# Ollama Integration Status - Updated# Ollama Integration Status ## ✅ Completed## ✅ Completed ### Infrastructure### Flag Parsing - ✅ Flag parsing for AI provider configuration- **Fixed**: AI provider flags (`--ai_provider`, `--ai_model`, `--ollama_host`, `--gemini_api_key`) are now properly parsed in `cli_main.cc` - ✅ Ollama service with health checks- **Result**: Ollama provider is correctly detected and initialized - ✅ Tool system with 5 read-only tools- **Verification**: `🤖 AI Provider: ollama` message appears correctly - ✅ Simple chat modes (4 input methods working) - ✅ Colorful terminal output with loading indicators### Ollama Service - ✅ Verbose mode for diagnostics- **Status**: OllamaAIService properly connects to local Ollama server - ✅ Configurable max-tool-iterations and max-retries- **Health Check**: Successfully validates model availability (qwen2.5-coder:7b) - ✅ File-based prompt system (assets/agent/*.txt)- **JSON Parsing**: Correctly extracts tool calls and text responses from Ollama's response format ### Current Issue: Empty Tool Results### Tool System - **Tool Dispatcher**: Working correctly - routes tool calls to appropriate handlers **Problem**: The `resource-list` tool is returning empty JSON `{}` when requesting dungeon labels.- **Tool Registration**: 5 read-only tools available: - `resource-list` - List labeled resources **Root Cause**: The embedded labels in Zelda3Labels only include: - `dungeon-list-sprites` - Inspect room sprites - `room` - 297 room names ✅ - `overworld-find-tile` - Search for tile placements - `entrance` - 133 entrance names ✅ - `overworld-describe-map` - Get map metadata - `sprite` - 256 sprite names ✅ - `overworld-list-warps` - List entrances/exits/holes - `overlord` - 26 overlord names ✅ - `item` - 104 item names ✅### Simple Chat Modes All 4 input methods working: But **NOT** `dungeon` as a separate category.1. ✅ Single message mode: `z3ed agent simple-chat "message" --rom=file.sfc --ai_provider=ollama` 2. ✅ Interactive mode: `z3ed agent simple-chat --rom=file.sfc --ai_provider=ollama` **Diagnosis**:3. ✅ Piped input mode: `echo "message" | z3ed agent simple-chat --rom=file.sfc --ai_provider=ollama` ```bash4. ✅ Batch file mode: `z3ed agent simple-chat --file=queries.txt --rom=file.sfc --ai_provider=ollama` # Works (returns data): ./z3ed agent resource-list --type=room --format=json## 🚧 In Progress ./z3ed agent resource-list --type=entrance --format=json ./z3ed agent resource-list --type=sprite --format=json### Tool Calling Loop Issue **Problem**: Agent enters infinite tool-calling loop without providing final text response # Fails (returns empty {}): ./z3ed agent resource-list --type=dungeon --format=json**Symptoms**: `````` Error: Agent did not produce a response after executing tools. **Solution Options**:``` 1. **Quick Fix**: Update prompt examples to use valid categories**Root Cause**: The system prompt needs refinement to instruct the LLM to: - Change `type: dungeon` → `type: room` in examples1. Call tools when needed - Update tool descriptions to clarify available categories2. Wait for tool results 3. **THEN provide a final text_response based on the tool results** 2. **Proper Fix**: Add dungeon labels to embedded labels4. Stop calling tools after receiving results - Modify `Zelda3Labels::ToResourceLabels()` to include dungeon category - Map dungeon IDs (0-11) to their names**Current Behavior**: - LLM successfully calls tools (e.g., `resource-list` with `type=dungeon`) 3. **Alternative**: Clarify that "dungeons" are accessed via room labels- Tool executes and returns JSON results - Document that dungeon rooms use the `room` category- LLM receives results in conversation history - Provide ID ranges (e.g., rooms 0-119 are Hyrule Castle, etc.)- LLM either: - Calls tools again (loop detected after 4 iterations) ## 🎨 New Features Added - OR doesn't provide a `text_response` field in the JSON ### Verbose Mode**Solution Needed**: Update system prompt to include explicit instructions like: ```bash z3ed agent simple-chat "query" --verbose``` ```When you call a tool: Shows:1. The tool will execute and return results - Iteration count2. You will receive the results in the next message - Agent response analysis (tool calls, commands, text_response status)3. After receiving tool results, you MUST provide a text_response that answers the user's question using the tool data - LLM reasoning4. Do NOT call the same tool again - Tool output preview5. Example flow: - Step-by-step execution flow User: "What dungeons are there?" Assistant (first response): { "tool_calls": [{"tool_name": "resource-list", "args": {"type": "dungeon"}}] } ### Configuration Parameters [Tool executes and returns dungeon list] ```bash Assistant (second response): { "text_response": "Based on the resource list, there are X dungeons: [list them]" } --max-tool-iterations=6 # Default: 4``` --max-retries=5 # Default: 3 --no-reasoning # Hide LLM reasoning## 📋 Testing ``` ### Test Script ### Colorful OutputCreated `test_simple_chat_ollama.sh` with comprehensive tests: - 🔧 Tool calls in magenta- ✅ Prerequisites check (Ollama, model, ROM) - ✓ Success messages in green- ✅ Single message mode test - ⚠ Warnings in yellow- ✅ Piped input test - ✗ Errors in red- ✅ Interactive mode test (with auto-exit) - ℹ Info in blue- ✅ Batch mode test - 💭 Reasoning in dim yellow- ⚠️ Tool calling verification (needs prompt refinement) - ⠋ Loading spinner (cyan) ### Manual Test Results ## 📋 Next Steps **Test 1: Single Message** ### Priority 1: Fix Empty Tool Results (HIGH)```bash 1. Add dungeon category to embedded labels OR./build_test/bin/z3ed agent simple-chat "What dungeons are in this ROM?" \ 2. Update all prompt examples to use `room` instead of `dungeon` --rom=assets/zelda3.sfc --ai_provider=ollama 3. Test that tools return actual data``` 4. Verify LLM can process tool results**Result**: - ✅ Ollama connects successfully ### Priority 2: Refine Prompts (MEDIUM)- ✅ Model loads (qwen2.5-coder:7b) Once tools return data:- ❌ Hits 4-iteration limit without final response 1. Test if LLM provides final text_response after tool results 2. Adjust system prompt if loop persists**Test 2: Tool Availability** 3. Test with different Ollama models (llama3, codellama)```bash ./build_test/bin/z3ed agent resource-list --type=dungeon --format=json --rom=assets/zelda3.sfc ### Priority 3: Documentation (LOW)``` 1. Document available resource categories**Result**: ✅ Returns proper JSON with dungeon names 2. Add troubleshooting guide 3. Create example queries for each tool## 🔧 Next Steps ## 🧪 Testing Commands### Priority 1: Fix Tool Calling Loop (High Priority) 1. **Update system prompt** in `prompt_builder.cc`: ```bash - Add explicit instructions for tool usage workflow # Test with verbose mode - Include examples showing tool call → results → final response ./build_test/bin/z3ed agent simple-chat "What rooms are there?" \\ - Emphasize that `text_response` is REQUIRED after receiving tool results --rom=assets/zelda3.sfc --ai_provider=ollama --verbose --max-tool-iterations=6 2. **Enhance examples** in `prompt_catalogue.yaml`: # Test resource categories - Add multi-turn examples showing tool usage ./build_test/bin/z3ed agent resource-list --type=room --rom=assets/zelda3.sfc - Show correct pattern: question → tool_call → (wait) → text_response with tool data ./build_test/bin/z3ed agent resource-list --type=entrance --rom=assets/zelda3.sfc ./build_test/bin/z3ed agent resource-list --type=sprite --rom=assets/zelda3.sfc3. **Improve response validation** in `ollama_ai_service.cc`: - Detect when tool results are in history but no text_response provided # Test with Gemini (if API key available) - Add warning messages for debugging export GEMINI_API_KEY='your-key' ./build_test/bin/z3ed agent simple-chat "What rooms are in this ROM?" \\### Priority 2: Testing & Validation (Medium Priority) --rom=assets/zelda3.sfc --ai_provider=gemini --verbose1. Test with different Ollama models: ``` - qwen2.5-coder:7b (current) - llama3:8b ## 📊 Performance - codellama:7b - Ollama response: ~2-5 seconds (qwen2.5-coder:7b)2. Create regression test suite for tool calling: - Tool execution: <100ms - Test each tool individually - Loading indicator: Smooth 80ms refresh rate - Test multi-tool sequences - Test conversation context preservation ## 🎯 Success Criteria ### Priority 3: Documentation (Low Priority) - [x] Colorful, user-friendly output1. Update `simple_chat_input_methods.md` with: - [x] Verbose mode for debugging - Known limitations section - [x] Configurable parameters - Troubleshooting for tool calling issues - [x] File-based prompts for easy updates - Recommended models and configurations - [ ] Tools return actual data (BLOCKED on dungeon labels) - [ ] LLM provides final response after tool calls2. Create `ollama_best_practices.md`: - [ ] Zero infinite loops - Model recommendations - Temperature/parameter tuning --- - Prompt engineering tips **Last Updated**: October 4, 2025## 📊 Performance Notes **Status**: 🟡 Blocked on empty tool results - need to fix dungeon labels **Next Action**: Add dungeon category to embedded labels OR update prompt examples- **Ollama Response Time**: ~2-5 seconds per query (qwen2.5-coder:7b on typical hardware) - **Tool Execution**: <100ms per tool call - **Total Interaction**: ~2-5 seconds for simple queries, longer for multi-turn with tools ## 🐛 Known Issues 1. **Tool Calling Loop**: Agent doesn't provide final response after tool execution (see above) 2. **No Streaming**: Responses are blocking (not streamed), so user sees delay 3. **Limited Context**: Prompt builder doesn't include full conversation context in system prompt ## 💡 Recommendations ### For Users - Use MockAIService for testing until tool calling is fixed - For production, prefer Gemini (has native function calling support) - Keep queries simple and direct ### For Developers - Focus on fixing the tool calling loop first - Consider implementing streaming responses - Add debug logging to track tool call cycles - Test with multiple Ollama models to find best performer ## 📝 Related Files - `/Users/scawful/Code/yaze/src/cli/cli_main.cc` - Flag parsing (FIXED ✅) - `/Users/scawful/Code/yaze/src/cli/service/ai/ollama_ai_service.cc` - Ollama integration - `/Users/scawful/Code/yaze/src/cli/service/ai/prompt_builder.cc` - System prompt generation (NEEDS FIX 🚧) - `/Users/scawful/Code/yaze/src/cli/service/agent/conversational_agent_service.cc` - Tool execution loop - `/Users/scawful/Code/yaze/assets/agent/prompt_catalogue.yaml` - Tool definitions and examples (NEEDS ENHANCEMENT 🚧) - `/Users/scawful/Code/yaze/docs/simple_chat_input_methods.md` - User documentation - `/Users/scawful/Code/yaze/test_simple_chat_ollama.sh` - Test script ## 🎯 Success Criteria ### Minimum Viable - [ ] LLM successfully calls tools - [ ] LLM provides final text_response after receiving tool results - [ ] No infinite loops (completes within 4 iterations) - [ ] Accurate answers to simple questions ("What dungeons?", "List sprites in room X") ### Full Success - [ ] All 5 tools work correctly with Ollama - [ ] Multi-turn conversations maintain context - [ ] Works with 3+ different Ollama models - [ ] Response time <5 seconds for typical queries - [ ] Comprehensive test coverage --- **Last Updated**: October 4, 2025 **Status**: 🟡 Partially Working - Core infrastructure complete, prompt refinement needed **Next Action**: Update system prompt to fix tool calling loop