#include "common.h" #include #include #include #include #include #include #include #include #include #include #include #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "app/core/constants.h" #include "imgui/imgui.h" namespace yaze { namespace app { namespace core { namespace { void encode(uint64_t data, std::vector &output) { while (true) { uint8_t x = data & 0x7f; data >>= 7; if (data == 0) { output.push_back(0x80 | x); break; } output.push_back(x); data--; } } uint64_t decode(const std::vector &input, size_t &offset) { uint64_t data = 0; uint64_t shift = 1; while (true) { uint8_t x = input[offset++]; data += (x & 0x7f) * shift; if (x & 0x80) break; shift <<= 7; data += shift; } return data; } uint32_t crc32(const std::vector &data) { uint32_t crc = ::crc32(0L, Z_NULL, 0); return ::crc32(crc, data.data(), data.size()); } // "load little endian value at the given byte offset and shift to get its // value relative to the base offset (powers of 256, essentially)" unsigned ldle(uint8_t const *const p_arr, unsigned const p_index) { uint32_t v = p_arr[p_index]; v <<= (8 * p_index); return v; } void stle(uint8_t *const p_arr, size_t const p_index, unsigned const p_val) { uint8_t v = (p_val >> (8 * p_index)) & 0xff; p_arr[p_index] = v; } void stle0(uint8_t *const p_arr, unsigned const p_val) { stle(p_arr, 0, p_val); } void stle1(uint8_t *const p_arr, unsigned const p_val) { stle(p_arr, 1, p_val); } void stle2(uint8_t *const p_arr, unsigned const p_val) { stle(p_arr, 2, p_val); } void stle3(uint8_t *const p_arr, unsigned const p_val) { stle(p_arr, 3, p_val); } // Helper function to get the first byte in a little endian number uint32_t ldle0(uint8_t const *const p_arr) { return ldle(p_arr, 0); } // Helper function to get the second byte in a little endian number uint32_t ldle1(uint8_t const *const p_arr) { return ldle(p_arr, 1); } // Helper function to get the third byte in a little endian number uint32_t ldle2(uint8_t const *const p_arr) { return ldle(p_arr, 2); } // Helper function to get the third byte in a little endian number uint32_t ldle3(uint8_t const *const p_arr) { return ldle(p_arr, 3); } } // namespace std::shared_ptr ExperimentFlags::flags_; uint32_t Get24LocalFromPC(uint8_t *data, int addr, bool pc) { uint32_t ret = (PcToSnes(addr) & 0xFF0000) | (data[addr + 1] << 8) | data[addr]; if (pc) { return SnesToPc(ret); } return ret; } void stle16b_i(uint8_t *const p_arr, size_t const p_index, uint16_t const p_val) { stle16b(p_arr + (p_index * 2), p_val); } void stle16b(uint8_t *const p_arr, uint16_t const p_val) { stle0(p_arr, p_val); stle1(p_arr, p_val); } uint16_t ldle16b(uint8_t const *const p_arr) { uint16_t v = 0; v |= (ldle0(p_arr) | ldle1(p_arr)); return v; } uint16_t ldle16b_i(uint8_t const *const p_arr, size_t const p_index) { return ldle16b(p_arr + (2 * p_index)); } void CreateBpsPatch(const std::vector &source, const std::vector &target, std::vector &patch) { patch.clear(); patch.insert(patch.end(), {'B', 'P', 'S', '1'}); encode(source.size(), patch); encode(target.size(), patch); encode(0, patch); // No metadata size_t source_offset = 0; size_t target_offset = 0; int64_t source_rel_offset = 0; int64_t target_rel_offset = 0; while (target_offset < target.size()) { if (source_offset < source.size() && source[source_offset] == target[target_offset]) { size_t length = 0; while (source_offset + length < source.size() && target_offset + length < target.size() && source[source_offset + length] == target[target_offset + length]) { length++; } encode((length - 1) << 2 | 0, patch); // SourceRead source_offset += length; target_offset += length; } else { size_t length = 0; while ( target_offset + length < target.size() && (source_offset + length >= source.size() || source[source_offset + length] != target[target_offset + length])) { length++; } if (length > 0) { encode((length - 1) << 2 | 1, patch); // TargetRead for (size_t i = 0; i < length; i++) { patch.push_back(target[target_offset + i]); } target_offset += length; } } // SourceCopy if (source_offset < source.size()) { size_t length = 0; int64_t offset = source_offset - source_rel_offset; while (source_offset + length < source.size() && target_offset + length < target.size() && source[source_offset + length] == target[target_offset + length]) { length++; } if (length > 0) { encode((length - 1) << 2 | 2, patch); encode((offset < 0 ? 1 : 0) | (abs(offset) << 1), patch); source_offset += length; target_offset += length; source_rel_offset = source_offset; } } // TargetCopy if (target_offset > 0) { size_t length = 0; int64_t offset = target_offset - target_rel_offset; while (target_offset + length < target.size() && target[target_offset - 1] == target[target_offset + length]) { length++; } if (length > 0) { encode((length - 1) << 2 | 3, patch); encode((offset < 0 ? 1 : 0) | (abs(offset) << 1), patch); target_offset += length; target_rel_offset = target_offset; } } } patch.resize(patch.size() + 12); // Make space for the checksums uint32_t source_checksum = crc32(source); uint32_t target_checksum = crc32(target); uint32_t patch_checksum = crc32(patch); memcpy(patch.data() + patch.size() - 12, &source_checksum, sizeof(uint32_t)); memcpy(patch.data() + patch.size() - 8, &target_checksum, sizeof(uint32_t)); memcpy(patch.data() + patch.size() - 4, &patch_checksum, sizeof(uint32_t)); } void ApplyBpsPatch(const std::vector &source, const std::vector &patch, std::vector &target) { if (patch.size() < 4 || patch[0] != 'B' || patch[1] != 'P' || patch[2] != 'S' || patch[3] != '1') { throw std::runtime_error("Invalid patch format"); } size_t patch_offset = 4; uint64_t target_size = decode(patch, patch_offset); uint64_t metadata_size = decode(patch, patch_offset); patch_offset += metadata_size; target.resize(target_size); size_t source_offset = 0; size_t target_offset = 0; int64_t source_rel_offset = 0; int64_t target_rel_offset = 0; while (patch_offset < patch.size() - 12) { uint64_t data = decode(patch, patch_offset); uint64_t command = data & 3; uint64_t length = (data >> 2) + 1; switch (command) { case 0: // SourceRead while (length--) { target[target_offset++] = source[source_offset++]; } break; case 1: // TargetRead while (length--) { target[target_offset++] = patch[patch_offset++]; } break; case 2: // SourceCopy { int64_t offsetData = decode(patch, patch_offset); source_rel_offset += (offsetData & 1 ? -1 : +1) * (offsetData >> 1); while (length--) { target[target_offset++] = source[source_rel_offset++]; } } break; case 3: // TargetCopy { uint64_t offsetData = decode(patch, patch_offset); target_rel_offset += (offsetData & 1 ? -1 : +1) * (offsetData >> 1); while (length--) { target[target_offset++] = target[target_rel_offset++]; } } default: throw std::runtime_error("Invalid patch command"); } } uint32_t source_checksum; uint32_t target_checksum; uint32_t patch_checksum; memcpy(&source_checksum, patch.data() + patch.size() - 12, sizeof(uint32_t)); memcpy(&target_checksum, patch.data() + patch.size() - 8, sizeof(uint32_t)); memcpy(&patch_checksum, patch.data() + patch.size() - 4, sizeof(uint32_t)); if (source_checksum != crc32(source) || target_checksum != crc32(target) || patch_checksum != crc32(std::vector(patch.begin(), patch.end() - 4))) { throw std::runtime_error("Checksum mismatch"); } } absl::StatusOr CheckVersion(const char *version) { std::string version_string = version; if (version_string != kYazeVersion) { std::string message = absl::StrFormat("Yaze version mismatch: expected %s, got %s", kYazeVersion.data(), version_string.c_str()); return absl::InvalidArgumentError(message); } return version_string; } } // namespace core } // namespace app } // namespace yaze