# DungeonEditor Parallel Optimization Implementation ## ๐Ÿš€ **Parallelization Strategy Implemented** ### **Problem Identified** - **DungeonEditor::LoadAllRooms**: **17,966ms (17.97 seconds)** - 99.9% of loading time - Loading **296 rooms** sequentially, each involving complex operations - Perfect candidate for parallelization due to independent room processing ### **Solution: Multi-Threaded Room Loading** #### **Key Optimizations** 1. **Parallel Room Processing** ```cpp // Load 296 rooms using up to 8 threads const int max_concurrency = std::min(8, std::thread::hardware_concurrency()); const int rooms_per_thread = (296 + max_concurrency - 1) / max_concurrency; ``` 2. **Thread-Safe Result Collection** ```cpp std::mutex results_mutex; std::vector> room_size_results; std::vector> room_palette_results; ``` 3. **Optimized Thread Distribution** - **8 threads maximum** (reasonable limit for room loading) - **~37 rooms per thread** (296 รท 8 = 37 rooms per thread) - **Hardware concurrency aware** (adapts to available CPU cores) #### **Parallel Processing Flow** ```cpp // Each thread processes a batch of rooms for (int i = start_room; i < end_room; ++i) { // 1. Load room data (expensive operation) rooms[i] = zelda3::LoadRoomFromRom(rom_, i); // 2. Calculate room size auto room_size = zelda3::CalculateRoomSize(rom_, i); // 3. Load room objects rooms[i].LoadObjects(); // 4. Process palette (thread-safe collection) // ... palette processing ... } ``` #### **Thread Safety Features** 1. **Mutex Protection**: `std::mutex results_mutex` protects shared data structures 2. **Lock Guards**: `std::lock_guard` ensures thread-safe result collection 3. **Independent Processing**: Each thread works on different room ranges 4. **Synchronized Results**: Results collected and sorted on main thread ### **Expected Performance Impact** #### **Theoretical Speedup** - **8x faster** with 8 threads (ideal case) - **Realistic expectation**: **4-6x speedup** due to: - Thread creation overhead - Mutex contention - Memory bandwidth limitations - Cache coherency issues #### **Expected Results** - **Before**: 17,966ms (17.97 seconds) - **After**: **2,000-4,500ms (2-4.5 seconds)** - **Total Loading Time**: **2.5-5 seconds** (down from 18.6 seconds) - **Overall Improvement**: **70-85% reduction** in loading time ### **Technical Implementation Details** #### **Thread Management** ```cpp std::vector> futures; for (int thread_id = 0; thread_id < max_concurrency; ++thread_id) { auto task = [this, &rooms, thread_id, rooms_per_thread, ...]() -> absl::Status { // Process room batch return absl::OkStatus(); }; futures.emplace_back(std::async(std::launch::async, task)); } // Wait for all threads to complete for (auto& future : futures) { RETURN_IF_ERROR(future.get()); } ``` #### **Result Processing** ```cpp // Sort results by room ID for consistent ordering std::sort(room_size_results.begin(), room_size_results.end(), [](const auto& a, const auto& b) { return a.first < b.first; }); // Process collected results on main thread for (const auto& [room_id, room_size] : room_size_results) { room_size_pointers_.push_back(room_size.room_size_pointer); // ... process results ... } ``` ### **Monitoring and Validation** #### **Performance Timing Added** - **DungeonRoomLoader::PostProcessResults**: Measures result processing time - **Thread creation overhead**: Minimal compared to room loading time - **Result collection time**: Expected to be <100ms #### **Logging and Debugging** ```cpp util::logf("Loading %d dungeon rooms using %d threads (%d rooms per thread)", kTotalRooms, max_concurrency, rooms_per_thread); ``` ### **Benefits of This Approach** 1. **Massive Performance Gain**: 70-85% reduction in loading time 2. **Scalable**: Automatically adapts to available CPU cores 3. **Thread-Safe**: Proper synchronization prevents data corruption 4. **Maintainable**: Clean separation of parallel processing and result collection 5. **Robust**: Error handling per thread with proper status propagation ### **Next Steps** 1. **Test Performance**: Run application and measure actual speedup 2. **Validate Results**: Ensure room data integrity is maintained 3. **Fine-tune**: Adjust thread count if needed based on results 4. **Monitor**: Watch for any threading issues or performance regressions This parallel optimization should transform YAZE from a slow-loading application to a lightning-fast ROM editor!