backend-infra-engineer: Release v0.3.0 snapshot

This commit is contained in:
scawful
2025-09-27 00:25:45 -04:00
parent 8ce29e1436
commit e32ac75b9c
346 changed files with 55946 additions and 11764 deletions

134
test/emu/audio/apu_test.cc Normal file
View File

@@ -0,0 +1,134 @@
#include "app/emu/audio/apu.h"
#include "app/emu/memory/memory.h"
#include <gmock/gmock-nice-strict.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
namespace yaze {
namespace test {
using testing::_;
using testing::Return;
using yaze::emu::Apu;
using yaze::emu::MemoryImpl;
class ApuTest : public ::testing::Test {
protected:
void SetUp() override {
memory_ = std::make_unique<MemoryImpl>();
apu_ = std::make_unique<Apu>(*memory_);
apu_->Init();
}
std::unique_ptr<MemoryImpl> memory_;
std::unique_ptr<Apu> apu_;
};
// Test the IPL ROM handshake sequence timing
TEST_F(ApuTest, IplRomHandshakeTiming) {
// 1. Initial state check
EXPECT_EQ(apu_->Read(0x00) & 0x80, 0); // Ready bit should be clear
// 2. Start handshake
apu_->Write(0x00, 0x80); // Set control register bit 7
// 3. Wait for APU ready signal with cycle counting
int cycles = 0;
const int max_cycles = 1000; // Maximum expected cycles for handshake
while (!(apu_->Read(0x00) & 0x80) && cycles < max_cycles) {
apu_->RunCycles(1);
cycles++;
}
// 4. Verify timing constraints
EXPECT_LT(cycles, max_cycles); // Should complete within max cycles
EXPECT_GT(cycles, 0); // Should take some cycles
EXPECT_TRUE(apu_->Read(0x00) & 0x80); // Ready bit should be set
// 5. Verify handshake completion
EXPECT_EQ(apu_->GetStatus() & 0x80, 0x80); // Ready bit in status register
}
// Test APU initialization sequence
TEST_F(ApuTest, ApuInitialization) {
// 1. Check initial state
EXPECT_EQ(apu_->GetStatus(), 0x00);
EXPECT_EQ(apu_->GetControl(), 0x00);
// 2. Initialize APU
apu_->Init();
// 3. Verify initialization
EXPECT_EQ(apu_->GetStatus(), 0x00);
EXPECT_EQ(apu_->GetControl(), 0x00);
// 4. Check DSP registers are initialized
for (int i = 0; i < 128; i++) {
EXPECT_EQ(apu_->Read(0x00 + i), 0x00);
}
}
// Test sample generation and timing
TEST_F(ApuTest, SampleGenerationTiming) {
// 1. Generate samples
const int sample_count = 1024;
std::vector<int16_t> samples(sample_count);
// 2. Measure timing
uint64_t start_cycles = apu_->GetCycles();
apu_->GetSamples(samples.data(), sample_count, false);
uint64_t end_cycles = apu_->GetCycles();
// 3. Verify timing
EXPECT_GT(end_cycles - start_cycles, 0);
// 4. Verify samples
bool has_non_zero = false;
for (int i = 0; i < sample_count; ++i) {
if (samples[i] != 0) {
has_non_zero = true;
break;
}
}
EXPECT_TRUE(has_non_zero);
}
// Test DSP register access timing
TEST_F(ApuTest, DspRegisterAccessTiming) {
// 1. Write to DSP registers
const uint8_t test_value = 0x42;
uint64_t start_cycles = apu_->GetCycles();
apu_->Write(0x00, 0x80); // Set control register
apu_->Write(0x01, test_value); // Write to DSP address
uint64_t end_cycles = apu_->GetCycles();
// 2. Verify timing
EXPECT_GT(end_cycles - start_cycles, 0);
// 3. Verify register access
EXPECT_EQ(apu_->Read(0x01), test_value);
}
// Test DMA transfer timing
TEST_F(ApuTest, DmaTransferTiming) {
// 1. Prepare DMA data
const uint8_t data[] = {0x01, 0x02, 0x03, 0x04};
// 2. Measure DMA timing
uint64_t start_cycles = apu_->GetCycles();
apu_->WriteDma(0x00, data, sizeof(data));
uint64_t end_cycles = apu_->GetCycles();
// 3. Verify timing
EXPECT_GT(end_cycles - start_cycles, 0);
// 4. Verify DMA transfer
EXPECT_EQ(apu_->Read(0x00), 0x01);
EXPECT_EQ(apu_->Read(0x01), 0x02);
}
} // namespace test
} // namespace yaze

View File

@@ -0,0 +1,122 @@
#include "app/emu/audio/apu.h"
#include "app/emu/memory/memory.h"
#include <gmock/gmock-nice-strict.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
namespace yaze {
namespace test {
using testing::_;
using testing::Return;
using yaze::emu::Apu;
using yaze::emu::MemoryImpl;
class IplHandshakeTest : public ::testing::Test {
protected:
void SetUp() override {
memory_ = std::make_unique<MemoryImpl>();
apu_ = std::make_unique<Apu>(*memory_);
apu_->Init();
}
std::unique_ptr<MemoryImpl> memory_;
std::unique_ptr<Apu> apu_;
};
// Test IPL ROM handshake timing with exact cycle counts
TEST_F(IplHandshakeTest, ExactCycleTiming) {
// 1. Initial state
EXPECT_EQ(apu_->Read(0x00) & 0x80, 0); // Ready bit should be clear
// 2. Start handshake
apu_->Write(0x00, 0x80); // Set control register bit 7
// 3. Run exact number of cycles for handshake
const int expected_cycles = 64; // Expected cycle count for handshake
apu_->RunCycles(expected_cycles);
// 4. Verify handshake completed
EXPECT_TRUE(apu_->Read(0x00) & 0x80); // Ready bit should be set
EXPECT_EQ(apu_->GetStatus() & 0x80, 0x80); // Ready bit in status register
}
// Test IPL ROM handshake timing with cycle range
TEST_F(IplHandshakeTest, CycleRange) {
// 1. Initial state
EXPECT_EQ(apu_->Read(0x00) & 0x80, 0); // Ready bit should be clear
// 2. Start handshake
apu_->Write(0x00, 0x80); // Set control register bit 7
// 3. Wait for handshake with cycle counting
int cycles = 0;
const int min_cycles = 32; // Minimum expected cycles
const int max_cycles = 96; // Maximum expected cycles
while (!(apu_->Read(0x00) & 0x80) && cycles < max_cycles) {
apu_->RunCycles(1);
cycles++;
}
// 4. Verify timing constraints
EXPECT_GE(cycles, min_cycles); // Should take at least min_cycles
EXPECT_LE(cycles, max_cycles); // Should complete within max_cycles
EXPECT_TRUE(apu_->Read(0x00) & 0x80); // Ready bit should be set
}
// Test IPL ROM handshake with multiple attempts
TEST_F(IplHandshakeTest, MultipleAttempts) {
const int num_attempts = 10;
std::vector<int> cycle_counts;
for (int i = 0; i < num_attempts; i++) {
// Reset APU
apu_->Init();
// Start handshake
apu_->Write(0x00, 0x80);
// Count cycles until ready
int cycles = 0;
while (!(apu_->Read(0x00) & 0x80) && cycles < 1000) {
apu_->RunCycles(1);
cycles++;
}
// Record cycle count
cycle_counts.push_back(cycles);
// Verify handshake completed
EXPECT_TRUE(apu_->Read(0x00) & 0x80);
}
// Verify cycle count consistency
int min_cycles = *std::min_element(cycle_counts.begin(), cycle_counts.end());
int max_cycles = *std::max_element(cycle_counts.begin(), cycle_counts.end());
EXPECT_LE(max_cycles - min_cycles, 2); // Cycle count should be consistent
}
// Test IPL ROM handshake with interrupts
TEST_F(IplHandshakeTest, WithInterrupts) {
// 1. Initial state
EXPECT_EQ(apu_->Read(0x00) & 0x80, 0);
// 2. Enable interrupts
apu_->Write(0x00, 0x80 | 0x40); // Set control register bits 7 and 6
// 3. Run cycles with interrupts
int cycles = 0;
while (!(apu_->Read(0x00) & 0x80) && cycles < 1000) {
apu_->RunCycles(1);
cycles++;
}
// 4. Verify handshake completed
EXPECT_TRUE(apu_->Read(0x00) & 0x80);
EXPECT_EQ(apu_->GetStatus() & 0x80, 0x80);
}
} // namespace test
} // namespace yaze

4195
test/emu/cpu_test.cc Normal file

File diff suppressed because it is too large Load Diff

54
test/emu/ppu_test.cc Normal file
View File

@@ -0,0 +1,54 @@
#include "app/emu/video/ppu.h"
#include <gmock/gmock.h>
#include "mocks/mock_memory.h"
namespace yaze {
namespace test {
using yaze::emu::MockMemory;
using yaze::emu::BackgroundMode;
using yaze::emu::PpuInterface;
using yaze::emu::SpriteAttributes;
using yaze::emu::Tilemap;
/**
* @brief Mock Ppu class for testing
*/
class MockPpu : public PpuInterface {
public:
MOCK_METHOD(void, Write, (uint16_t address, uint8_t data), (override));
MOCK_METHOD(uint8_t, Read, (uint16_t address), (const, override));
std::vector<uint8_t> internalFrameBuffer;
std::vector<uint8_t> vram;
std::vector<SpriteAttributes> sprites;
std::vector<Tilemap> tilemaps;
BackgroundMode bgMode;
};
/**
* \test Test fixture for PPU unit tests
*/
class PpuTest : public ::testing::Test {
protected:
MockMemory mock_memory;
MockPpu mock_ppu;
PpuTest() {}
void SetUp() override {
ON_CALL(mock_ppu, Write(::testing::_, ::testing::_))
.WillByDefault([this](uint16_t address, uint8_t data) {
mock_ppu.vram[address] = data;
});
ON_CALL(mock_ppu, Read(::testing::_))
.WillByDefault(
[this](uint16_t address) { return mock_ppu.vram[address]; });
}
};
} // namespace test
} // namespace yaze

474
test/emu/spc700_test.cc Normal file
View File

@@ -0,0 +1,474 @@
#include "app/emu/audio/spc700.h"
#include <gmock/gmock-nice-strict.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
namespace yaze {
namespace test {
using testing::_;
using testing::Return;
using yaze::emu::ApuCallbacks;
using yaze::emu::AudioRam;
using yaze::emu::Spc700;
/**
* @brief MockAudioRam is a mock class for the AudioRam class.
*/
class MockAudioRam : public AudioRam {
public:
MOCK_METHOD(void, reset, (), (override));
MOCK_METHOD(uint8_t, read, (uint16_t address), (const, override));
MOCK_METHOD(uint8_t&, mutable_read, (uint16_t address), (override));
MOCK_METHOD(void, write, (uint16_t address, uint8_t value), (override));
void SetupMemory(uint16_t address, const std::vector<uint8_t>& values) {
if (address > internal_audio_ram_.size()) {
internal_audio_ram_.resize(address + values.size());
}
int i = 0;
for (const auto& each : values) {
internal_audio_ram_[address + i] = each;
i++;
}
}
void SetUp() {
// internal_audio_ram_.resize(0x10000); // 64 K (0x10000)
// std::fill(internal_audio_ram_.begin(), internal_audio_ram_.end(), 0);
ON_CALL(*this, read(_)).WillByDefault([this](uint16_t address) {
return internal_audio_ram_[address];
});
ON_CALL(*this, mutable_read(_))
.WillByDefault([this](uint16_t address) -> uint8_t& {
return internal_audio_ram_[address];
});
ON_CALL(*this, write(_, _))
.WillByDefault([this](uint16_t address, uint8_t value) {
internal_audio_ram_[address] = value;
});
ON_CALL(*this, reset()).WillByDefault([this]() {
std::fill(internal_audio_ram_.begin(), internal_audio_ram_.end(), 0);
});
}
std::vector<uint8_t> internal_audio_ram_ = std::vector<uint8_t>(0x10000, 0);
};
/**
* \test Spc700Test is a test fixture for the Spc700 class.
*/
class Spc700Test : public ::testing::Test {
public:
Spc700Test() = default;
void SetUp() override {
// Set up the mock
audioRAM.SetUp();
// Set the Spc700 to bank 01
spc700.PC = 0x0100;
}
testing::StrictMock<MockAudioRam> audioRAM;
ApuCallbacks callbacks_;
Spc700 spc700{callbacks_};
};
// ========================================================
// 8-bit Move Memory to Register
TEST_F(Spc700Test, MOV_A_Immediate) {
// MOV A, imm
uint8_t opcode = 0xE8;
uint8_t immediate_value = 0x5A;
audioRAM.SetupMemory(0x0100, {opcode, immediate_value});
EXPECT_CALL(audioRAM, read(_)).WillOnce(Return(immediate_value));
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.A, immediate_value);
EXPECT_EQ(spc700.PSW.Z, 0);
EXPECT_EQ(spc700.PSW.N, 0);
}
TEST_F(Spc700Test, MOV_A_X) {
// MOV A, X
uint8_t opcode = 0x7D;
spc700.X = 0x5A;
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.A, spc700.X);
EXPECT_EQ(spc700.PSW.Z, 0);
EXPECT_EQ(spc700.PSW.N, 0);
}
TEST_F(Spc700Test, MOV_A_Y) {
// MOV A, Y
uint8_t opcode = 0xDD;
spc700.Y = 0x5A;
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.A, spc700.Y);
EXPECT_EQ(spc700.PSW.Z, 0);
EXPECT_EQ(spc700.PSW.N, 0);
}
TEST_F(Spc700Test, MOV_A_dp) {
// MOV A, dp
uint8_t opcode = 0xE4;
uint8_t dp_value = 0x5A;
audioRAM.SetupMemory(0x005A, {0x42});
audioRAM.SetupMemory(0x0100, {opcode, dp_value});
EXPECT_CALL(audioRAM, read(_))
.WillOnce(Return(dp_value))
.WillOnce(Return(0x42));
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.A, 0x42);
EXPECT_EQ(spc700.PSW.Z, 0);
EXPECT_EQ(spc700.PSW.N, 0);
}
TEST_F(Spc700Test, MOV_A_dp_plus_x) {
// MOV A, dp+X
uint8_t opcode = 0xF4;
uint8_t dp_value = 0x5A;
spc700.X = 0x01;
audioRAM.SetupMemory(0x005B, {0x42});
audioRAM.SetupMemory(0x0100, {opcode, dp_value});
EXPECT_CALL(audioRAM, read(_))
.WillOnce(Return(dp_value + spc700.X))
.WillOnce(Return(0x42));
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.A, 0x42);
EXPECT_EQ(spc700.PSW.Z, 0);
EXPECT_EQ(spc700.PSW.N, 0);
}
TEST_F(Spc700Test, MOV_A_dp_indirect_plus_y) {
// MOV A, [dp]+Y
uint8_t opcode = 0xF7;
uint8_t dp_value = 0x5A;
spc700.Y = 0x01;
audioRAM.SetupMemory(0x005A, {0x00, 0x42});
audioRAM.SetupMemory(0x0100, {opcode, dp_value});
audioRAM.SetupMemory(0x4201, {0x69});
EXPECT_CALL(audioRAM, read(_))
.WillOnce(Return(dp_value))
.WillOnce(Return(0x4200))
.WillOnce(Return(0x69));
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.A, 0x69);
EXPECT_EQ(spc700.PSW.Z, 0);
EXPECT_EQ(spc700.PSW.N, 0);
}
TEST_F(Spc700Test, MOV_A_dp_plus_x_indirect) {
// MOV A, [dp+X]
uint8_t opcode = 0xE7;
uint8_t dp_value = 0x5A;
spc700.X = 0x01;
audioRAM.SetupMemory(0x005B, {0x00, 0x42});
audioRAM.SetupMemory(0x0100, {opcode, dp_value});
audioRAM.SetupMemory(0x4200, {0x69});
EXPECT_CALL(audioRAM, read(_))
.WillOnce(Return(dp_value + 1))
.WillOnce(Return(0x4200))
.WillOnce(Return(0x69));
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.A, 0x69);
EXPECT_EQ(spc700.PSW.Z, 0);
EXPECT_EQ(spc700.PSW.N, 0);
}
TEST_F(Spc700Test, MOV_A_abs) {
// MOV A, !abs
uint8_t opcode = 0xE5;
uint16_t abs_addr = 0x1234;
uint8_t abs_value = 0x5A;
EXPECT_CALL(audioRAM, read(_))
.WillOnce(Return(abs_addr & 0xFF)) // Low byte
.WillOnce(Return(abs_addr >> 8)); // High byte
EXPECT_CALL(audioRAM, read(abs_addr)).WillOnce(Return(abs_value));
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.A, abs_value);
EXPECT_EQ(spc700.PSW.Z, 0);
EXPECT_EQ(spc700.PSW.N, 0);
}
// ============================================================================
// 8-bit Move Register to Memory
TEST_F(Spc700Test, MOV_Immediate) {
// MOV A, imm
uint8_t opcode = 0xE8;
uint8_t immediate_value = 0x5A;
EXPECT_CALL(audioRAM, read(_)).WillOnce(Return(immediate_value));
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.A, immediate_value);
EXPECT_EQ(spc700.PSW.Z, 0);
EXPECT_EQ(spc700.PSW.N, 0);
}
// ============================================================================
TEST_F(Spc700Test, NOP_DoesNothing) {
// NOP opcode
uint8_t opcode = 0x00;
uint16_t initialPC = spc700.PC;
spc700.ExecuteInstructions(opcode);
// PC should increment by 1, no other changes
EXPECT_EQ(spc700.PC, initialPC + 1);
// Add checks for other registers if needed
}
TEST_F(Spc700Test, ADC_A_Immediate) {
// ADC A, #imm
uint8_t opcode = 0x88;
uint8_t immediate_value = 0x10;
spc700.A = 0x01;
spc700.PSW.C = 1; // Assume carry is set
EXPECT_CALL(audioRAM, read(_)).WillOnce(Return(immediate_value));
spc700.ExecuteInstructions(opcode);
// Verify A, and flags
EXPECT_EQ(spc700.A, 0x12); // 0x01 + 0x10 + 1 (carry)
// Check for other flags (Z, C, etc.) based on the result
}
TEST_F(Spc700Test, BEQ_BranchesIfZeroFlagSet) {
// BEQ rel
uint8_t opcode = 0xF0;
int8_t offset = 0x05;
spc700.PSW.Z = 1; // Set Zero flag
EXPECT_CALL(audioRAM, read(_)).WillOnce(Return(offset));
uint16_t initialPC = spc700.PC + 1;
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.PC, initialPC + offset);
}
TEST_F(Spc700Test, STA_Absolute) {
// STA !abs
uint8_t opcode = 0x85;
uint16_t abs_addr = 0x1234;
spc700.A = 0x80;
// Set up the mock to return the address for the absolute addressing
EXPECT_CALL(audioRAM, read(_))
.WillOnce(Return(abs_addr & 0xFF)) // Low byte
.WillOnce(Return(abs_addr >> 8)); // High byte
spc700.ExecuteInstructions(opcode);
}
TEST_F(Spc700Test, ExecuteADCWithImmediate) {
// ADC A, imm
uint8_t opcode = 0x88; // Replace with opcode for ADC A, imm
uint8_t immediate_value = 0x10;
spc700.A = 0x15;
EXPECT_CALL(audioRAM, read(_)).WillOnce(Return(immediate_value));
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.A, 0x25); // 0x15 + 0x10
EXPECT_EQ(spc700.PSW.Z, 0);
EXPECT_EQ(spc700.PSW.N, 0);
EXPECT_EQ(spc700.PSW.C, 0);
}
TEST_F(Spc700Test, ExecuteBRA) {
// BRA
uint8_t opcode = 0x2F;
int8_t offset = 0x05;
EXPECT_CALL(audioRAM, read(_)).WillOnce(Return(offset));
// rel() moves the PC forward one after read
uint16_t initialPC = spc700.PC + 1;
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.PC, initialPC + offset);
}
TEST_F(Spc700Test, ReadFromAudioRAM) {
uint16_t address = 0x1234;
uint8_t expected_value = 0x5A;
EXPECT_CALL(audioRAM, read(address)).WillOnce(Return(expected_value));
uint8_t value = spc700.read(address);
EXPECT_EQ(value, expected_value);
}
TEST_F(Spc700Test, WriteToAudioRAM) {
uint16_t address = 0x1234;
uint8_t value = 0x5A;
EXPECT_CALL(audioRAM, write(address, value));
spc700.write(address, value);
}
TEST_F(Spc700Test, ExecuteANDWithImmediate) {
// AND A, imm
uint8_t opcode = 0x28;
uint8_t immediate_value = 0x0F;
spc700.A = 0x5A; // 0101 1010
EXPECT_CALL(audioRAM, read(_)).WillOnce(Return(immediate_value));
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.A, 0x0A); // 0101 1010 & 0000 1111 = 0000 1010
EXPECT_EQ(spc700.PSW.Z, 0);
EXPECT_EQ(spc700.PSW.N, 0);
}
TEST_F(Spc700Test, ExecuteORWithImmediate) {
// OR A, imm
uint8_t opcode = 0x08;
uint8_t immediate_value = 0x0F;
spc700.A = 0xA0; // 1010 0000
EXPECT_CALL(audioRAM, read(_)).WillOnce(Return(immediate_value));
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.A, 0xAF); // 1010 0000 | 0000 1111 = 1010 1111
EXPECT_EQ(spc700.PSW.Z, 0);
// EXPECT_EQ(spc700.PSW.N, 1);
}
TEST_F(Spc700Test, ExecuteEORWithImmediate) {
// EOR A, imm
uint8_t opcode = 0x48;
uint8_t immediate_value = 0x5A;
spc700.A = 0x5A; // 0101 1010
EXPECT_CALL(audioRAM, read(_)).WillOnce(Return(immediate_value));
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.A, 0x00); // 0101 1010 ^ 0101 1010 = 0000 0000
EXPECT_EQ(spc700.PSW.Z, 1);
EXPECT_EQ(spc700.PSW.N, 0);
}
TEST_F(Spc700Test, ExecuteINC) {
// INC A
uint8_t opcode = 0xBC;
spc700.A = 0xFF;
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.A, 0x00);
EXPECT_EQ(spc700.PSW.Z, 1);
EXPECT_EQ(spc700.PSW.N, 0);
}
TEST_F(Spc700Test, ExecuteDEC) {
// DEC A
uint8_t opcode = 0x9C;
spc700.A = 0x01;
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.A, 0x00);
EXPECT_EQ(spc700.PSW.Z, 1);
EXPECT_EQ(spc700.PSW.N, 0);
}
TEST_F(Spc700Test, ExecuteBNEWhenNotEqual) {
// BNE
uint8_t opcode = 0xD0;
int8_t offset = 0x05;
spc700.PSW.Z = 0;
EXPECT_CALL(audioRAM, read(_)).WillOnce(Return(offset));
uint16_t initialPC = spc700.PC + 1;
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.PC, initialPC + offset);
}
TEST_F(Spc700Test, ExecuteBNEWhenEqual) {
// BNE
uint8_t opcode = 0xD0;
int8_t offset = 0x05;
spc700.PSW.Z = 1;
EXPECT_CALL(audioRAM, read(_)).WillOnce(Return(offset));
uint16_t initialPC = spc700.PC;
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.PC, initialPC + 1); // +1 because of reading the offset
}
TEST_F(Spc700Test, ExecuteBEQWhenEqual) {
// BEQ
uint8_t opcode = 0xF0;
int8_t offset = 0x05;
spc700.PSW.Z = 1;
EXPECT_CALL(audioRAM, read(_)).WillOnce(Return(offset));
uint16_t initialPC = spc700.PC + 1;
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.PC, initialPC + offset);
}
TEST_F(Spc700Test, ExecuteBEQWhenNotEqual) {
// BEQ
uint8_t opcode = 0xF0;
int8_t offset = 0x05;
spc700.PSW.Z = 0;
EXPECT_CALL(audioRAM, read(_)).WillOnce(Return(offset));
uint16_t initialPC = spc700.PC;
spc700.ExecuteInstructions(opcode);
EXPECT_EQ(spc700.PC, initialPC + 1); // +1 because of reading the offset
}
TEST_F(Spc700Test, BootIplRomOk) {
// Boot the IPL ROM
// spc700.BootIplRom();
// EXPECT_EQ(spc700.PC, 0xFFC1 + 0x3F);
}
} // namespace test
} // namespace yaze