#include "rom.h" #include #include #include #include #include #include #include #include #include #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "app/core/common.h" #include "app/core/constants.h" #include "app/gfx/bitmap.h" namespace yaze { namespace app { namespace { char* HexString(const char* str, const uint size) { char* toret = (char*)malloc(size * 3 + 1); uint i; for (i = 0; i < size; i++) { sprintf(toret + i * 3, "%02X ", (unsigned char)str[i]); } toret[size * 3] = 0; return toret; } void PrintCompressionPiece(CompressionPiece* piece) { printf("Command : %d\n", piece->command); printf("length : %d\n", piece->length); printf("Argument length : %d\n", piece->argument_length); printf("Argument :%s\n", HexString(piece->argument, piece->argument_length)); } CompressionPiece* NewCompressionPiece(const char command, const int length, const char* args, const int argument_length) { CompressionPiece* toret = (CompressionPiece*)malloc(sizeof(CompressionPiece)); toret->command = command; toret->length = length; if (args != nullptr) { toret->argument = (char*)malloc(argument_length); memcpy(toret->argument, args, argument_length); } else toret->argument = nullptr; toret->argument_length = argument_length; toret->next = nullptr; return toret; } void FreeCompressionPiece(CompressionPiece* piece) { free(piece->argument); free(piece); } void FreeCompressionChain(CompressionPiece* piece) { while (piece != nullptr) { CompressionPiece* p = piece->next; FreeCompressionPiece(piece); piece = p; } } // Merge consecutive copy if possible CompressionPiece* MergeCopy(CompressionPiece* start) { CompressionPiece* piece = start; while (piece != nullptr) { if (piece->command == kCommandDirectCopy && piece->next != nullptr && piece->next->command == kCommandDirectCopy) { if (piece->length + piece->next->length <= kMaxLengthCompression) { uint previous_length = piece->length; piece->length = piece->length + piece->next->length; piece->argument = (char*)realloc(piece->argument, piece->length); piece->argument_length = piece->length; memcpy(piece->argument + previous_length, piece->next->argument, piece->next->argument_length); PrintCompressionPiece(piece); CompressionPiece* p_next_next = piece->next->next; FreeCompressionPiece(piece->next); piece->next = p_next_next; continue; // Next could be another copy } } piece = piece->next; } return start; } CompressionPiece* SplitCompressionPiece(CompressionPiece* piece, int mode) { CompressionPiece* new_piece = nullptr; uint length_left = piece->length - kMaxLengthCompression; piece->length = kMaxLengthCompression; switch (piece->command) { case kCommandByteFill: case kCommandWordFill: new_piece = NewCompressionPiece(piece->command, length_left, piece->argument, piece->argument_length); break; case kCommandIncreasingFill: new_piece = NewCompressionPiece(piece->command, length_left, piece->argument, piece->argument_length); new_piece->argument[0] = (char)(piece->argument[0] + kMaxLengthCompression); break; case kCommandDirectCopy: piece->argument_length = kMaxLengthCompression; new_piece = NewCompressionPiece(piece->command, length_left, nullptr, length_left); // MEMCPY for (int i = 0; i < length_left; ++i) { new_piece->argument[i] = piece->argument[i + kMaxLengthCompression]; } break; case kCommandRepeatingBytes: { piece->argument_length = kMaxLengthCompression; uint offset = piece->argument[0] + (piece->argument[1] << 8); new_piece = NewCompressionPiece(piece->command, length_left, piece->argument, piece->argument_length); if (mode == kNintendoMode2) { new_piece->argument[0] = (offset + kMaxLengthCompression) & 0xFF; new_piece->argument[1] = (offset + kMaxLengthCompression) >> 8; } if (mode == kNintendoMode1) { new_piece->argument[1] = (offset + kMaxLengthCompression) & 0xFF; new_piece->argument[0] = (offset + kMaxLengthCompression) >> 8; } } break; } return new_piece; } uint CreateCompressionString(CompressionPiece* start, uchar* output, int mode) { uint pos = 0; CompressionPiece* piece = start; while (piece != nullptr) { // Normal header if (piece->length <= kMaxLengthNormalHeader) { output[pos++] = BUILD_HEADER(piece->command, piece->length); } else { if (piece->length <= kMaxLengthCompression) { output[pos++] = (7 << 5) | ((uchar)piece->command << 2) | (((piece->length - 1) & 0xFF00) >> 8); printf("Building extended header : cmd: %d, length: %d - %02X\n", piece->command, piece->length, (uchar)output[pos - 1]); output[pos++] = (char)((piece->length - 1) & 0x00FF); } else { // We need to split the command CompressionPiece* new_piece = SplitCompressionPiece(piece, mode); printf("New added piece\n"); PrintCompressionPiece(new_piece); new_piece->next = piece->next; piece->next = new_piece; continue; } } if (piece->command == kCommandRepeatingBytes) { char tmp[2]; if (mode == kNintendoMode2) { tmp[0] = piece->argument[0]; tmp[1] = piece->argument[1]; } if (mode == kNintendoMode1) { tmp[0] = piece->argument[1]; tmp[1] = piece->argument[0]; } for (int i = 0; i < 2; ++i) { output[pos + i] = tmp[i]; } } else { for (int i = 0; i < piece->argument_length; ++i) { output[pos + i] = piece->argument[i]; } } pos += piece->argument_length; piece = piece->next; } output[pos] = 0xFF; return pos + 1; } // Test every command to see the gain with current position void TestAllCommands(const uchar* rom_data, uint& u_data_pos, uint& last_pos, uint start, uint* data_size_taken, char cmd_args[5][2]) { { // BYTE REPEAT uint pos = u_data_pos; char byte_to_repeat = rom_data[pos]; while (pos <= last_pos && rom_data[pos] == byte_to_repeat) { data_size_taken[kCommandByteFill]++; pos++; } cmd_args[kCommandByteFill][0] = byte_to_repeat; } { // WORD REPEAT if (u_data_pos + 2 <= last_pos && rom_data[u_data_pos] != rom_data[u_data_pos + 1]) { uint pos = u_data_pos; char byte1 = rom_data[pos]; char byte2 = rom_data[pos + 1]; pos += 2; data_size_taken[kCommandWordFill] = 2; while (pos + 1 <= last_pos) { if (rom_data[pos] == byte1 && rom_data[pos + 1] == byte2) data_size_taken[kCommandWordFill] += 2; else break; pos += 2; } cmd_args[kCommandWordFill][0] = byte1; cmd_args[kCommandWordFill][1] = byte2; } } { // INC BYTE uint pos = u_data_pos; char byte = rom_data[pos]; pos++; data_size_taken[kCommandIncreasingFill] = 1; while (pos <= last_pos && ++byte == rom_data[pos]) { data_size_taken[kCommandIncreasingFill]++; pos++; } cmd_args[kCommandIncreasingFill][0] = rom_data[u_data_pos]; } { // INTRA CPY if (u_data_pos != start) { uint searching_pos = start; uint current_pos_u = u_data_pos; uint copied_size = 0; uint search_start = start; while (searching_pos < u_data_pos && current_pos_u <= last_pos) { while (rom_data[current_pos_u] != rom_data[searching_pos] && searching_pos < u_data_pos) searching_pos++; search_start = searching_pos; while (current_pos_u <= last_pos && rom_data[current_pos_u] == rom_data[searching_pos] && searching_pos < u_data_pos) { copied_size++; current_pos_u++; searching_pos++; } if (copied_size > data_size_taken[kCommandRepeatingBytes]) { search_start -= start; printf("-Found repeat of %d at %d\n", copied_size, search_start); data_size_taken[kCommandRepeatingBytes] = copied_size; cmd_args[kCommandRepeatingBytes][0] = search_start & 0xFF; cmd_args[kCommandRepeatingBytes][1] = search_start >> 8; } current_pos_u = u_data_pos; copied_size = 0; } } } } // Check if a command managed to pick up `max_win` or more bytes // Avoids being even with copy command, since it's possible to merge copy void ValidateForByteGain(uint& max_win, uint& cmd_with_max, uint* data_size_taken, uint* cmd_size) { for (uint cmd_i = 1; cmd_i < 5; cmd_i++) { uint cmd_size_taken = data_size_taken[cmd_i]; // FIXME: Should probably be a table that say what is even with copy // but all other cmd are 2 auto table_check = !(cmd_i == kCommandRepeatingBytes && cmd_size_taken == 3); if (cmd_size_taken > max_win && cmd_size_taken > cmd_size[cmd_i] && table_check) { printf("--C:%d / S:%d\n", cmd_i, cmd_size_taken); cmd_with_max = cmd_i; max_win = cmd_size_taken; } } } void CompressionDirectCopy(const uchar* rom_data, CompressionPiece* compressed_chain, uint& u_data_pos, uint& bytes_since_last_compression, uint& last_pos) { // We just move through the next byte and don't 'compress' yet, maybe // something is better after. u_data_pos++; bytes_since_last_compression++; // Arbitrary choice to do a 32 bytes grouping if (bytes_since_last_compression == 32 || u_data_pos > last_pos) { char buffer[32]; for (int i = 0; i < bytes_since_last_compression; ++i) { buffer[i] = rom_data[i + u_data_pos - bytes_since_last_compression]; } CompressionPiece* new_comp_piece = NewCompressionPiece(kCommandDirectCopy, bytes_since_last_compression, buffer, bytes_since_last_compression); compressed_chain->next = new_comp_piece; compressed_chain = new_comp_piece; bytes_since_last_compression = 0; } } void CompressionCommandAlternative(const uchar* rom_data, CompressionPiece* compressed_chain, uint& u_data_pos, uint& bytes_since_last_compression, uint& cmd_with_max, uint& max_win, uint* cmd_size, char cmd_args[5][2]) { // printf("- Ok we get a gain from %d\n", cmd_with_max); char buffer[2]; buffer[0] = cmd_args[cmd_with_max][0]; if (cmd_size[cmd_with_max] == 2) buffer[1] = cmd_args[cmd_with_max][1]; CompressionPiece* new_comp_piece = NewCompressionPiece( cmd_with_max, max_win, buffer, cmd_size[cmd_with_max]); // If we let non compressed stuff, we need to add a copy chuck before if (bytes_since_last_compression != 0) { char* copy_buff = (char*)malloc(bytes_since_last_compression); for (int i = 0; i < bytes_since_last_compression; ++i) { copy_buff[i] = rom_data[i + u_data_pos - bytes_since_last_compression]; } CompressionPiece* copy_chuck = NewCompressionPiece(kCommandDirectCopy, bytes_since_last_compression, copy_buff, bytes_since_last_compression); compressed_chain->next = copy_chuck; compressed_chain = copy_chuck; } compressed_chain->next = new_comp_piece; compressed_chain = new_comp_piece; u_data_pos += max_win; bytes_since_last_compression = 0; } } // namespace absl::Status ROM::LoadFromFile(const absl::string_view& filename) { std::ifstream file(filename.data(), std::ios::binary); if (!file.is_open()) { return absl::InternalError( absl::StrCat("Could not open ROM file: ", filename)); } size_ = std::filesystem::file_size(filename); rom_data_.resize(size_); for (auto i = 0; i < size_; ++i) { char byte_to_read = ' '; file.read(&byte_to_read, sizeof(char)); rom_data_[i] = byte_to_read; } file.close(); is_loaded_ = true; memcpy(title, rom_data_.data() + 32704, 20); // copy ROM title return absl::OkStatus(); } absl::Status ROM::LoadFromPointer(uchar* data, size_t length) { if (data == nullptr) return absl::InvalidArgumentError( "Could not load ROM: parameter `data` is empty"); for (int i = 0; i < length; ++i) rom_data_.push_back(data[i]); return absl::OkStatus(); } // 0-112 -> compressed 3bpp bgr -> (decompressed each) 0x600 chars // 113-114 -> compressed 2bpp -> (decompressed each) 0x800 chars // 115-126 -> uncompressed 3bpp sprites -> (each) 0x600 chars // 127-217 -> compressed 3bpp sprites -> (decompressed each) 0x600 chars // 218-222 -> compressed 2bpp -> (decompressed each) 0x800 chars absl::Status ROM::LoadAllGraphicsData() { Bytes sheet; for (int i = 0; i < core::NumberOfSheets; i++) { if (i >= 115 && i <= 126) { // uncompressed sheets sheet.resize(core::Uncompressed3BPPSize); auto offset = GetGraphicsAddress(i); for (int j = 0; j < core::Uncompressed3BPPSize; j++) { sheet[j] = rom_data_[j + offset]; } } else { auto offset = GetGraphicsAddress(i); absl::StatusOr new_sheet = Decompress(offset, core::UncompressedSheetSize); if (!new_sheet.ok()) { return new_sheet.status(); } else { sheet = std::move(*new_sheet); } } absl::StatusOr converted_sheet = Convert3bppTo8bppSheet(sheet); if (!converted_sheet.ok()) { return converted_sheet.status(); } else { Bytes result = std::move(*converted_sheet); graphics_bin_[i] = gfx::Bitmap(core::kTilesheetWidth, core::kTilesheetHeight, core::kTilesheetDepth, result.data()); graphics_bin_.at(i).CreateTexture(renderer_); } } return absl::OkStatus(); } absl::StatusOr ROM::CompressGraphics(const int pos, const int length) { return Compress(pos, length, kNintendoMode2); } absl::StatusOr ROM::CompressOverworld(const int pos, const int length) { return Compress(pos, length, kNintendoMode1); } // TODO TEST compressed data border for each cmd absl::StatusOr ROM::Compress(const int start, const int length, int mode) { Bytes compressed_data(length + 10); // Worse case should be a copy of the string with extended header CompressionPiece* compressed_chain = NewCompressionPiece(1, 1, "aaa", 2); CompressionPiece* compressed_chain_start = compressed_chain; char cmd_args[5][2] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}; uint data_size_taken[5] = {0, 0, 0, 0, 0}; uint cmd_size[5] = {0, 1, 2, 1, 2}; uint u_data_pos = start; uint last_pos = start + length - 1; uint bytes_since_last_compression = 0; // Used when skipping using copy while (1) { memset(data_size_taken, 0, sizeof(data_size_taken)); memset(cmd_args, 0, sizeof(cmd_args)); TestAllCommands(rom_data_.data(), u_data_pos, last_pos, start, data_size_taken, cmd_args); uint max_win = 2; uint cmd_with_max = kCommandDirectCopy; ValidateForByteGain(max_win, cmd_with_max, data_size_taken, cmd_size); if (cmd_with_max == kCommandDirectCopy) { // This is the worse case CompressionDirectCopy(rom_data_.data(), compressed_chain, u_data_pos, bytes_since_last_compression, last_pos); } else { // Yay we get something better CompressionCommandAlternative(rom_data_.data(), compressed_chain, u_data_pos, bytes_since_last_compression, cmd_with_max, max_win, cmd_size, cmd_args); } if (u_data_pos > last_pos) break; // Validate compression result if (compressed_chain_start->next != nullptr) { // We don't call merge copy so we need more space auto tmp = (uchar*)malloc(length * 2); auto compressed_size = CreateCompressionString(compressed_chain_start->next, tmp, mode); uint p; auto response = Decompress(0); if (!response.ok()) { return response.status(); } auto uncomp = std::move(*response); free(tmp); if (memcmp(uncomp.data(), rom_data_.data() + start, p) != 0) { FreeCompressionChain(compressed_chain_start); return absl::InternalError(absl::StrFormat( "Compressed data does not match uncompressed data at %d\n", (uint)(u_data_pos - start))); } } } // First is a dumb place holder MergeCopy(compressed_chain_start->next); uchar temporary_string[length + 10]; auto compressed_size = CreateCompressionString(compressed_chain_start->next, temporary_string, mode); for (int i = 0; i < compressed_size; ++i) { compressed_data[i] = temporary_string[i]; } FreeCompressionChain(compressed_chain_start); for (int i = 0; i < compressed_size; ++i) { printf("%02x ", compressed_data[i]); } return compressed_data; } // ============================================================================ absl::StatusOr ROM::DecompressGraphics(int pos, int size) { return Decompress(pos, size, false); } absl::StatusOr ROM::DecompressOverworld(int pos, int size) { return Decompress(pos, size, true); } absl::StatusOr ROM::Decompress(int offset, int size, bool reversed) { Bytes buffer(size); uint length = 0; uint buffer_pos = 0; uchar cmd = 0; uchar databyte = rom_data_[offset]; while (databyte != 0xFF) { // End of decompression databyte = rom_data_[offset]; if ((databyte & 0xE0) == 0xE0) { // Expanded Command cmd = ((databyte >> 2) & 0x07); length = (((rom_data_[offset] << 8) | rom_data_[offset + 1]) & 0x3FF); offset += 2; // Advance 2 bytes in ROM } else { // Normal Command cmd = ((databyte >> 5) & 0x07); length = (databyte & 0x1F); offset += 1; // Advance 1 byte in ROM } length += 1; // each commands is at least of size 1 even if index 00 switch (cmd) { case kCommandDirectCopy: // Does not advance in the ROM for (int i = 0; i < length; i++) buffer[buffer_pos++] = rom_data_[offset++]; break; case kCommandByteFill: // Advances 1 byte in the ROM for (int i = 0; i < length; i++) buffer[buffer_pos++] = rom_data_[offset]; offset += 1; break; case kCommandWordFill: // Advance 2 byte in the ROM for (int i = 0; i < length; i += 2) { buffer[buffer_pos++] = rom_data_[offset]; buffer[buffer_pos++] = rom_data_[offset + 1]; } offset += 2; break; case kCommandIncreasingFill: { uchar inc_byte = rom_data_[offset]; for (int i = 0; i < length; i++) buffer[buffer_pos++] = inc_byte++; offset += 1; // Advance 1 byte in the ROM } break; case kCommandRepeatingBytes: { ushort s1 = ((rom_data_[offset + 1] & 0xFF) << 8); ushort s2 = ((rom_data_[offset] & 0xFF)); if (reversed) { // Reversed byte order for overworld maps auto addr = (rom_data_[offset + 2]) | ((rom_data_[offset + 1]) << 8); if (addr > offset) { return absl::InternalError(absl::StrFormat( "DecompressOverworldV2: Offset for command copy exceeds " "current position (Offset : %#04x | Pos : %#06x)\n", addr, offset)); } if (buffer_pos + length >= size) { size *= 2; buffer.resize(size); } memcpy(buffer.data() + buffer_pos, rom_data_.data() + offset, length); offset += 2; } else { auto addr = (ushort)(s1 | s2); for (int i = 0; i < length; i++) { buffer[buffer_pos] = buffer[addr + i]; buffer_pos++; } offset += 2; // Advance 2 bytes in the ROM } } break; } } return buffer; } absl::StatusOr ROM::Convert3bppTo8bppSheet(Bytes sheet, int size) { Bytes sheet_buffer_out(size); int xx = 0; // positions where we are at on the sheet int yy = 0; int pos = 0; int ypos = 0; // for each tiles, 16 per line for (int i = 0; i < 64; i++) { // for each line for (int y = 0; y < 8; y++) { //[0] + [1] + [16] for (int x = 0; x < 8; x++) { auto b1 = ((sheet[(y * 2) + (24 * pos)] & (kGraphicsBitmap[x]))); auto b2 = (sheet[((y * 2) + (24 * pos)) + 1] & (kGraphicsBitmap[x])); auto b3 = (sheet[(16 + y) + (24 * pos)] & (kGraphicsBitmap[x])); unsigned char b = 0; if (b1 != 0) { b |= 1; } if (b2 != 0) { b |= 2; } if (b3 != 0) { b |= 4; } sheet_buffer_out[x + (xx) + (y * 128) + (yy * 1024)] = b; } } pos++; ypos++; xx += 8; if (ypos >= 16) { yy++; xx = 0; ypos = 0; } } return sheet_buffer_out; } uint ROM::GetGraphicsAddress(uint8_t offset) const { auto snes_address = (uint)((((rom_data_[0x4F80 + offset]) << 16) | ((rom_data_[0x505F + offset]) << 8) | ((rom_data_[0x513E + offset])))); return core::SnesToPc(snes_address); } } // namespace app } // namespace yaze