kExpectedApuCyclesPerSecond)
<< ","
<< (metrics.per_second_sample_rates[i] /
AudioTimingMetrics::kExpectedSamplesPerSecond)
<< "\n";
}
file.close();
LOG_INFO("AudioDebug", "Metrics written to %s", filename.c_str());
}
std::unique_ptr<emu::Snes> snes_;
emu::Apu* apu_ = nullptr;
};
// =============================================================================
// Comprehensive Diagnostic Tests
// =============================================================================
TEST_F(HeadlessAudioDebugTest, FullTimingDiagnostic) {
// Run 10 seconds of simulated playback and collect all metrics
constexpr int kTestDurationSeconds = 10;
LOG_INFO("AudioDebug", "Starting %d-second timing diagnostic...",
kTestDurationSeconds);
AudioTimingMetrics metrics = CollectMetrics(kTestDurationSeconds);
// Log full metrics
LOG_INFO("AudioDebug", "\n%s", metrics.ToString().c_str());
// Verify APU cycle rate
double apu_ratio =
metrics.apu_cycles_per_second / AudioTimingMetrics::kExpectedApuCyclesPerSecond;
EXPECT_NEAR(apu_ratio, 1.0, 0.01)
<< "APU cycle rate should be within 1% of expected. "
<< "Got " << metrics.apu_cycles_per_second << " cycles/sec";
// Verify DSP sample rate
double sample_ratio =
metrics.dsp_samples_per_second / AudioTimingMetrics::kExpectedSamplesPerSecond;
EXPECT_NEAR(sample_ratio, 1.0, 0.01)
<< "DSP sample rate should be within 1% of expected. "
<< "Got " << metrics.dsp_samples_per_second << " samples/sec";
// Verify samples per frame
EXPECT_NEAR(metrics.samples_per_frame_avg,
AudioTimingMetrics::kExpectedSamplesPerFrame, 2.0)
<< "Samples per frame should be ~533";
// Verify no significant drift
EXPECT_LT(metrics.max_drift_percent, 0.02)
<< "Max drift should be < 2%";
}
TEST_F(HeadlessAudioDebugTest, CycleRateDriftOverTime) {
// Run extended simulation to detect timing drift
constexpr int kTestDurationSeconds = 60;
LOG_INFO("AudioDebug", "Starting %d-second drift detection test...",
kTestDurationSeconds);
AudioTimingMetrics metrics = CollectMetrics(kTestDurationSeconds);
// Log to file for detailed analysis
LogMetricsToFile(metrics, "/tmp/audio_timing_drift.txt");
// Check for drift: compare first half to second half
if (metrics.per_second_apu_rates.size() >= 2) {
size_t half = metrics.per_second_apu_rates.size() / 2;
double first_half_avg = 0;
double second_half_avg = 0;
for (size_t i = 0; i < half; ++i) {
first_half_avg += metrics.per_second_apu_rates[i];
}
first_half_avg /= half;
for (size_t i = half; i < metrics.per_second_apu_rates.size(); ++i) {
second_half_avg += metrics.per_second_apu_rates[i];
}
second_half_avg /= (metrics.per_second_apu_rates.size() - half);
double drift = std::abs(second_half_avg - first_half_avg) / first_half_avg;
LOG_INFO("AudioDebug",
"Drift analysis: first_half=%.0f, second_half=%.0f, drift=%.4f%%",
first_half_avg, second_half_avg, drift * 100);
EXPECT_LT(drift, 0.001)
<< "APU cycle rate should not drift over time. "
<< "First half avg: " << first_half_avg
<< ", Second half avg: " << second_half_avg;
}
// Overall timing should still be accurate
double overall_ratio =
metrics.apu_cycles_per_second / AudioTimingMetrics::kExpectedApuCyclesPerSecond;
EXPECT_NEAR(overall_ratio, 1.0, 0.005)
<< "After 60 seconds, timing should be within 0.5% of expected";
}
TEST_F(HeadlessAudioDebugTest, SampleBufferDoesNotOverflow) {
// Run continuous simulation and verify buffer wrapping works correctly
constexpr int kTestFrames = 3600; // 1 minute at 60fps
uint32_t prev_offset = apu_->dsp().GetSampleOffset();
int wrap_count = 0;
for (int frame = 0; frame < kTestFrames; ++frame) {
apu_->RunCycles(357366); // One NTSC frame
uint32_t curr_offset = apu_->dsp().GetSampleOffset();
// Detect wrap-around
if (curr_offset < prev_offset) {
wrap_count++;
}
// Offset should always be within buffer bounds (0-2047)
EXPECT_LT(curr_offset, 2048u)
<< "Sample offset exceeded buffer size at frame " << frame;
prev_offset = curr_offset;
}
LOG_INFO("AudioDebug", "Buffer wrapped %d times in %d frames", wrap_count,
kTestFrames);
// With ~533 samples/frame and 2048 buffer size, we should wrap about
// every 4 frames. In 3600 frames, expect ~900 wraps.
EXPECT_GT(wrap_count, 800) << "Buffer should wrap regularly";
EXPECT_LT(wrap_count, 1000) << "Buffer wrap count seems off";
}
// =============================================================================
// Speed Bug Regression Tests
// =============================================================================
TEST_F(HeadlessAudioDebugTest, NotPlayingAt15xSpeed) {
// Specific test for the 1.5x speed bug
constexpr int kTestDurationSeconds = 5;
AudioTimingMetrics metrics = CollectMetrics(kTestDurationSeconds);
// At 1.5x speed, we'd see ~48060 samples/sec instead of ~32040
double speed_ratio =
metrics.dsp_samples_per_second / AudioTimingMetrics::kExpectedSamplesPerSecond;
LOG_INFO("AudioDebug", "Speed ratio: %.4fx (1.0x expected)", speed_ratio);
// If bug is present, ratio would be ~1.5
EXPECT_LT(speed_ratio, 1.3)
<< "Audio should not be playing at 1.5x speed! "
<< "Got " << metrics.dsp_samples_per_second << " samples/sec";
EXPECT_GT(speed_ratio, 0.9)
<< "Audio should not be playing too slowly! "
<< "Got " << metrics.dsp_samples_per_second << " samples/sec";
}
TEST_F(HeadlessAudioDebugTest, ApuMasterRatioIsCorrect) {
// Verify the fixed-point ratio calculation
constexpr int kTestDurationSeconds = 5;
AudioTimingMetrics metrics = CollectMetrics(kTestDurationSeconds);
LOG_INFO("AudioDebug", "APU/Master ratio: %.6f (expected: ~0.0478)",
metrics.apu_to_master_ratio);
EXPECT_NEAR(metrics.apu_to_master_ratio, 0.0478, 0.001)
<< "APU/Master clock ratio is incorrect";
}
// =============================================================================
// Diagnostic Output Tests
// =============================================================================
TEST_F(HeadlessAudioDebugTest, GenerateTimingReport) {
// Generate a comprehensive timing report for debugging
constexpr int kTestDurationSeconds = 10;
AudioTimingMetrics metrics = CollectMetrics(kTestDurationSeconds);
std::string report = metrics.ToString();
// Write to stdout for immediate visibility
std::cout << "\n" << report << std::endl;
// Also write to file
LogMetricsToFile(metrics, "/tmp/audio_timing_report.txt");
// This test always passes - it's for generating debug output
SUCCEED() << "Timing report generated";
}
} // namespace test
} // namespace yaze

View File

@@ -0,0 +1,217 @@
// MusicPlayer Headless Integration Tests
//
// Tests MusicPlayer functionality without requiring display or audio output.
// Uses NullAudioBackend to verify audio timing and playback behavior.
#ifndef IMGUI_DEFINE_MATH_OPERATORS
#define IMGUI_DEFINE_MATH_OPERATORS
#endif
#include <gtest/gtest.h>
#include <chrono>
#include <memory>
#include <thread>
#include "app/editor/music/music_player.h"
#include "app/emu/audio/audio_backend.h"
#include "app/emu/emulator.h"
#include "rom/rom.h"
#include "test_utils.h"
#include "util/log.h"
#include "zelda3/music/music_bank.h"
namespace yaze {
namespace test {
// =============================================================================
// MusicPlayer Headless Test Fixture
// =============================================================================
class MusicPlayerHeadlessTest : public TestRomManager::BoundRomTest {
protected:
void SetUp() override {
BoundRomTest::SetUp();
// Create music bank from ROM
music_bank_ = std::make_unique<zelda3::music::MusicBank>();
// Initialize music player with null music bank for basic tests
// Full music bank loading requires ROM parsing
player_ = std::make_unique<editor::music::MusicPlayer>(nullptr);
player_->SetRom(rom());
}
void TearDown() override {
player_.reset();
music_bank_.reset();
BoundRomTest::TearDown();
}
// Simulate N frames of playback by calling Update() repeatedly
void SimulatePlayback(int frames) {
for (int i = 0; i < frames; ++i) {
player_->Update();
// Simulate ~16.6ms per frame (NTSC timing)
// Note: In tests we don't actually sleep, just call Update()
}
}
std::unique_ptr<zelda3::music::MusicBank> music_bank_;
std::unique_ptr<editor::music::MusicPlayer> player_;
};
// =============================================================================
// Basic Initialization Tests
// =============================================================================
TEST_F(MusicPlayerHeadlessTest, InitializesWithRom) {
// Player should be created
EXPECT_NE(player_, nullptr);
// Initially not ready until a song is played
EXPECT_FALSE(player_->IsAudioReady());
}
TEST_F(MusicPlayerHeadlessTest, InitialStateIsStopped) {
auto state = player_->GetState();
EXPECT_FALSE(state.is_playing);
EXPECT_FALSE(state.is_paused);
EXPECT_EQ(state.playing_song_index, -1);
}
// =============================================================================
// Playback State Tests
// =============================================================================
TEST_F(MusicPlayerHeadlessTest, TogglePlayPauseFromStopped) {
// When stopped with no song, toggle should do nothing
player_->TogglePlayPause();
auto state = player_->GetState();
// Still stopped since no song was selected
EXPECT_FALSE(state.is_playing);
}
TEST_F(MusicPlayerHeadlessTest, StopClearsPlaybackState) {
// Start playback then stop
player_->PlaySong(0);
player_->Stop();
auto state = player_->GetState();
EXPECT_FALSE(state.is_playing);
EXPECT_FALSE(state.is_paused);
}
// =============================================================================
// Audio Timing Verification Tests
// =============================================================================
TEST_F(MusicPlayerHeadlessTest, UpdateDoesNotCrashWithoutPlayback) {
// Calling Update() when not playing should be safe
EXPECT_NO_THROW(SimulatePlayback(60));
}
TEST_F(MusicPlayerHeadlessTest, DirectSpcModeCanBeEnabled) {
// Direct SPC mode bypasses game CPU and plays audio directly
// This is set via SetDirectSpcMode() - no getter exposed, just verify no crash
EXPECT_NO_THROW(player_->SetDirectSpcMode(true));
EXPECT_NO_THROW(player_->SetDirectSpcMode(false));
}
TEST_F(MusicPlayerHeadlessTest, InterpolationTypeCanBeSet) {
// Interpolation type is set via SetInterpolationType()
// No getter exposed, just verify no crash
EXPECT_NO_THROW(player_->SetInterpolationType(0)); // Linear
EXPECT_NO_THROW(player_->SetInterpolationType(2)); // Gaussian (default SNES)
}
// =============================================================================
// Playback Speed Regression Tests
// =============================================================================
TEST_F(MusicPlayerHeadlessTest, PlaybackStateTracksSpeedCorrectly) {
auto state = player_->GetState();
// Playback speed should always be 1.0x (varispeed was removed)
EXPECT_FLOAT_EQ(state.playback_speed, 1.0f)
<< "Playback speed should be 1.0x";
}
TEST_F(MusicPlayerHeadlessTest, TicksPerSecondMatchesTempo) {
// Default tempo of 150 should produce specific ticks per second
// Formula: ticks_per_second = 500.0f * (tempo / 256.0f)
// At tempo 150: 500 * (150/256) = 292.97
constexpr float kDefaultTempo = 150.0f;
constexpr float kExpectedTps = 500.0f * (kDefaultTempo / 256.0f);
// Get state and verify ticks_per_second is reasonable
auto state = player_->GetState();
// Initially ticks_per_second may be 0 if no song is playing
// After playing a song, it should match the formula
LOG_INFO("MusicPlayerTest", "Initial ticks_per_second: %.2f (expected ~%.2f for tempo 150)",
state.ticks_per_second, kExpectedTps);
// If a song is playing, verify the value
if (state.is_playing) {
EXPECT_NEAR(state.ticks_per_second, kExpectedTps, 10.0f)
<< "Ticks per second should match tempo-based calculation";
}
}
// =============================================================================
// Frame Timing Tests
// =============================================================================
TEST_F(MusicPlayerHeadlessTest, UpdateProcessesFramesCorrectly) {
// This test verifies Update() can be called repeatedly without issues
// In a real scenario, Update() would process audio frames
auto start = std::chrono::steady_clock::now();
// Simulate 10 seconds of updates (600 frames)
constexpr int kTestFrames = 600;
SimulatePlayback(kTestFrames);
auto end = std::chrono::steady_clock::now();
auto elapsed = std::chrono::duration<double>(end - start).count();
LOG_INFO("MusicPlayerTest", "Processed %d Update() calls in %.3f seconds",
kTestFrames, elapsed);
// Update() should be fast (no blocking)
EXPECT_LT(elapsed, 1.0) << "Update() calls should be fast (not blocking)";
}
// =============================================================================
// Cleanup and Edge Cases
// =============================================================================
TEST_F(MusicPlayerHeadlessTest, DestructorCleansUpProperly) {
// Start playback to initialize audio
player_->PlaySong(0);
// Simulate some activity
SimulatePlayback(10);
// Reset should clean up without crashes
player_.reset();
SUCCEED() << "MusicPlayer destructor completed without crash";
}
TEST_F(MusicPlayerHeadlessTest, MultiplePlaySongsAreSafe) {
// Call PlaySong multiple times
player_->PlaySong(0);
player_->PlaySong(0);
player_->PlaySong(0);
// Should still work
SimulatePlayback(10);
}
} // namespace test
} // namespace yaze