#include "rom.h" #include #include #include #include #include #include #include #include #include #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "app/core/common.h" #include "app/core/constants.h" #include "app/gfx/bitmap.h" #include "app/zelda3/palettes.h" #define COMPRESSION_STRING_MOD 7 << 5 namespace yaze { namespace app { namespace { int GetGraphicsAddress(const uchar* data, uint8_t offset) { auto part_one = data[kOverworldGraphicsPos1 + offset] << 16; auto part_two = data[kOverworldGraphicsPos2 + offset] << 8; auto part_three = data[kOverworldGraphicsPos3 + offset]; auto snes_addr = (part_one | part_two | part_three); return core::SnesToPc(snes_addr); } Bytes SNES3bppTo8bppSheet(Bytes sheet) { Bytes sheet_buffer_out(0x1000); int xx = 0; // positions where we are at on the sheet int yy = 0; int pos = 0; int ypos = 0; // for each tiles, 16 per line for (int i = 0; i < 64; i++) { // for each line for (int y = 0; y < 8; y++) { //[0] + [1] + [16] for (int x = 0; x < 8; x++) { auto b1 = ((sheet[(y * 2) + (24 * pos)] & (kGraphicsBitmap[x]))); auto b2 = (sheet[((y * 2) + (24 * pos)) + 1] & (kGraphicsBitmap[x])); auto b3 = (sheet[(16 + y) + (24 * pos)] & (kGraphicsBitmap[x])); unsigned char b = 0; if (b1 != 0) { b |= 1; } if (b2 != 0) { b |= 2; } if (b3 != 0) { b |= 4; } sheet_buffer_out[x + (xx) + (y * 128) + (yy * 1024)] = b; } } pos++; ypos++; xx += 8; if (ypos >= 16) { yy++; xx = 0; ypos = 0; } } return sheet_buffer_out; } void PrintCompressionPiece(const std::shared_ptr& piece) { printf("Command: %d\n", piece->command); printf("Command kength: %d\n", piece->length); printf("Argument:"); auto arg_size = piece->argument.size(); for (int i = 0; i < arg_size; ++i) { printf("%02X ", piece->argument.at(i)); } printf("\nArgument length: %d\n", piece->argument_length); } void PrintCompressionChain( const std::shared_ptr& compressed_chain_start) { auto compressed_chain = compressed_chain_start->next; while (compressed_chain != nullptr) { printf("- Compression Piece -\n"); PrintCompressionPiece(compressed_chain); compressed_chain = compressed_chain->next; } } void CheckByteRepeat(const uchar* rom_data, DataSizeArray& data_size_taken, CommandArgumentArray& cmd_args, uint& src_data_pos, const uint last_pos) { uint pos = src_data_pos; char byte_to_repeat = rom_data[pos]; while (pos <= last_pos && rom_data[pos] == byte_to_repeat) { data_size_taken[kCommandByteFill]++; pos++; } cmd_args[kCommandByteFill][0] = byte_to_repeat; } void CheckWordRepeat(const uchar* rom_data, DataSizeArray& data_size_taken, CommandArgumentArray& cmd_args, uint& src_data_pos, const uint last_pos) { if (src_data_pos + 2 <= last_pos && rom_data[src_data_pos] != rom_data[src_data_pos + 1]) { uint pos = src_data_pos; char byte1 = rom_data[pos]; char byte2 = rom_data[pos + 1]; pos += 2; data_size_taken[kCommandWordFill] = 2; while (pos + 1 <= last_pos) { if (rom_data[pos] == byte1 && rom_data[pos + 1] == byte2) data_size_taken[kCommandWordFill] += 2; else break; pos += 2; } cmd_args[kCommandWordFill][0] = byte1; cmd_args[kCommandWordFill][1] = byte2; } } void CheckIncByte(const uchar* rom_data, DataSizeArray& data_size_taken, CommandArgumentArray& cmd_args, uint& src_data_pos, const uint last_pos) { uint pos = src_data_pos; char byte = rom_data[pos]; pos++; data_size_taken[kCommandIncreasingFill] = 1; byte++; while (pos <= last_pos && byte == rom_data[pos]) { data_size_taken[kCommandIncreasingFill]++; byte++; pos++; } cmd_args[kCommandIncreasingFill][0] = rom_data[src_data_pos]; } void CheckIntraCopy(const uchar* rom_data, DataSizeArray& data_size_taken, CommandArgumentArray& cmd_args, uint& src_data_pos, const uint last_pos, uint start) { if (src_data_pos != start) { uint searching_pos = start; uint current_pos_u = src_data_pos; uint copied_size = 0; uint search_start = start; while (searching_pos < src_data_pos && current_pos_u <= last_pos) { while (rom_data[current_pos_u] != rom_data[searching_pos] && searching_pos < src_data_pos) searching_pos++; search_start = searching_pos; while (current_pos_u <= last_pos && rom_data[current_pos_u] == rom_data[searching_pos] && searching_pos < src_data_pos) { copied_size++; current_pos_u++; searching_pos++; } if (copied_size > data_size_taken[kCommandRepeatingBytes]) { search_start -= start; printf("- Found repeat of %d at %d\n", copied_size, search_start); data_size_taken[kCommandRepeatingBytes] = copied_size; cmd_args[kCommandRepeatingBytes][0] = search_start & kSnesByteMax; cmd_args[kCommandRepeatingBytes][1] = search_start >> 8; } current_pos_u = src_data_pos; copied_size = 0; } } } // Check if a command managed to pick up `max_win` or more bytes // Avoids being even with copy command, since it's possible to merge copy void ValidateForByteGain(const DataSizeArray& data_size_taken, const CommandSizeArray& cmd_size, uint& max_win, uint& cmd_with_max) { for (uint cmd_i = 1; cmd_i < 5; cmd_i++) { uint cmd_size_taken = data_size_taken[cmd_i]; // TODO(@scawful): Replace conditional with table of command sizes // "Table that is even with copy but all other cmd are 2" auto table_check = !(cmd_i == kCommandRepeatingBytes && cmd_size_taken == 3); if (cmd_size_taken > max_win && cmd_size_taken > cmd_size[cmd_i] && table_check) { printf("==> C:%d / S:%d\n", cmd_i, cmd_size_taken); cmd_with_max = cmd_i; max_win = cmd_size_taken; } } } void CompressionCommandAlternative( const uchar* rom_data, std::shared_ptr& compressed_chain, const CommandSizeArray& cmd_size, const CommandArgumentArray& cmd_args, uint& src_data_pos, uint& comp_accumulator, uint& cmd_with_max, uint& max_win) { printf("- Ok we get a gain from %d\n", cmd_with_max); std::string buffer; buffer.push_back(cmd_args[cmd_with_max][0]); if (cmd_size[cmd_with_max] == 2) { buffer.push_back(cmd_args[cmd_with_max][1]); } auto new_comp_piece = std::make_shared( cmd_with_max, max_win, buffer, cmd_size[cmd_with_max]); PrintCompressionPiece(new_comp_piece); // If we let non compressed stuff, we need to add a copy chunk before if (comp_accumulator != 0) { std::string copy_buff; copy_buff.resize(comp_accumulator); for (int i = 0; i < comp_accumulator; ++i) { copy_buff[i] = rom_data[i + src_data_pos - comp_accumulator]; } auto copy_chunk = std::make_shared( kCommandDirectCopy, comp_accumulator, copy_buff, comp_accumulator); compressed_chain->next = copy_chunk; compressed_chain = copy_chunk; } else { compressed_chain->next = new_comp_piece; compressed_chain = new_comp_piece; } src_data_pos += max_win; comp_accumulator = 0; } absl::StatusOr> SplitCompressionPiece( std::shared_ptr& piece, int mode) { std::shared_ptr new_piece; uint length_left = piece->length - kMaxLengthCompression; piece->length = kMaxLengthCompression; switch (piece->command) { case kCommandByteFill: case kCommandWordFill: new_piece = std::make_shared( piece->command, length_left, piece->argument, piece->argument_length); break; case kCommandIncreasingFill: new_piece = std::make_shared( piece->command, length_left, piece->argument, piece->argument_length); new_piece->argument[0] = (char)(piece->argument[0] + kMaxLengthCompression); break; case kCommandDirectCopy: piece->argument_length = kMaxLengthCompression; new_piece = std::make_shared( piece->command, length_left, nullptr, length_left); // MEMCPY for (int i = 0; i < length_left; ++i) { new_piece->argument[i] = piece->argument[i + kMaxLengthCompression]; } break; case kCommandRepeatingBytes: { piece->argument_length = kMaxLengthCompression; uint offset = piece->argument[0] + (piece->argument[1] << 8); new_piece = std::make_shared( piece->command, length_left, piece->argument, piece->argument_length); if (mode == kNintendoMode2) { new_piece->argument[0] = (offset + kMaxLengthCompression) & kSnesByteMax; new_piece->argument[1] = (offset + kMaxLengthCompression) >> 8; } if (mode == kNintendoMode1) { new_piece->argument[1] = (offset + kMaxLengthCompression) & kSnesByteMax; new_piece->argument[0] = (offset + kMaxLengthCompression) >> 8; } } break; default: { return absl::InvalidArgumentError( "SplitCompressionCommand: Invalid Command"); } } return new_piece; } Bytes CreateCompressionString(std::shared_ptr& start, int mode) { uint pos = 0; auto piece = start; Bytes output; while (piece != nullptr) { if (piece->length <= kMaxLengthNormalHeader) { // Normal header output.push_back(BUILD_HEADER(piece->command, piece->length)); pos++; } else { if (piece->length <= kMaxLengthCompression) { output.push_back((COMPRESSION_STRING_MOD) | ((uchar)piece->command << 2) | (((piece->length - 1) & 0xFF00) >> 8)); pos++; printf("Building extended header : cmd: %d, length: %d - %02X\n", piece->command, piece->length, output[pos - 1]); output.push_back(((piece->length - 1) & 0x00FF)); // (char) pos++; } else { // We need to split the command auto new_piece = SplitCompressionPiece(piece, mode); if (!new_piece.ok()) { std::cout << new_piece.status().ToString() << std::endl; } printf("New added piece\n"); auto piece_data = new_piece.value(); PrintCompressionPiece(piece_data); piece_data->next = piece->next; piece->next = piece_data; continue; } } if (piece->command == kCommandRepeatingBytes) { char tmp[2]; tmp[0] = piece->argument[0]; tmp[1] = piece->argument[1]; if (mode == kNintendoMode1) { tmp[0] = piece->argument[1]; tmp[1] = piece->argument[0]; } for (const auto& each : tmp) { output.push_back(each); pos++; } } else { for (int i = 0; i < piece->argument_length; ++i) { output.push_back(piece->argument[i]); pos++; } } pos += piece->argument_length; piece = piece->next; } output.push_back(kSnesByteMax); return output; } absl::Status ValidateCompressionResult( std::shared_ptr& compressed_chain_start, int mode, int start, int src_data_pos) { if (compressed_chain_start->next != nullptr) { ROM temp_rom; RETURN_IF_ERROR(temp_rom.LoadFromBytes( CreateCompressionString(compressed_chain_start->next, mode))) ASSIGN_OR_RETURN(auto decomp_data, temp_rom.Decompress(0, temp_rom.GetSize())) if (!std::equal(decomp_data.begin() + start, decomp_data.end(), temp_rom.begin())) { return absl::InternalError(absl::StrFormat( "Compressed data does not match uncompressed data at %d\n", (uint)(src_data_pos - start))); } } return absl::OkStatus(); } // Merge consecutive copy if possible std::shared_ptr MergeCopy( std::shared_ptr& start) { std::shared_ptr piece = start; while (piece != nullptr) { if (piece->command == kCommandDirectCopy && piece->next != nullptr && piece->next->command == kCommandDirectCopy && piece->length + piece->next->length <= kMaxLengthCompression) { uint previous_length = piece->length; piece->length = piece->length + piece->next->length; for (int i = 0; i < piece->next->argument_length; ++i) { piece->argument[i + previous_length] = piece->next->argument[i]; } piece->argument_length = piece->length; PrintCompressionPiece(piece); auto p_next_next = piece->next->next; piece->next = p_next_next; continue; // Next could be another copy } piece = piece->next; } return start; } } // namespace // TODO TEST compressed data border for each cmd absl::StatusOr ROM::Compress(const int start, const int length, int mode, bool check) { // Worse case should be a copy of the string with extended header auto compressed_chain = std::make_shared(1, 1, "aaa", 2); auto compressed_chain_start = compressed_chain; CommandArgumentArray cmd_args = {{}}; DataSizeArray data_size_taken = {0, 0, 0, 0, 0}; CommandSizeArray cmd_size = {0, 1, 2, 1, 2}; uint src_data_pos = start; uint last_pos = start + length - 1; uint comp_accumulator = 0; // Used when skipping using copy while (true) { data_size_taken.fill({}); cmd_args.fill({{}}); CheckByteRepeat(rom_data_.data(), data_size_taken, cmd_args, src_data_pos, last_pos); CheckWordRepeat(rom_data_.data(), data_size_taken, cmd_args, src_data_pos, last_pos); CheckIncByte(rom_data_.data(), data_size_taken, cmd_args, src_data_pos, last_pos); CheckIntraCopy(rom_data_.data(), data_size_taken, cmd_args, src_data_pos, last_pos, start); uint max_win = 2; uint cmd_with_max = kCommandDirectCopy; ValidateForByteGain(data_size_taken, cmd_size, max_win, cmd_with_max); if (cmd_with_max == kCommandDirectCopy) { // This is the worst case scenario // Progress through the next byte, in case there's a different // compression command we can implement before we hit 32 bytes. src_data_pos++; comp_accumulator++; // Arbitrary choice to do a 32 bytes grouping for copy. if (comp_accumulator == 32 || src_data_pos > last_pos) { std::string buffer; for (int i = 0; i < comp_accumulator; ++i) { buffer.push_back(rom_data_[i + src_data_pos - comp_accumulator]); } auto new_comp_piece = std::make_shared( kCommandDirectCopy, comp_accumulator, buffer, comp_accumulator); compressed_chain->next = new_comp_piece; compressed_chain = new_comp_piece; comp_accumulator = 0; } } else { // Anything is better than directly copying bytes... CompressionCommandAlternative(rom_data_.data(), compressed_chain, cmd_size, cmd_args, src_data_pos, comp_accumulator, cmd_with_max, max_win); } if (src_data_pos > last_pos) { printf("Breaking compression loop\n"); break; } if (check) { RETURN_IF_ERROR(ValidateCompressionResult(compressed_chain_start, mode, start, src_data_pos)) } } MergeCopy(compressed_chain_start->next); // Skipping compression chain header PrintCompressionChain(compressed_chain_start); return CreateCompressionString(compressed_chain_start->next, mode); } absl::StatusOr ROM::CompressGraphics(const int pos, const int length) { return Compress(pos, length, kNintendoMode2); } absl::StatusOr ROM::CompressOverworld(const int pos, const int length) { return Compress(pos, length, kNintendoMode1); } absl::StatusOr ROM::Decompress(int offset, int size, int mode) { Bytes buffer(size, 0); uint length = 0; uint buffer_pos = 0; uchar command = 0; uchar header = rom_data_[offset]; while (header != kSnesByteMax) { if ((header & kExpandedMod) == kExpandedMod) { // Expanded Command command = ((header >> 2) & kCommandMod); length = (((header << 8) | rom_data_[offset + 1]) & kExpandedLengthMod); offset += 2; // Advance 2 bytes in ROM } else { // Normal Command command = ((header >> 5) & kCommandMod); length = (header & kNormalLengthMod); offset += 1; // Advance 1 byte in ROM } length += 1; // each commands is at least of size 1 even if index 00 switch (command) { case kCommandDirectCopy: // Does not advance in the ROM memcpy(buffer.data() + buffer_pos, rom_data_.data() + offset, length); buffer_pos += length; offset += length; break; case kCommandByteFill: for (int i = 0; i < length; i++) { buffer[buffer_pos] = rom_data_[offset]; buffer_pos++; } offset += 1; // Advances 1 byte in the ROM break; case kCommandWordFill: { auto a = rom_data_[offset]; auto b = rom_data_[offset + 1]; for (int i = 0; i < length; i = i + 2) { buffer[buffer_pos + i] = a; if ((i + 1) < length) buffer[buffer_pos + i + 1] = b; } buffer_pos += length; offset += 2; // Advance 2 byte in the ROM } break; case kCommandIncreasingFill: { auto inc_byte = rom_data_[offset]; for (int i = 0; i < length; i++) { buffer[buffer_pos] = inc_byte++; buffer_pos++; } offset += 1; // Advance 1 byte in the ROM } break; case kCommandRepeatingBytes: { ushort s1 = ((rom_data_[offset + 1] & kSnesByteMax) << 8); ushort s2 = ((rom_data_[offset] & kSnesByteMax)); int addr = (s1 | s2); if (mode == kNintendoMode1) { // Reversed byte order for overworld maps // addr = (s2 | s1); addr = (rom_data_[offset + 2]) | ((rom_data_[offset + 1]) << 8); memcpy(buffer.data() + buffer_pos, rom_data_.data() + offset, length); buffer_pos += length; offset += 2; break; } if (addr > offset) { return absl::InternalError(absl::StrFormat( "DecompressOverworld: Offset for command copy exceeds " "current position (Offset : %#04x | Pos : %#06x)\n", addr, offset)); } if (buffer_pos + length >= size) { size *= 2; buffer.resize(size); } for (int i = 0; i < length; i++) { buffer[buffer_pos] = buffer[addr + i]; buffer_pos++; } offset += 2; // Advance 2 bytes in the ROM } break; default: { std::cout << absl::StrFormat( "DecompressGraphics: Invalid command in header (Offset : %#06x, " "Command: %#04x)\n", offset, command); } break; } // check next byte header = rom_data_[offset]; } return buffer; } absl::StatusOr ROM::DecompressGraphics(int pos, int size) { return Decompress(pos, size, kNintendoMode2); } absl::StatusOr ROM::DecompressOverworld(int pos, int size) { return Decompress(pos, size, kNintendoMode1); } // 0-112 -> compressed 3bpp bgr -> (decompressed each) 0x600 chars // 113-114 -> compressed 2bpp -> (decompressed each) 0x800 chars // 115-126 -> uncompressed 3bpp sprites -> (each) 0x600 chars // 127-217 -> compressed 3bpp sprites -> (decompressed each) 0x600 chars // 218-222 -> compressed 2bpp -> (decompressed each) 0x800 chars absl::Status ROM::LoadAllGraphicsData() { Bytes sheet; bool convert = false; for (int i = 0; i < core::NumberOfSheets; i++) { if (i >= 115 && i <= 126) { // uncompressed sheets sheet.resize(core::Uncompressed3BPPSize); auto offset = GetGraphicsAddress(rom_data_.data(), i); for (int j = 0; j < core::Uncompressed3BPPSize; j++) { sheet[j] = rom_data_[j + offset]; } convert = true; } else if (i == 113 || i == 114 || i >= 218) { convert = false; } else { auto offset = GetGraphicsAddress(rom_data_.data(), i); ASSIGN_OR_RETURN(sheet, Decompress(offset)) convert = true; } if (convert) { auto converted_sheet = SNES3bppTo8bppSheet(sheet); graphics_bin_[i] = gfx::Bitmap(core::kTilesheetWidth, core::kTilesheetHeight, core::kTilesheetDepth, converted_sheet.data(), 0x1000); graphics_bin_.at(i).CreateTexture(renderer_); for (int j = 0; j < graphics_bin_.at(i).GetSize(); ++j) { graphics_buffer_.push_back(graphics_bin_.at(i).GetByte(j)); } } else { for (int j = 0; j < 0x1000; ++j) { graphics_buffer_.push_back(0xFF); } } } return absl::OkStatus(); } absl::Status ROM::LoadFromFile(const absl::string_view& filename) { filename_ = filename; std::ifstream file(filename.data(), std::ios::binary); if (!file.is_open()) { return absl::InternalError( absl::StrCat("Could not open ROM file: ", filename)); } size_ = std::filesystem::file_size(filename); rom_data_.resize(size_); for (auto i = 0; i < size_; ++i) { char byte_to_read = ' '; file.read(&byte_to_read, sizeof(char)); rom_data_[i] = byte_to_read; } // copy ROM title memcpy(title, rom_data_.data() + kTitleStringOffset, kTitleStringLength); file.close(); LoadAllPalettes(); is_loaded_ = true; return absl::OkStatus(); } absl::Status ROM::LoadFromPointer(uchar* data, size_t length) { if (!data) return absl::InvalidArgumentError( "Could not load ROM: parameter `data` is empty."); for (int i = 0; i < length; ++i) rom_data_.push_back(data[i]); return absl::OkStatus(); } absl::Status ROM::LoadFromBytes(const Bytes& data) { if (data.empty()) { return absl::InvalidArgumentError( "Could not load ROM: parameter `data` is empty."); } rom_data_ = data; return absl::OkStatus(); } absl::Status ROM::SaveToFile() { std::fstream file(filename_.data(), std::ios::binary | std::ios::out); if (!file.is_open()) { return absl::InternalError( absl::StrCat("Could not open ROM file: ", filename_)); } for (auto i = 0; i < size_; ++i) { file << rom_data_[i]; } return absl::OkStatus(); } void ROM::RenderBitmap(gfx::Bitmap* bitmap) const { bitmap->CreateTexture(renderer_); } gfx::SNESColor ROM::ReadColor(int offset) { short color = (short)((rom_data_[offset + 1] << 8) + rom_data_[offset]); gfx::snes_color new_color; new_color.red = (color & 0x1F) * 8; new_color.green = ((color >> 5) & 0x1F) * 8; new_color.blue = ((color >> 10) & 0x1F) * 8; gfx::SNESColor snes_color(new_color); return snes_color; } gfx::SNESPalette ROM::ReadPalette(int offset, int num_colors) { int color_offset = 0; std::vector colors(num_colors); while (color_offset < num_colors) { short color = (short)((rom_data_[offset + 1] << 8) + rom_data_[offset]); gfx::snes_color new_color; new_color.red = (color & 0x1F) * 8; new_color.green = ((color >> 5) & 0x1F) * 8; new_color.blue = ((color >> 10) & 0x1F) * 8; colors[color_offset] = new_color; color_offset++; offset += 2; } gfx::SNESPalette palette(colors); return palette; } void ROM::LoadAllPalettes() { // 35 colors each, 7x5 (0,2 on grid) for (int i = 0; i < 6; i++) { zelda3::overworld_MainPalettes[i] = ReadPalette(core::overworldPaletteMain + (i * (35 * 2)), 35); } // 21 colors each, 7x3 (8,2 and 8,5 on grid) for (int i = 0; i < 20; i++) { zelda3::overworld_AuxPalettes[i] = ReadPalette(core::overworldPaletteAuxialiary + (i * (21 * 2)), 21); } // 7 colors each 7x1 (0,7 on grid) for (int i = 0; i < 14; i++) { zelda3::overworld_AnimatedPalettes[i] = ReadPalette(core::overworldPaletteAnimated + (i * (7 * 2)), 7); } // 32 colors each 16x2 (0,0 on grid) for (int i = 0; i < 2; i++) { zelda3::HudPalettes[i] = ReadPalette(core::hudPalettes + (i * 64), 32); } zelda3::globalSprite_Palettes[0] = ReadPalette(core::globalSpritePalettesLW, 60); zelda3::globalSprite_Palettes[1] = ReadPalette(core::globalSpritePalettesDW, 60); for (int i = 0; i < 5; i++) { zelda3::armors_Palettes[i] = ReadPalette(core::armorPalettes + (i * 30), 15); } for (int i = 0; i < 4; i++) { zelda3::swords_Palettes[i] = ReadPalette(core::swordPalettes + (i * 6), 3); } for (int i = 0; i < 3; i++) { zelda3::shields_Palettes[i] = ReadPalette(core::shieldPalettes + (i * 8), 4); } for (int i = 0; i < 12; i++) { zelda3::spritesAux1_Palettes[i] = ReadPalette(core::spritePalettesAux1 + (i * 14), 7); } for (int i = 0; i < 11; i++) { zelda3::spritesAux2_Palettes[i] = ReadPalette(core::spritePalettesAux2 + (i * 14), 7); } for (int i = 0; i < 24; i++) { zelda3::spritesAux3_Palettes[i] = ReadPalette(core::spritePalettesAux3 + (i * 14), 7); } for (int i = 0; i < 20; i++) { zelda3::dungeonsMain_Palettes[i] = ReadPalette(core::dungeonMainPalettes + (i * 180), 90); } zelda3::overworld_GrassPalettes[0] = ReadColor(core::hardcodedGrassLW); zelda3::overworld_GrassPalettes[1] = ReadColor(core::hardcodedGrassDW); zelda3::overworld_GrassPalettes[2] = ReadColor(core::hardcodedGrassSpecial); zelda3::object3D_Palettes[0] = ReadPalette(core::triforcePalette, 8); zelda3::object3D_Palettes[1] = ReadPalette(core::crystalPalette, 8); for (int i = 0; i < 2; i++) { zelda3::overworld_Mini_Map_Palettes[i] = ReadPalette(core::overworldMiniMapPalettes + (i * 256), 128); } // TODO: check for the paletts in the empty bank space that kan will allocate // and read them in here // TODO magic colors // LW // int j = 0; // while (j < 64) { // zelda3::overworld_BackgroundPalette[j++] = // Color.FromArgb(0xFF, 0x48, 0x98, 0x48); // } // // DW // while (j < 128) { // zelda3::overworld_BackgroundPalette[j++] = // Color.FromArgb(0xFF, 0x90, 0x88, 0x50); // } // // SP // while (j < core::kNumOverworldMaps) { // zelda3::overworld_BackgroundPalette[j++] = // Color.FromArgb(0xFF, 0x48, 0x98, 0x48); // } // zelda3::overworld_BackgroundPalette = // ReadPalette(core::customAreaSpecificBGPalette, 160); } } // namespace app } // namespace yaze