Files
yaze/src/app/gfx/tilesheet.cc
scawful 120eb544bf Add 16x16 tile rendering and modification functions
- Introduced RenderTile16 and UpdateTile16 functions for rendering and updating 16x16 tiles in the Tilemap.
- Added ModifyTile16 function to facilitate the composition and placement of tile parts within the Tilemap.
- Updated Tilemap structure to include a vector for storing tile information.
- Refactored related functions to enhance tile handling and rendering capabilities.
2025-05-15 22:40:54 -04:00

177 lines
6.2 KiB
C++

#include "app/gfx/tilesheet.h"
#include <memory>
#include <vector>
#include "app/gfx/bitmap.h"
#include "app/gfx/snes_tile.h"
namespace yaze {
namespace gfx {
void Tilesheet::Init(int width, int height, TileType tile_type) {
internal_data_.resize(0x20000);
bitmap_ = std::make_shared<Bitmap>(width, height, 8, internal_data_);
tile_type_ = tile_type;
if (tile_type_ == TileType::Tile8) {
tile_width_ = 8;
tile_height_ = 8;
} else {
tile_width_ = 16;
tile_height_ = 16;
}
}
void Tilesheet::ComposeTile16(const std::vector<uint8_t>& graphics_buffer,
const TileInfo& top_left,
const TileInfo& top_right,
const TileInfo& bottom_left,
const TileInfo& bottom_right, int sheet_offset) {
sheet_offset_ = sheet_offset;
// Calculate the base position for this Tile16 in the full-size bitmap
int tiles_per_row = bitmap_->width() / tile_width_;
int tile16_row = num_tiles_ / tiles_per_row;
int tile16_column = num_tiles_ % tiles_per_row;
int base_x = tile16_column * tile_width_;
int base_y = tile16_row * tile_height_;
// Compose and place each part of the Tile16
ComposeAndPlaceTilePart(graphics_buffer, top_left, base_x, base_y);
ComposeAndPlaceTilePart(graphics_buffer, top_right, base_x + 8, base_y);
ComposeAndPlaceTilePart(graphics_buffer, bottom_left, base_x, base_y + 8);
ComposeAndPlaceTilePart(graphics_buffer, bottom_right, base_x + 8,
base_y + 8);
tile_info_.push_back({top_left, top_right, bottom_left, bottom_right});
num_tiles_++;
}
void Tilesheet::ModifyTile16(const std::vector<uint8_t>& graphics_buffer,
const TileInfo& top_left,
const TileInfo& top_right,
const TileInfo& bottom_left,
const TileInfo& bottom_right, int tile_id,
int sheet_offset) {
sheet_offset_ = sheet_offset;
// Calculate the base position for this Tile16 in the full-size bitmap
int tiles_per_row = bitmap_->width() / tile_width_;
int tile16_row = tile_id / tiles_per_row;
int tile16_column = tile_id % tiles_per_row;
int base_x = tile16_column * tile_width_;
int base_y = tile16_row * tile_height_;
// Compose and place each part of the Tile16
ComposeAndPlaceTilePart(graphics_buffer, top_left, base_x, base_y);
ComposeAndPlaceTilePart(graphics_buffer, top_right, base_x + 8, base_y);
ComposeAndPlaceTilePart(graphics_buffer, bottom_left, base_x, base_y + 8);
ComposeAndPlaceTilePart(graphics_buffer, bottom_right, base_x + 8,
base_y + 8);
tile_info_[tile_id] = {top_left, top_right, bottom_left, bottom_right};
}
void Tilesheet::ComposeAndPlaceTilePart(
const std::vector<uint8_t>& graphics_buffer, const TileInfo& tile_info,
int base_x, int base_y) {
std::vector<uint8_t> tile_data =
FetchTileDataFromGraphicsBuffer(graphics_buffer, tile_info.id_);
if (tile_info.vertical_mirror_) {
MirrorTileDataVertically(tile_data);
}
if (tile_info.horizontal_mirror_) {
MirrorTileDataHorizontally(tile_data);
}
// Place the tile data into the full-size bitmap at the calculated position
for (int y = 0; y < 8; ++y) {
for (int x = 0; x < 8; ++x) {
int src_index = y * 8 + x;
int dest_x = base_x + x;
int dest_y = base_y + y;
int dest_index = (dest_y * bitmap_->width()) + dest_x;
internal_data_[dest_index] = tile_data[src_index];
}
}
bitmap_->set_data(internal_data_);
}
std::vector<uint8_t> Tilesheet::FetchTileDataFromGraphicsBuffer(
const std::vector<uint8_t>& graphics_buffer, int tile_id) {
const int tile_width = 8;
const int tile_height = 8;
const int buffer_width = 128;
const int sheet_height = 32;
const int tiles_per_row = buffer_width / tile_width;
const int rows_per_sheet = sheet_height / tile_height;
const int tiles_per_sheet = tiles_per_row * rows_per_sheet;
// Calculate the position in the graphics_buffer_ based on tile_id
std::vector<uint8_t> tile_data(0x40, 0x00);
int sheet = (tile_id / tiles_per_sheet) % 4 + sheet_offset_;
int position_in_sheet = tile_id % tiles_per_sheet;
int row_in_sheet = position_in_sheet / tiles_per_row;
int column_in_sheet = position_in_sheet % tiles_per_row;
// Ensure that the sheet ID is between 212 and 215 if using full gfx buffer
assert(sheet >= sheet_offset_ && sheet <= sheet_offset_ + 3);
// Copy the tile data from the graphics_buffer_ to tile_data
for (int y = 0; y < 8; ++y) {
for (int x = 0; x < 8; ++x) {
// Calculate the position in the graphics_buffer_ based on tile_id
int src_x = column_in_sheet * tile_width + x;
int src_y = (sheet * sheet_height) + (row_in_sheet * tile_height) + y;
int src_index = (src_y * buffer_width) + src_x;
int dest_index = y * tile_width + x;
tile_data[dest_index] = graphics_buffer[src_index];
}
}
return tile_data;
}
void Tilesheet::MirrorTileDataVertically(std::vector<uint8_t>& tile_data) {
std::vector<uint8_t> tile_data_copy = tile_data;
for (int i = 0; i < 8; ++i) { // For each row
for (int j = 0; j < 8; ++j) { // For each column
int src_index = i * 8 + j;
int dest_index = (7 - i) * 8 + j; // Calculate the mirrored row
tile_data_copy[dest_index] = tile_data[src_index];
}
}
tile_data = tile_data_copy;
}
void Tilesheet::MirrorTileDataHorizontally(std::vector<uint8_t>& tile_data) {
std::vector<uint8_t> tile_data_copy = tile_data;
for (int i = 0; i < 8; ++i) { // For each row
for (int j = 0; j < 8; ++j) { // For each column
int src_index = i * 8 + j;
int dest_index = i * 8 + (7 - j); // Calculate the mirrored column
tile_data_copy[dest_index] = tile_data[src_index];
}
}
tile_data = tile_data_copy;
}
void Tilesheet::MirrorTileData(std::vector<uint8_t>& tile_data, bool mirrorX,
bool mirrorY) {
std::vector tile_data_copy = tile_data;
if (mirrorX) {
MirrorTileDataHorizontally(tile_data_copy);
}
if (mirrorY) {
MirrorTileDataVertically(tile_data_copy);
}
tile_data = tile_data_copy;
}
} // namespace gfx
} // namespace yaze