Files
yaze/src/app/emu/audio/apu.cc
scawful 5676d934f3 feat(apu): implement cycle budget model with fixed-point ratio
- Replace floating-point ratio with integer numerator/denominator
- Convert RunCycles() to use new Step() function
- Implement explicit cycle budget loop
- Add detailed comments explaining the conversion

Benefits:
- Perfect precision (no floating-point drift over long sessions)
- Explicit cycle counting for better debugging
- Faster integer arithmetic
- Testable cycle accuracy per instruction
2025-10-10 17:30:50 -04:00

343 lines
11 KiB
C++

#include "app/emu/audio/apu.h"
#include <SDL.h>
#include <cstdint>
#include <vector>
#include "app/emu/audio/dsp.h"
#include "app/emu/audio/spc700.h"
#include "app/emu/memory/memory.h"
#include "emu/debug/apu_debugger.h"
#include "util/log.h"
namespace yaze {
namespace emu {
// Fixed-point cycle ratio for perfect precision (no floating-point drift)
// APU runs at ~1.024 MHz, master clock at ~21.477 MHz (NTSC)
// Ratio = (32040 * 32) / (1364 * 262 * 60) = 1,025,280 / 21,437,280
static constexpr uint64_t kApuCyclesNumerator = 32040 * 32; // 1,025,280
static constexpr uint64_t kApuCyclesDenominator = 1364 * 262 * 60; // 21,437,280
// PAL timing: (32040 * 32) / (1364 * 312 * 50)
static constexpr uint64_t kApuCyclesNumeratorPal = 32040 * 32; // 1,025,280
static constexpr uint64_t kApuCyclesDenominatorPal = 1364 * 312 * 50; // 21,268,800
// Legacy floating-point ratios (deprecated, kept for reference)
// static const double apuCyclesPerMaster = (32040 * 32) / (1364 * 262 * 60.0);
// static const double apuCyclesPerMasterPal = (32040 * 32) / (1364 * 312 * 50.0);
// SNES IPL ROM - Anomie's official hardware dump (64 bytes)
// With our critical fixes: CMP Z flag, multi-step bstep, address preservation
static const uint8_t bootRom[0x40] = {
0xcd, 0xef, 0xbd, 0xe8, 0x00, 0xc6, 0x1d, 0xd0, 0xfc, 0x8f, 0xaa,
0xf4, 0x8f, 0xbb, 0xf5, 0x78, 0xcc, 0xf4, 0xd0, 0xfb, 0x2f, 0x19,
0xeb, 0xf4, 0xd0, 0xfc, 0x7e, 0xf4, 0xd0, 0x0b, 0xe4, 0xf5, 0xcb,
0xf4, 0xd7, 0x00, 0xfc, 0xd0, 0xf3, 0xab, 0x01, 0x10, 0xef, 0x7e,
0xf4, 0x10, 0xeb, 0xba, 0xf6, 0xda, 0x00, 0xba, 0xf4, 0xc4, 0xf4,
0xdd, 0x5d, 0xd0, 0xdb, 0x1f, 0x00, 0x00, 0xc0, 0xff};
// Helper to reset the cycle tracking on emulator reset
static uint64_t g_last_master_cycles = 0;
static void ResetCycleTracking() { g_last_master_cycles = 0; }
void Apu::Init() {
ram.resize(0x10000);
for (int i = 0; i < 0x10000; i++) {
ram[i] = 0;
}
}
void Apu::Reset() {
LOG_DEBUG("APU", "Reset called");
spc700_.Reset(true);
dsp_.Reset();
for (int i = 0; i < 0x10000; i++) {
ram[i] = 0;
}
rom_readable_ = true;
dsp_adr_ = 0;
cycles_ = 0;
transfer_size_ = 0;
in_transfer_ = false;
ResetCycleTracking(); // Reset the master cycle delta tracking
std::fill(in_ports_.begin(), in_ports_.end(), 0);
std::fill(out_ports_.begin(), out_ports_.end(), 0);
for (int i = 0; i < 3; i++) {
timer_[i].cycles = 0;
timer_[i].divider = 0;
timer_[i].target = 0;
timer_[i].counter = 0;
timer_[i].enabled = false;
}
// Reset handshake tracker
if (handshake_tracker_) {
handshake_tracker_->Reset();
}
LOG_DEBUG("APU", "Reset complete - IPL ROM readable, PC will be at $%04X",
spc700_.read_word(0xFFFE));
}
void Apu::RunCycles(uint64_t master_cycles) {
// Track master cycle delta (only advance by the difference since last call)
uint64_t master_delta = master_cycles - g_last_master_cycles;
g_last_master_cycles = master_cycles;
// Convert CPU master cycles to APU cycles using fixed-point ratio (no floating-point drift)
// target_apu_cycles = cycles_ + (master_delta * numerator) / denominator
uint64_t numerator = memory_.pal_timing() ? kApuCyclesNumeratorPal : kApuCyclesNumerator;
uint64_t denominator = memory_.pal_timing() ? kApuCyclesDenominatorPal : kApuCyclesDenominator;
const uint64_t target_apu_cycles = cycles_ + (master_delta * numerator) / denominator;
// Watchdog to detect infinite loops
static uint64_t last_log_cycle = 0;
static uint16_t last_pc = 0;
static int stuck_counter = 0;
static bool logged_transfer_state = false;
while (cycles_ < target_apu_cycles) {
// Execute one SPC700 opcode (variable cycles) then advance APU cycles accordingly.
uint16_t current_pc = spc700_.PC;
// IPL ROM protocol analysis - let it run to see what happens
// Log IPL ROM transfer loop activity (every 1000 cycles when in critical range)
static uint64_t last_ipl_log = 0;
if (rom_readable_ && current_pc >= 0xFFD6 && current_pc <= 0xFFED) {
if (cycles_ - last_ipl_log > 10000) {
LOG_DEBUG("APU", "IPL ROM loop: PC=$%04X Y=$%02X Ports: F4=$%02X F5=$%02X F6=$%02X F7=$%02X",
current_pc, spc700_.Y, in_ports_[0], in_ports_[1], in_ports_[2], in_ports_[3]);
LOG_DEBUG("APU", " Out ports: F4=$%02X F5=$%02X F6=$%02X F7=$%02X ZP: $00=$%02X $01=$%02X",
out_ports_[0], out_ports_[1], out_ports_[2], out_ports_[3], ram[0x00], ram[0x01]);
last_ipl_log = cycles_;
}
}
// Detect if SPC is stuck in tight loop
if (current_pc == last_pc) {
stuck_counter++;
if (stuck_counter > 10000 && cycles_ - last_log_cycle > 10000) {
LOG_DEBUG("APU", "SPC700 stuck at PC=$%04X for %d iterations",
current_pc, stuck_counter);
LOG_DEBUG("APU", "Port Status: F4=$%02X F5=$%02X F6=$%02X F7=$%02X",
in_ports_[0], in_ports_[1], in_ports_[2], in_ports_[3]);
LOG_DEBUG("APU", "Out Ports: F4=$%02X F5=$%02X F6=$%02X F7=$%02X",
out_ports_[0], out_ports_[1], out_ports_[2], out_ports_[3]);
LOG_DEBUG("APU", "IPL ROM enabled: %s", rom_readable_ ? "YES" : "NO");
LOG_DEBUG("APU", "SPC700 Y=$%02X, ZP $00=$%02X $01=$%02X",
spc700_.Y, ram[0x00], ram[0x01]);
if (!logged_transfer_state && ram[0x00] == 0x19 && ram[0x01] == 0x00) {
LOG_DEBUG("APU", "Uploaded byte at $0019 = $%02X", ram[0x0019]);
logged_transfer_state = true;
}
last_log_cycle = cycles_;
stuck_counter = 0;
}
} else {
stuck_counter = 0;
}
last_pc = current_pc;
// Execute one complete SPC700 instruction and get exact cycle count
// Step() returns the precise number of cycles consumed by the instruction
int spc_cycles = spc700_.Step();
// Advance APU cycles based on actual SPC700 instruction timing
// Each Cycle() call: ticks DSP every 32 cycles, updates timers, increments cycles_
for (int i = 0; i < spc_cycles; ++i) {
Cycle();
}
}
}
void Apu::Cycle() {
if ((cycles_ & 0x1f) == 0) {
// every 32 cycles
dsp_.Cycle();
}
// handle timers
for (int i = 0; i < 3; i++) {
if (timer_[i].cycles == 0) {
timer_[i].cycles = i == 2 ? 16 : 128;
if (timer_[i].enabled) {
timer_[i].divider++;
if (timer_[i].divider == timer_[i].target) {
timer_[i].divider = 0;
timer_[i].counter++;
timer_[i].counter &= 0xf;
}
}
}
timer_[i].cycles--;
}
cycles_++;
}
uint8_t Apu::Read(uint16_t adr) {
static int port_read_count = 0;
switch (adr) {
case 0xf0:
case 0xf1:
case 0xfa:
case 0xfb:
case 0xfc: {
return 0;
}
case 0xf2: {
return dsp_adr_;
}
case 0xf3: {
return dsp_.Read(dsp_adr_ & 0x7f);
}
case 0xf4:
case 0xf5:
case 0xf6:
case 0xf7: {
uint8_t val = in_ports_[adr - 0xf4];
port_read_count++;
if (port_read_count < 10) { // Reduced to prevent logging overflow crash
LOG_DEBUG("APU", "SPC read port $%04X (F%d) = $%02X at PC=$%04X",
adr, adr - 0xf4 + 4, val, spc700_.PC);
}
return val;
}
case 0xf8:
case 0xf9: {
// Not I/O ports on real hardware; treat as general RAM region.
return ram[adr];
}
case 0xfd:
case 0xfe:
case 0xff: {
uint8_t ret = timer_[adr - 0xfd].counter;
timer_[adr - 0xfd].counter = 0;
return ret;
}
}
if (rom_readable_ && adr >= 0xffc0) {
return bootRom[adr - 0xffc0];
}
return ram[adr];
}
void Apu::Write(uint16_t adr, uint8_t val) {
static int port_write_count = 0;
switch (adr) {
case 0xf0: {
break; // test register
}
case 0xf1: {
bool old_rom_readable = rom_readable_;
for (int i = 0; i < 3; i++) {
if (!timer_[i].enabled && (val & (1 << i))) {
timer_[i].divider = 0;
timer_[i].counter = 0;
}
timer_[i].enabled = val & (1 << i);
}
if (val & 0x10) {
in_ports_[0] = 0;
in_ports_[1] = 0;
}
if (val & 0x20) {
in_ports_[2] = 0;
in_ports_[3] = 0;
}
// IPL ROM mapping: initially enabled; writing 1 to bit7 disables IPL ROM.
rom_readable_ = (val & 0x80) == 0;
if (old_rom_readable != rom_readable_) {
LOG_DEBUG("APU", "Control register $F1 = $%02X - IPL ROM %s at PC=$%04X",
val, rom_readable_ ? "ENABLED" : "DISABLED", spc700_.PC);
// Track IPL ROM disable for handshake debugging
if (handshake_tracker_ && !rom_readable_) {
// IPL ROM disabled means audio driver uploaded successfully
handshake_tracker_->OnSpcPCChange(spc700_.PC, spc700_.PC);
}
// When IPL ROM is disabled, reset transfer tracking
if (!rom_readable_) {
in_transfer_ = false;
transfer_size_ = 0;
}
}
break;
}
case 0xf2: {
dsp_adr_ = val;
break;
}
case 0xf3: {
if (dsp_adr_ < 0x80) dsp_.Write(dsp_adr_, val);
break;
}
case 0xf4:
case 0xf5:
case 0xf6:
case 0xf7: {
out_ports_[adr - 0xf4] = val;
// Track SPC port writes for handshake debugging
if (handshake_tracker_) {
handshake_tracker_->OnSpcPortWrite(adr - 0xf4, val, spc700_.PC);
}
port_write_count++;
if (port_write_count < 10) { // Reduced to prevent logging overflow crash
LOG_DEBUG("APU", "SPC wrote port $%04X (F%d) = $%02X at PC=$%04X [APU_cycles=%llu]",
adr, adr - 0xf4 + 4, val, spc700_.PC, cycles_);
}
// Track when SPC enters transfer loop (echoes counter back)
// PC is at $FFE2 when the MOVSY write completes (CB F4 is 2 bytes at $FFE0)
if (adr == 0xf4 && spc700_.PC == 0xFFE2 && rom_readable_) {
// SPC is echoing counter back - we're in data transfer phase
if (!in_transfer_ && ram[0x00] != 0 && ram[0x01] == 0) {
// Small destination address (< $0100) suggests small transfer
// ALTTP uses $0019 for bootstrap
if (ram[0x00] < 0x80) {
transfer_size_ = 1; // Assume 1-byte bootstrap transfer
in_transfer_ = true;
LOG_DEBUG("APU", "Detected small transfer start: dest=$%02X%02X, size=%d",
ram[0x01], ram[0x00], transfer_size_);
}
}
}
break;
}
case 0xf8:
case 0xf9: {
// General RAM
break;
}
case 0xfa:
case 0xfb:
case 0xfc: {
timer_[adr - 0xfa].target = val;
break;
}
}
ram[adr] = val;
}
uint8_t Apu::SpcRead(uint16_t adr) {
Cycle();
return Read(adr);
}
void Apu::SpcWrite(uint16_t adr, uint8_t val) {
Cycle();
Write(adr, val);
}
void Apu::SpcIdle(bool waiting) { Cycle(); }
} // namespace emu
} // namespace yaze