Files
yaze/test/benchmarks/gfx_optimization_benchmarks.cc
scawful fa3da8fc27 fix: apply clang-format to all source files
Fixes formatting violations that were causing CI failures.
Applied clang-format-14 to ensure consistent code formatting
across the codebase.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-20 01:35:33 -05:00

483 lines
16 KiB
C++

#include <gtest/gtest.h>
#include <chrono>
#include <random>
#include <vector>
#include "app/gfx/core/bitmap.h"
#include "app/gfx/debug/performance/performance_dashboard.h"
#include "app/gfx/debug/performance/performance_profiler.h"
#include "app/gfx/render/atlas_renderer.h"
#include "app/gfx/resource/arena.h"
#include "app/gfx/resource/memory_pool.h"
namespace yaze {
namespace gfx {
class GraphicsOptimizationBenchmarks : public ::testing::Test {
protected:
void SetUp() override {
// Initialize graphics systems
Arena::Get();
MemoryPool::Get();
PerformanceProfiler::Get().Clear();
}
void TearDown() override {
// Cleanup
PerformanceProfiler::Get().Clear();
}
// Helper methods for creating test data
std::vector<uint8_t> CreateTestBitmapData(int width, int height) {
std::vector<uint8_t> data(width * height);
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> dis(0, 15); // 4-bit color indices
for (auto& pixel : data) {
pixel = static_cast<uint8_t>(dis(gen));
}
return data;
}
SnesPalette CreateTestPalette() {
SnesPalette palette;
for (int i = 0; i < 16; ++i) {
palette.AddColor(SnesColor(i * 16, i * 16, i * 16));
}
return palette;
}
};
// Benchmark palette lookup optimization
TEST_F(GraphicsOptimizationBenchmarks, PaletteLookupPerformance) {
const int kIterations = 10000;
const int kBitmapSize = 128;
auto test_data = CreateTestBitmapData(kBitmapSize, kBitmapSize);
auto test_palette = CreateTestPalette();
Bitmap bitmap(kBitmapSize, kBitmapSize, 8, test_data, test_palette);
// Benchmark palette lookup
auto start = std::chrono::high_resolution_clock::now();
for (int i = 0; i < kIterations; ++i) {
SnesColor test_color(i % 16, (i + 1) % 16, (i + 2) % 16);
uint8_t index = bitmap.FindColorIndex(test_color);
(void)index; // Prevent optimization
}
auto end = std::chrono::high_resolution_clock::now();
auto duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
double avg_time_us = static_cast<double>(duration.count()) / kIterations;
// Verify optimization is working (should be < 1μs per lookup)
EXPECT_LT(avg_time_us, 1.0) << "Palette lookup should be optimized to < 1μs";
std::cout << "Palette lookup average time: " << avg_time_us << " μs"
<< std::endl;
}
// Benchmark dirty region tracking
TEST_F(GraphicsOptimizationBenchmarks, DirtyRegionTrackingPerformance) {
const int kBitmapSize = 256;
const int kPixelUpdates = 1000;
auto test_data = CreateTestBitmapData(kBitmapSize, kBitmapSize);
auto test_palette = CreateTestPalette();
Bitmap bitmap(kBitmapSize, kBitmapSize, 8, test_data, test_palette);
// Benchmark pixel updates with dirty region tracking
auto start = std::chrono::high_resolution_clock::now();
for (int i = 0; i < kPixelUpdates; ++i) {
int x = i % kBitmapSize;
int y = (i * 7) % kBitmapSize; // Spread updates across bitmap
SnesColor color(i % 16, (i + 1) % 16, (i + 2) % 16);
bitmap.SetPixel(x, y, color);
}
auto end = std::chrono::high_resolution_clock::now();
auto duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
double avg_time_us = static_cast<double>(duration.count()) / kPixelUpdates;
// Verify dirty region tracking is efficient
EXPECT_LT(avg_time_us, 10.0)
<< "Pixel updates should be < 10μs with dirty region tracking";
std::cout << "Pixel update average time: " << avg_time_us << " μs"
<< std::endl;
}
// Benchmark memory pool allocation
TEST_F(GraphicsOptimizationBenchmarks, MemoryPoolAllocationPerformance) {
const int kAllocations = 10000;
const size_t kAllocationSize = 1024; // 1KB blocks
auto& memory_pool = MemoryPool::Get();
std::vector<void*> allocations;
allocations.reserve(kAllocations);
// Benchmark allocations
auto start = std::chrono::high_resolution_clock::now();
for (int i = 0; i < kAllocations; ++i) {
void* ptr = memory_pool.Allocate(kAllocationSize);
allocations.push_back(ptr);
}
auto end = std::chrono::high_resolution_clock::now();
auto duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
double avg_time_us = static_cast<double>(duration.count()) / kAllocations;
// Verify memory pool is faster than system malloc
EXPECT_LT(avg_time_us, 1.0) << "Memory pool allocation should be < 1μs";
std::cout << "Memory pool allocation average time: " << avg_time_us << " μs"
<< std::endl;
// Benchmark deallocations
start = std::chrono::high_resolution_clock::now();
for (void* ptr : allocations) {
memory_pool.Deallocate(ptr);
}
end = std::chrono::high_resolution_clock::now();
duration = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
avg_time_us = static_cast<double>(duration.count()) / kAllocations;
EXPECT_LT(avg_time_us, 1.0) << "Memory pool deallocation should be < 1μs";
std::cout << "Memory pool deallocation average time: " << avg_time_us << " μs"
<< std::endl;
}
// Benchmark batch texture updates
TEST_F(GraphicsOptimizationBenchmarks, BatchTextureUpdatePerformance) {
const int kTextureUpdates = 100;
const int kBitmapSize = 64;
auto test_data = CreateTestBitmapData(kBitmapSize, kBitmapSize);
auto test_palette = CreateTestPalette();
std::vector<Bitmap> bitmaps;
bitmaps.reserve(kTextureUpdates);
// Create test bitmaps
for (int i = 0; i < kTextureUpdates; ++i) {
bitmaps.emplace_back(kBitmapSize, kBitmapSize, 8, test_data, test_palette);
}
auto& arena = Arena::Get();
// Benchmark individual texture updates
auto start = std::chrono::high_resolution_clock::now();
for (auto& bitmap : bitmaps) {
gfx::Arena::Get().QueueTextureCommand(
gfx::Arena::TextureCommandType::UPDATE, &bitmap);
}
auto end = std::chrono::high_resolution_clock::now();
auto individual_duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
// Benchmark batch texture updates
start = std::chrono::high_resolution_clock::now();
for (auto& bitmap : bitmaps) {
gfx::Arena::Get().QueueTextureCommand(
gfx::Arena::TextureCommandType::UPDATE, &bitmap);
}
gfx::Arena::Get().ProcessTextureQueue(nullptr); // Process all at once
end = std::chrono::high_resolution_clock::now();
auto batch_duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
// Verify batch updates are faster
double individual_avg =
static_cast<double>(individual_duration.count()) / kTextureUpdates;
double batch_avg =
static_cast<double>(batch_duration.count()) / kTextureUpdates;
EXPECT_LT(batch_avg, individual_avg)
<< "Batch updates should be faster than individual updates";
std::cout << "Individual texture update average: " << individual_avg << " μs"
<< std::endl;
std::cout << "Batch texture update average: " << batch_avg << " μs"
<< std::endl;
std::cout << "Speedup: " << (individual_avg / batch_avg) << "x" << std::endl;
}
// Benchmark atlas rendering
TEST_F(GraphicsOptimizationBenchmarks, AtlasRenderingPerformance) {
const int kBitmaps = 50;
const int kBitmapSize = 32;
auto test_data = CreateTestBitmapData(kBitmapSize, kBitmapSize);
auto test_palette = CreateTestPalette();
std::vector<Bitmap> bitmaps;
bitmaps.reserve(kBitmaps);
// Create test bitmaps
for (int i = 0; i < kBitmaps; ++i) {
bitmaps.emplace_back(kBitmapSize, kBitmapSize, 8, test_data, test_palette);
}
auto& atlas_renderer = AtlasRenderer::Get();
atlas_renderer.Initialize(nullptr, 512); // Initialize with 512x512 atlas
// Add bitmaps to atlas
std::vector<int> atlas_ids;
for (auto& bitmap : bitmaps) {
int atlas_id = atlas_renderer.AddBitmap(bitmap);
if (atlas_id >= 0) {
atlas_ids.push_back(atlas_id);
}
}
// Create render commands
std::vector<RenderCommand> render_commands;
for (size_t i = 0; i < atlas_ids.size(); ++i) {
render_commands.emplace_back(atlas_ids[i], i * 10.0f, i * 10.0f);
}
// Benchmark atlas rendering
auto start = std::chrono::high_resolution_clock::now();
for (int i = 0; i < 1000; ++i) {
atlas_renderer.RenderBatch(render_commands);
}
auto end = std::chrono::high_resolution_clock::now();
auto duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
double avg_time_us = static_cast<double>(duration.count()) / 1000.0;
// Verify atlas rendering is efficient
EXPECT_LT(avg_time_us, 100.0)
<< "Atlas rendering should be < 100μs per batch";
std::cout << "Atlas rendering average time: " << avg_time_us
<< " μs per batch" << std::endl;
// Get atlas statistics
auto stats = atlas_renderer.GetStats();
std::cout << "Atlas utilization: " << stats.utilization_percent << "%"
<< std::endl;
}
// Benchmark performance profiler overhead
TEST_F(GraphicsOptimizationBenchmarks, PerformanceProfilerOverhead) {
const int kOperations = 100000;
auto& profiler = PerformanceProfiler::Get();
// Benchmark operations without profiling
auto start = std::chrono::high_resolution_clock::now();
for (int i = 0; i < kOperations; ++i) {
// Simulate some work
volatile int result = i * i;
(void)result;
}
auto end = std::chrono::high_resolution_clock::now();
auto no_profiling_duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
// Benchmark operations with profiling
start = std::chrono::high_resolution_clock::now();
for (int i = 0; i < kOperations; ++i) {
profiler.StartTimer("test_operation");
// Simulate some work
volatile int result = i * i;
(void)result;
profiler.EndTimer("test_operation");
}
end = std::chrono::high_resolution_clock::now();
auto with_profiling_duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
// Calculate profiling overhead
double no_profiling_avg =
static_cast<double>(no_profiling_duration.count()) / kOperations;
double with_profiling_avg =
static_cast<double>(with_profiling_duration.count()) / kOperations;
double overhead = with_profiling_avg - no_profiling_avg;
// Verify profiling overhead is minimal
EXPECT_LT(overhead, 1.0)
<< "Profiling overhead should be < 1μs per operation";
std::cout << "No profiling average: " << no_profiling_avg << " μs"
<< std::endl;
std::cout << "With profiling average: " << with_profiling_avg << " μs"
<< std::endl;
std::cout << "Profiling overhead: " << overhead << " μs" << std::endl;
}
// Benchmark atlas rendering performance
TEST_F(GraphicsOptimizationBenchmarks, AtlasRenderingPerformance2) {
const int kNumTiles = 100;
const int kTileSize = 16;
auto& atlas_renderer = AtlasRenderer::Get();
auto& profiler = PerformanceProfiler::Get();
// Create test tiles
std::vector<Bitmap> test_tiles;
std::vector<int> atlas_ids;
for (int i = 0; i < kNumTiles; ++i) {
auto tile_data = CreateTestBitmapData(kTileSize, kTileSize);
auto tile_palette = CreateTestPalette();
test_tiles.emplace_back(kTileSize, kTileSize, 8, tile_data, tile_palette);
// Add to atlas
int atlas_id = atlas_renderer.AddBitmap(test_tiles.back());
if (atlas_id >= 0) {
atlas_ids.push_back(atlas_id);
}
}
// Benchmark individual tile rendering
auto start = std::chrono::high_resolution_clock::now();
for (int i = 0; i < kNumTiles; ++i) {
if (i < atlas_ids.size()) {
atlas_renderer.RenderBitmap(atlas_ids[i], i * 20.0f, 0.0f);
}
}
auto end = std::chrono::high_resolution_clock::now();
auto individual_duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
// Benchmark batch rendering
std::vector<RenderCommand> render_commands;
for (size_t i = 0; i < atlas_ids.size(); ++i) {
render_commands.emplace_back(atlas_ids[i], i * 20.0f, 100.0f);
}
start = std::chrono::high_resolution_clock::now();
atlas_renderer.RenderBatch(render_commands);
end = std::chrono::high_resolution_clock::now();
auto batch_duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
// Verify batch rendering is faster
EXPECT_LT(batch_duration.count(), individual_duration.count())
<< "Batch rendering should be faster than individual rendering";
// Get atlas statistics
auto stats = atlas_renderer.GetStats();
EXPECT_GT(stats.total_entries, 0) << "Atlas should contain entries";
EXPECT_GT(stats.used_entries, 0) << "Atlas should have used entries";
std::cout << "Individual rendering: " << individual_duration.count() << " μs"
<< std::endl;
std::cout << "Batch rendering: " << batch_duration.count() << " μs"
<< std::endl;
std::cout << "Atlas entries: " << stats.used_entries << "/"
<< stats.total_entries << std::endl;
std::cout << "Atlas utilization: " << stats.utilization_percent << "%"
<< std::endl;
}
// Integration test for overall performance
TEST_F(GraphicsOptimizationBenchmarks, OverallPerformanceIntegration) {
const int kGraphicsSheets = 10;
const int kTilesPerSheet = 100;
const int kTileSize = 16;
auto& memory_pool = MemoryPool::Get();
auto& arena = Arena::Get();
auto& profiler = PerformanceProfiler::Get();
// Simulate loading graphics sheets
auto start = std::chrono::high_resolution_clock::now();
std::vector<Bitmap> graphics_sheets;
for (int sheet = 0; sheet < kGraphicsSheets; ++sheet) {
auto sheet_data = CreateTestBitmapData(kTileSize * 10, kTileSize * 10);
auto sheet_palette = CreateTestPalette();
graphics_sheets.emplace_back(kTileSize * 10, kTileSize * 10, 8, sheet_data,
sheet_palette);
}
auto end = std::chrono::high_resolution_clock::now();
auto load_duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
// Simulate tile operations
start = std::chrono::high_resolution_clock::now();
for (int sheet = 0; sheet < kGraphicsSheets; ++sheet) {
for (int tile = 0; tile < kTilesPerSheet; ++tile) {
int x = (tile % 10) * kTileSize;
int y = (tile / 10) * kTileSize;
SnesColor color(tile % 16, (tile + 1) % 16, (tile + 2) % 16);
graphics_sheets[sheet].SetPixel(x, y, color);
}
}
end = std::chrono::high_resolution_clock::now();
auto tile_duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
// Simulate batch texture updates
start = std::chrono::high_resolution_clock::now();
for (auto& sheet : graphics_sheets) {
arena.QueueTextureCommand(gfx::Arena::TextureCommandType::UPDATE, &sheet);
}
arena.ProcessTextureQueue(nullptr);
end = std::chrono::high_resolution_clock::now();
auto batch_duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
// Verify overall performance
double load_time_ms = static_cast<double>(load_duration.count()) / 1000.0;
double tile_time_ms = static_cast<double>(tile_duration.count()) / 1000.0;
double batch_time_ms = static_cast<double>(batch_duration.count()) / 1000.0;
EXPECT_LT(load_time_ms, 100.0) << "Graphics sheet loading should be < 100ms";
EXPECT_LT(tile_time_ms, 50.0) << "Tile operations should be < 50ms";
EXPECT_LT(batch_time_ms, 10.0) << "Batch updates should be < 10ms";
std::cout << "Graphics sheet loading: " << load_time_ms << " ms" << std::endl;
std::cout << "Tile operations: " << tile_time_ms << " ms" << std::endl;
std::cout << "Batch updates: " << batch_time_ms << " ms" << std::endl;
// Get performance summary
auto summary = PerformanceDashboard::Get().GetSummary();
std::cout << "Optimization score: " << summary.optimization_score << "/100"
<< std::endl;
std::cout << "Status: " << summary.status_message << std::endl;
}
} // namespace gfx
} // namespace yaze