Files
yaze/test/unit/emu/disassembler_test.cc

337 lines
10 KiB
C++

/**
* @file disassembler_test.cc
* @brief Unit tests for the 65816 disassembler
*
* These tests validate the disassembler that enables AI-assisted
* assembly debugging for ROM hacking.
*/
#include "app/emu/debug/disassembler.h"
#include <gtest/gtest.h>
#include <array>
#include <cstdint>
#include <functional>
#include <string>
#include <vector>
namespace yaze {
namespace emu {
namespace debug {
namespace {
class Disassembler65816Test : public ::testing::Test {
protected:
// Helper to create a memory reader from a buffer
Disassembler65816::MemoryReader CreateMemoryReader(
const std::vector<uint8_t>& buffer, uint32_t base_address = 0) {
return [buffer, base_address](uint32_t addr) -> uint8_t {
uint32_t offset = addr - base_address;
if (offset < buffer.size()) {
return buffer[offset];
}
return 0;
};
}
Disassembler65816 disassembler_;
};
// --- Basic Instruction Tests ---
TEST_F(Disassembler65816Test, DisassembleNOP) {
std::vector<uint8_t> code = {0xEA}; // NOP
auto reader = CreateMemoryReader(code);
auto result = disassembler_.Disassemble(0, reader, true, true);
EXPECT_EQ(result.address, 0u);
EXPECT_EQ(result.opcode, 0xEA);
EXPECT_EQ(result.mnemonic, "NOP");
EXPECT_EQ(result.size, 1u);
}
TEST_F(Disassembler65816Test, DisassembleSEI) {
std::vector<uint8_t> code = {0x78}; // SEI
auto reader = CreateMemoryReader(code);
auto result = disassembler_.Disassemble(0, reader, true, true);
EXPECT_EQ(result.opcode, 0x78);
EXPECT_EQ(result.mnemonic, "SEI");
EXPECT_EQ(result.size, 1u);
}
// --- Immediate Addressing Tests ---
TEST_F(Disassembler65816Test, DisassembleLDAImmediate8Bit) {
std::vector<uint8_t> code = {0xA9, 0x42}; // LDA #$42
auto reader = CreateMemoryReader(code);
// m_flag = true means 8-bit accumulator
auto result = disassembler_.Disassemble(0, reader, true, true);
EXPECT_EQ(result.mnemonic, "LDA");
EXPECT_EQ(result.size, 2u);
EXPECT_TRUE(result.operand_str.find("42") != std::string::npos);
}
TEST_F(Disassembler65816Test, DisassembleLDAImmediate16Bit) {
std::vector<uint8_t> code = {0xA9, 0x34, 0x12}; // LDA #$1234
auto reader = CreateMemoryReader(code);
// m_flag = false means 16-bit accumulator
auto result = disassembler_.Disassemble(0, reader, false, true);
EXPECT_EQ(result.mnemonic, "LDA");
EXPECT_EQ(result.size, 3u);
}
TEST_F(Disassembler65816Test, DisassembleLDXImmediate8Bit) {
std::vector<uint8_t> code = {0xA2, 0x10}; // LDX #$10
auto reader = CreateMemoryReader(code);
// x_flag = true means 8-bit index registers
auto result = disassembler_.Disassemble(0, reader, true, true);
EXPECT_EQ(result.mnemonic, "LDX");
EXPECT_EQ(result.size, 2u);
}
TEST_F(Disassembler65816Test, DisassembleLDXImmediate16Bit) {
std::vector<uint8_t> code = {0xA2, 0x00, 0x80}; // LDX #$8000
auto reader = CreateMemoryReader(code);
// x_flag = false means 16-bit index registers
auto result = disassembler_.Disassemble(0, reader, true, false);
EXPECT_EQ(result.mnemonic, "LDX");
EXPECT_EQ(result.size, 3u);
}
// --- Absolute Addressing Tests ---
TEST_F(Disassembler65816Test, DisassembleLDAAbsolute) {
std::vector<uint8_t> code = {0xAD, 0x00, 0x80}; // LDA $8000
auto reader = CreateMemoryReader(code);
auto result = disassembler_.Disassemble(0, reader, true, true);
EXPECT_EQ(result.mnemonic, "LDA");
EXPECT_EQ(result.size, 3u);
EXPECT_TRUE(result.operand_str.find("8000") != std::string::npos);
}
TEST_F(Disassembler65816Test, DisassembleSTAAbsoluteLong) {
std::vector<uint8_t> code = {0x8F, 0x00, 0x80, 0x7E}; // STA $7E8000
auto reader = CreateMemoryReader(code);
auto result = disassembler_.Disassemble(0, reader, true, true);
EXPECT_EQ(result.mnemonic, "STA");
EXPECT_EQ(result.size, 4u);
EXPECT_TRUE(result.operand_str.find("7E8000") != std::string::npos);
}
// --- Jump/Call Instruction Tests ---
TEST_F(Disassembler65816Test, DisassembleJSR) {
std::vector<uint8_t> code = {0x20, 0x00, 0x80}; // JSR $8000
auto reader = CreateMemoryReader(code);
auto result = disassembler_.Disassemble(0, reader, true, true);
EXPECT_EQ(result.mnemonic, "JSR");
EXPECT_EQ(result.size, 3u);
EXPECT_TRUE(result.is_call);
EXPECT_FALSE(result.is_return);
}
TEST_F(Disassembler65816Test, DisassembleJSL) {
std::vector<uint8_t> code = {0x22, 0x00, 0x80, 0x00}; // JSL $008000
auto reader = CreateMemoryReader(code);
auto result = disassembler_.Disassemble(0, reader, true, true);
EXPECT_EQ(result.mnemonic, "JSL");
EXPECT_EQ(result.size, 4u);
EXPECT_TRUE(result.is_call);
}
TEST_F(Disassembler65816Test, DisassembleRTS) {
std::vector<uint8_t> code = {0x60}; // RTS
auto reader = CreateMemoryReader(code);
auto result = disassembler_.Disassemble(0, reader, true, true);
EXPECT_EQ(result.mnemonic, "RTS");
EXPECT_EQ(result.size, 1u);
EXPECT_FALSE(result.is_call);
EXPECT_TRUE(result.is_return);
}
TEST_F(Disassembler65816Test, DisassembleRTL) {
std::vector<uint8_t> code = {0x6B}; // RTL
auto reader = CreateMemoryReader(code);
auto result = disassembler_.Disassemble(0, reader, true, true);
EXPECT_EQ(result.mnemonic, "RTL");
EXPECT_EQ(result.size, 1u);
EXPECT_TRUE(result.is_return);
}
// --- Branch Instruction Tests ---
TEST_F(Disassembler65816Test, DisassembleBNE) {
std::vector<uint8_t> code = {0xD0, 0x10}; // BNE +16
auto reader = CreateMemoryReader(code);
auto result = disassembler_.Disassemble(0, reader, true, true);
EXPECT_EQ(result.mnemonic, "BNE");
EXPECT_EQ(result.size, 2u);
EXPECT_TRUE(result.is_branch);
}
TEST_F(Disassembler65816Test, DisassembleBRA) {
std::vector<uint8_t> code = {0x80, 0xFE}; // BRA -2 (infinite loop)
auto reader = CreateMemoryReader(code);
auto result = disassembler_.Disassemble(0, reader, true, true);
EXPECT_EQ(result.mnemonic, "BRA");
EXPECT_EQ(result.size, 2u);
EXPECT_TRUE(result.is_branch);
}
TEST_F(Disassembler65816Test, DisassembleJMPAbsolute) {
std::vector<uint8_t> code = {0x4C, 0x00, 0x80}; // JMP $8000
auto reader = CreateMemoryReader(code);
auto result = disassembler_.Disassemble(0, reader, true, true);
EXPECT_EQ(result.mnemonic, "JMP");
EXPECT_EQ(result.size, 3u);
EXPECT_TRUE(result.is_branch);
}
// --- Range Disassembly Tests ---
TEST_F(Disassembler65816Test, DisassembleRange) {
// Small program:
// 8000: SEI ; Disable interrupts
// 8001: CLC ; Clear carry
// 8002: XCE ; Exchange carry and emulation
// 8003: LDA #$00 ; Load 0 into A
// 8005: STA $2100 ; Store to PPU brightness register
std::vector<uint8_t> code = {0x78, 0x18, 0xFB, 0xA9, 0x00, 0x8D, 0x00, 0x21};
auto reader = CreateMemoryReader(code, 0x008000);
auto result =
disassembler_.DisassembleRange(0x008000, 5, reader, true, true);
ASSERT_EQ(result.size(), 5u);
EXPECT_EQ(result[0].mnemonic, "SEI");
EXPECT_EQ(result[1].mnemonic, "CLC");
EXPECT_EQ(result[2].mnemonic, "XCE");
EXPECT_EQ(result[3].mnemonic, "LDA");
EXPECT_EQ(result[4].mnemonic, "STA");
}
// --- Indexed Addressing Tests ---
TEST_F(Disassembler65816Test, DisassembleLDAAbsoluteX) {
std::vector<uint8_t> code = {0xBD, 0x00, 0x80}; // LDA $8000,X
auto reader = CreateMemoryReader(code);
auto result = disassembler_.Disassemble(0, reader, true, true);
EXPECT_EQ(result.mnemonic, "LDA");
EXPECT_EQ(result.size, 3u);
EXPECT_TRUE(result.operand_str.find("X") != std::string::npos);
}
TEST_F(Disassembler65816Test, DisassembleLDADirectPageIndirectY) {
std::vector<uint8_t> code = {0xB1, 0x10}; // LDA ($10),Y
auto reader = CreateMemoryReader(code);
auto result = disassembler_.Disassemble(0, reader, true, true);
EXPECT_EQ(result.mnemonic, "LDA");
EXPECT_EQ(result.size, 2u);
EXPECT_TRUE(result.operand_str.find("Y") != std::string::npos);
}
// --- Special Instructions Tests ---
TEST_F(Disassembler65816Test, DisassembleREP) {
std::vector<uint8_t> code = {0xC2, 0x30}; // REP #$30 (16-bit A, X, Y)
auto reader = CreateMemoryReader(code);
auto result = disassembler_.Disassemble(0, reader, true, true);
EXPECT_EQ(result.mnemonic, "REP");
EXPECT_EQ(result.size, 2u);
}
TEST_F(Disassembler65816Test, DisassembleSEP) {
std::vector<uint8_t> code = {0xE2, 0x20}; // SEP #$20 (8-bit A)
auto reader = CreateMemoryReader(code);
auto result = disassembler_.Disassemble(0, reader, true, true);
EXPECT_EQ(result.mnemonic, "SEP");
EXPECT_EQ(result.size, 2u);
}
// --- Instruction Size Tests ---
TEST_F(Disassembler65816Test, GetInstructionSizeImplied) {
// NOP, RTS, RTL all have size 1
EXPECT_EQ(disassembler_.GetInstructionSize(0xEA, true, true), 1u); // NOP
EXPECT_EQ(disassembler_.GetInstructionSize(0x60, true, true), 1u); // RTS
EXPECT_EQ(disassembler_.GetInstructionSize(0x6B, true, true), 1u); // RTL
}
TEST_F(Disassembler65816Test, GetInstructionSizeAbsolute) {
// Absolute addressing is 3 bytes
EXPECT_EQ(disassembler_.GetInstructionSize(0xAD, true, true), 3u); // LDA abs
EXPECT_EQ(disassembler_.GetInstructionSize(0x8D, true, true), 3u); // STA abs
EXPECT_EQ(disassembler_.GetInstructionSize(0x20, true, true), 3u); // JSR abs
}
TEST_F(Disassembler65816Test, GetInstructionSizeLong) {
// Long addressing is 4 bytes
EXPECT_EQ(disassembler_.GetInstructionSize(0xAF, true, true), 4u); // LDA long
EXPECT_EQ(disassembler_.GetInstructionSize(0x22, true, true), 4u); // JSL long
}
// --- Symbol Resolution Tests ---
TEST_F(Disassembler65816Test, DisassembleWithSymbolResolver) {
std::vector<uint8_t> code = {0x20, 0x00, 0x80}; // JSR $8000
auto reader = CreateMemoryReader(code);
// Set up a symbol resolver that knows about $8000
disassembler_.SetSymbolResolver([](uint32_t addr) -> std::string {
if (addr == 0x008000) {
return "Reset";
}
return "";
});
auto result = disassembler_.Disassemble(0, reader, true, true);
EXPECT_EQ(result.mnemonic, "JSR");
// The operand_str should contain the symbol name
EXPECT_TRUE(result.operand_str.find("Reset") != std::string::npos ||
result.operand_str.find("8000") != std::string::npos);
}
} // namespace
} // namespace debug
} // namespace emu
} // namespace yaze