Files
yaze/src/app/rom.cc
2022-07-30 12:15:08 -04:00

616 lines
21 KiB
C++

#include "rom.h"
#include <SDL.h>
#include <cstddef>
#include <cstring>
#include <filesystem>
#include <fstream>
#include <iostream>
#include <memory>
#include <string>
#include <vector>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
#include "app/core/common.h"
#include "app/core/constants.h"
#include "app/gfx/bitmap.h"
namespace yaze {
namespace app {
namespace {
uint GetGraphicsAddress(const uchar* data, uint8_t offset) {
auto part_one = data[0x4F80 + offset] << 16;
auto part_two = data[0x505F + offset] << 8;
auto part_three = data[0x513E + offset];
auto snes_addr = uint{(part_one | part_two | part_three)};
return core::SnesToPc(snes_addr);
}
char* HexString(const char* str, const uint size) {
char* toret = (char*)malloc(size * 3 + 1);
uint i;
for (i = 0; i < size; i++) {
sprintf(toret + i * 3, "%02X ", (unsigned char)str[i]);
}
toret[size * 3] = 0;
return toret;
}
void PrintCompressionPiece(CompressionPiece* piece) {
printf("Command : %d\n", piece->command);
printf("length : %d\n", piece->length);
printf("Argument length : %d\n", piece->argument_length);
printf("Argument :%s\n",
HexString(piece->argument.data(), piece->argument_length));
}
std::shared_ptr<CompressionPiece> NewCompressionPiece(
const char command, const int length, const std::string args,
const int argument_length) {
auto new_piece = std::make_shared<CompressionPiece>(command, length, args,
argument_length);
return std::move(new_piece);
}
// Merge consecutive copy if possible
std::shared_ptr<CompressionPiece> MergeCopy(
std::shared_ptr<CompressionPiece>& start) {
std::shared_ptr<CompressionPiece> piece = start;
while (piece != nullptr) {
if (piece->command == kCommandDirectCopy && piece->next != nullptr &&
piece->next->command == kCommandDirectCopy) {
if (piece->length + piece->next->length <= kMaxLengthCompression) {
uint previous_length = piece->length;
piece->length = piece->length + piece->next->length;
for (int i = 0; i < piece->next->argument_length; ++i) {
piece->argument[i + previous_length] = piece->next->argument[i];
}
piece->argument_length = piece->length;
PrintCompressionPiece(piece.get());
auto p_next_next = piece->next->next;
piece->next = p_next_next;
continue; // Next could be another copy
}
}
piece = piece->next;
}
return start;
}
std::shared_ptr<CompressionPiece> SplitCompressionPiece(
std::shared_ptr<CompressionPiece>& piece, int mode) {
std::shared_ptr<CompressionPiece> new_piece;
uint length_left = piece->length - kMaxLengthCompression;
piece->length = kMaxLengthCompression;
switch (piece->command) {
case kCommandByteFill:
case kCommandWordFill:
new_piece = NewCompressionPiece(piece->command, length_left,
piece->argument, piece->argument_length);
break;
case kCommandIncreasingFill:
new_piece = NewCompressionPiece(piece->command, length_left,
piece->argument, piece->argument_length);
new_piece->argument[0] =
(char)(piece->argument[0] + kMaxLengthCompression);
break;
case kCommandDirectCopy:
piece->argument_length = kMaxLengthCompression;
new_piece = NewCompressionPiece(piece->command, length_left, nullptr,
length_left);
// MEMCPY
for (int i = 0; i < length_left; ++i) {
new_piece->argument[i] = piece->argument[i + kMaxLengthCompression];
}
break;
case kCommandRepeatingBytes: {
piece->argument_length = kMaxLengthCompression;
uint offset = piece->argument[0] + (piece->argument[1] << 8);
new_piece = NewCompressionPiece(piece->command, length_left,
piece->argument, piece->argument_length);
if (mode == kNintendoMode2) {
new_piece->argument[0] = (offset + kMaxLengthCompression) & 0xFF;
new_piece->argument[1] = (offset + kMaxLengthCompression) >> 8;
}
if (mode == kNintendoMode1) {
new_piece->argument[1] = (offset + kMaxLengthCompression) & 0xFF;
new_piece->argument[0] = (offset + kMaxLengthCompression) >> 8;
}
} break;
}
return new_piece;
}
uint CreateCompressionString(std::shared_ptr<CompressionPiece>& start,
uchar* output, int mode) {
uint pos = 0;
auto piece = start;
while (piece != nullptr) {
// Normal header
if (piece->length <= kMaxLengthNormalHeader) {
output[pos++] = BUILD_HEADER(piece->command, piece->length);
} else {
if (piece->length <= kMaxLengthCompression) {
output[pos++] = (7 << 5) | ((uchar)piece->command << 2) |
(((piece->length - 1) & 0xFF00) >> 8);
printf("Building extended header : cmd: %d, length: %d - %02X\n",
piece->command, piece->length, (uchar)output[pos - 1]);
output[pos++] = (char)((piece->length - 1) & 0x00FF);
} else {
// We need to split the command
auto new_piece = SplitCompressionPiece(piece, mode);
printf("New added piece\n");
PrintCompressionPiece(new_piece.get());
new_piece->next = piece->next;
piece->next = new_piece;
continue;
}
}
if (piece->command == kCommandRepeatingBytes) {
char tmp[2];
if (mode == kNintendoMode2) {
tmp[0] = piece->argument[0];
tmp[1] = piece->argument[1];
}
if (mode == kNintendoMode1) {
tmp[0] = piece->argument[1];
tmp[1] = piece->argument[0];
}
for (int i = 0; i < 2; ++i) {
output[pos + i] = tmp[i];
}
} else {
for (int i = 0; i < piece->argument_length; ++i) {
output[pos + i] = piece->argument[i];
}
}
pos += piece->argument_length;
piece = piece->next;
}
output[pos] = 0xFF;
return pos + 1;
}
// Test every command to see the gain with current position
void TestAllCommands(const uchar* rom_data, DataSizeArray& data_size_taken,
CommandArgumentArray& cmd_args, uint& u_data_pos,
const uint last_pos, uint start) {
{ // BYTE REPEAT
uint pos = u_data_pos;
char byte_to_repeat = rom_data[pos];
while (pos <= last_pos && rom_data[pos] == byte_to_repeat) {
data_size_taken[kCommandByteFill]++;
pos++;
}
cmd_args[kCommandByteFill][0] = byte_to_repeat;
}
{ // WORD REPEAT
if (u_data_pos + 2 <= last_pos &&
rom_data[u_data_pos] != rom_data[u_data_pos + 1]) {
uint pos = u_data_pos;
char byte1 = rom_data[pos];
char byte2 = rom_data[pos + 1];
pos += 2;
data_size_taken[kCommandWordFill] = 2;
while (pos + 1 <= last_pos) {
if (rom_data[pos] == byte1 && rom_data[pos + 1] == byte2)
data_size_taken[kCommandWordFill] += 2;
else
break;
pos += 2;
}
cmd_args[kCommandWordFill][0] = byte1;
cmd_args[kCommandWordFill][1] = byte2;
}
}
{ // INC BYTE
uint pos = u_data_pos;
char byte = rom_data[pos];
pos++;
data_size_taken[kCommandIncreasingFill] = 1;
while (pos <= last_pos && ++byte == rom_data[pos]) {
data_size_taken[kCommandIncreasingFill]++;
pos++;
}
cmd_args[kCommandIncreasingFill][0] = rom_data[u_data_pos];
}
{ // INTRA CPY
if (u_data_pos != start) {
uint searching_pos = start;
uint current_pos_u = u_data_pos;
uint copied_size = 0;
uint search_start = start;
while (searching_pos < u_data_pos && current_pos_u <= last_pos) {
while (rom_data[current_pos_u] != rom_data[searching_pos] &&
searching_pos < u_data_pos)
searching_pos++;
search_start = searching_pos;
while (current_pos_u <= last_pos &&
rom_data[current_pos_u] == rom_data[searching_pos] &&
searching_pos < u_data_pos) {
copied_size++;
current_pos_u++;
searching_pos++;
}
if (copied_size > data_size_taken[kCommandRepeatingBytes]) {
search_start -= start;
printf("-Found repeat of %d at %d\n", copied_size, search_start);
data_size_taken[kCommandRepeatingBytes] = copied_size;
cmd_args[kCommandRepeatingBytes][0] = search_start & 0xFF;
cmd_args[kCommandRepeatingBytes][1] = search_start >> 8;
}
current_pos_u = u_data_pos;
copied_size = 0;
}
}
}
}
// Check if a command managed to pick up `max_win` or more bytes
// Avoids being even with copy command, since it's possible to merge copy
void ValidateForByteGain(const DataSizeArray& data_size_taken,
const CommandSizeArray& cmd_size, uint& max_win,
uint& cmd_with_max) {
for (uint cmd_i = 1; cmd_i < 5; cmd_i++) {
uint cmd_size_taken = data_size_taken[cmd_i];
// FIXME: Should probably be a table that say what is even with copy
// but all other cmd are 2
auto table_check =
!(cmd_i == kCommandRepeatingBytes && cmd_size_taken == 3);
if (cmd_size_taken > max_win && cmd_size_taken > cmd_size[cmd_i] &&
table_check) {
printf("--C:%d / S:%d\n", cmd_i, cmd_size_taken);
cmd_with_max = cmd_i;
max_win = cmd_size_taken;
}
}
}
void CompressionDirectCopy(const uchar* rom_data,
std::shared_ptr<CompressionPiece>& compressed_chain,
uint& u_data_pos, uint& bytes_since_last_compression,
uint& last_pos) {
// We just move through the next byte and don't 'compress' yet, maybe
// something is better after.
u_data_pos++;
bytes_since_last_compression++;
// Arbitrary choice to do a 32 bytes grouping
if (bytes_since_last_compression == 32 || u_data_pos > last_pos) {
char buffer[32];
for (int i = 0; i < bytes_since_last_compression; ++i) {
buffer[i] = rom_data[i + u_data_pos - bytes_since_last_compression];
}
auto new_comp_piece =
NewCompressionPiece(kCommandDirectCopy, bytes_since_last_compression,
buffer, bytes_since_last_compression);
compressed_chain->next = new_comp_piece;
compressed_chain = new_comp_piece;
bytes_since_last_compression = 0;
}
}
void CompressionCommandAlternative(
const uchar* rom_data, std::shared_ptr<CompressionPiece>& compressed_chain,
const CommandSizeArray& cmd_size, const CommandArgumentArray& cmd_args,
uint& u_data_pos, uint& bytes_since_last_compression, uint& cmd_with_max,
uint& max_win) {
// printf("- Ok we get a gain from %d\n", cmd_with_max);
char buffer[2];
buffer[0] = cmd_args[cmd_with_max][0];
if (cmd_size[cmd_with_max] == 2) buffer[1] = cmd_args[cmd_with_max][1];
auto new_comp_piece = NewCompressionPiece(cmd_with_max, max_win, buffer,
cmd_size[cmd_with_max]);
// If we let non compressed stuff, we need to add a copy chuck before
if (bytes_since_last_compression != 0) {
std::string copy_buff;
copy_buff.resize(bytes_since_last_compression);
for (int i = 0; i < bytes_since_last_compression; ++i) {
copy_buff[i] = rom_data[i + u_data_pos - bytes_since_last_compression];
}
auto copy_chuck =
NewCompressionPiece(kCommandDirectCopy, bytes_since_last_compression,
copy_buff, bytes_since_last_compression);
compressed_chain->next = copy_chuck;
compressed_chain = copy_chuck;
}
compressed_chain->next = new_comp_piece;
compressed_chain = new_comp_piece;
u_data_pos += max_win;
bytes_since_last_compression = 0;
}
} // namespace
// TODO TEST compressed data border for each cmd
absl::StatusOr<Bytes> ROM::Compress(const int start, const int length,
int mode) {
Bytes compressed_data(length + 10);
// Worse case should be a copy of the string with extended header
auto compressed_chain = NewCompressionPiece(1, 1, "aaa", 2);
auto compressed_chain_start = compressed_chain;
CommandArgumentArray cmd_args = {{}};
DataSizeArray data_size_taken = {0, 0, 0, 0, 0};
CommandSizeArray cmd_size = {0, 1, 2, 1, 2};
uint u_data_pos = start;
uint last_pos = start + length - 1;
uint bytes_since_last_compression = 0; // Used when skipping using copy
while (1) {
data_size_taken.fill({});
cmd_args.fill({{}});
TestAllCommands(rom_data_.data(), data_size_taken, cmd_args, u_data_pos,
last_pos, start);
uint max_win = 2;
uint cmd_with_max = kCommandDirectCopy;
ValidateForByteGain(data_size_taken, cmd_size, max_win, cmd_with_max);
if (cmd_with_max == kCommandDirectCopy) {
// This is the worse case
CompressionDirectCopy(rom_data_.data(), compressed_chain, u_data_pos,
bytes_since_last_compression, last_pos);
} else {
// Yay we get something better
CompressionCommandAlternative(
rom_data_.data(), compressed_chain, cmd_size, cmd_args, u_data_pos,
bytes_since_last_compression, cmd_with_max, max_win);
}
if (u_data_pos > last_pos) break;
// Validate compression result
if (compressed_chain_start->next != nullptr) {
// We don't call merge copy so we need more space
auto tmp = (uchar*)malloc(length * 2);
auto compressed_size =
CreateCompressionString(compressed_chain_start->next, tmp, mode);
uint p;
auto response = Decompress(0);
if (!response.ok()) {
return response.status();
}
auto uncomp = std::move(*response);
free(tmp);
if (memcmp(uncomp.data(), rom_data_.data() + start, p) != 0) {
// FreeCompressionChain(compressed_chain_start);
return absl::InternalError(absl::StrFormat(
"Compressed data does not match uncompressed data at %d\n",
(uint)(u_data_pos - start)));
}
}
}
MergeCopy(compressed_chain_start->next); // First is a dumb place holder
uchar temporary_string[length + 10];
auto compressed_size = CreateCompressionString(compressed_chain_start->next,
temporary_string, mode);
for (int i = 0; i < compressed_size; ++i) {
compressed_data[i] = temporary_string[i];
}
return compressed_data;
}
absl::StatusOr<Bytes> ROM::CompressGraphics(const int pos, const int length) {
return Compress(pos, length, kNintendoMode2);
}
absl::StatusOr<Bytes> ROM::CompressOverworld(const int pos, const int length) {
return Compress(pos, length, kNintendoMode1);
}
absl::StatusOr<Bytes> ROM::Decompress(int offset, int size, bool reversed) {
Bytes buffer(size);
uint length = 0;
uint buffer_pos = 0;
uchar cmd = 0;
uchar databyte = rom_data_[offset];
while (databyte != 0xFF) { // End of decompression
databyte = rom_data_[offset];
if ((databyte & 0xE0) == 0xE0) { // Expanded Command
cmd = ((databyte >> 2) & 0x07);
length = (((rom_data_[offset] << 8) | rom_data_[offset + 1]) & 0x3FF);
offset += 2; // Advance 2 bytes in ROM
} else { // Normal Command
cmd = ((databyte >> 5) & 0x07);
length = (databyte & 0x1F);
offset += 1; // Advance 1 byte in ROM
}
length += 1; // each commands is at least of size 1 even if index 00
switch (cmd) {
case kCommandDirectCopy: // Does not advance in the ROM
for (int i = 0; i < length; i++)
buffer[buffer_pos++] = rom_data_[offset++];
break;
case kCommandByteFill: // Advances 1 byte in the ROM
for (int i = 0; i < length; i++)
buffer[buffer_pos++] = rom_data_[offset];
offset += 1;
break;
case kCommandWordFill: // Advance 2 byte in the ROM
for (int i = 0; i < length; i += 2) {
buffer[buffer_pos++] = rom_data_[offset];
buffer[buffer_pos++] = rom_data_[offset + 1];
}
offset += 2;
break;
case kCommandIncreasingFill: {
uchar inc_byte = rom_data_[offset];
for (int i = 0; i < length; i++) buffer[buffer_pos++] = inc_byte++;
offset += 1; // Advance 1 byte in the ROM
} break;
case kCommandRepeatingBytes: {
ushort s1 = ((rom_data_[offset + 1] & 0xFF) << 8);
ushort s2 = ((rom_data_[offset] & 0xFF));
if (reversed) { // Reversed byte order for overworld maps
auto addr = (rom_data_[offset + 2]) | ((rom_data_[offset + 1]) << 8);
if (addr > offset) {
return absl::InternalError(absl::StrFormat(
"DecompressOverworldV2: Offset for command copy exceeds "
"current position (Offset : %#04x | Pos : %#06x)\n",
addr, offset));
}
if (buffer_pos + length >= size) {
size *= 2;
buffer.resize(size);
}
memcpy(buffer.data() + buffer_pos, rom_data_.data() + offset, length);
offset += 2;
} else {
auto addr = (ushort)(s1 | s2);
for (int i = 0; i < length; i++) {
buffer[buffer_pos] = buffer[addr + i];
buffer_pos++;
}
offset += 2; // Advance 2 bytes in the ROM
}
} break;
}
}
return buffer;
}
absl::StatusOr<Bytes> ROM::DecompressGraphics(int pos, int size) {
return Decompress(pos, size, false);
}
absl::StatusOr<Bytes> ROM::DecompressOverworld(int pos, int size) {
return Decompress(pos, size, true);
}
absl::StatusOr<Bytes> ROM::SNES3bppTo8bppSheet(Bytes sheet, int size) {
Bytes sheet_buffer_out(size);
int xx = 0; // positions where we are at on the sheet
int yy = 0;
int pos = 0;
int ypos = 0;
// for each tiles, 16 per line
for (int i = 0; i < 64; i++) {
// for each line
for (int y = 0; y < 8; y++) {
//[0] + [1] + [16]
for (int x = 0; x < 8; x++) {
auto b1 = ((sheet[(y * 2) + (24 * pos)] & (kGraphicsBitmap[x])));
auto b2 = (sheet[((y * 2) + (24 * pos)) + 1] & (kGraphicsBitmap[x]));
auto b3 = (sheet[(16 + y) + (24 * pos)] & (kGraphicsBitmap[x]));
unsigned char b = 0;
if (b1 != 0) {
b |= 1;
}
if (b2 != 0) {
b |= 2;
}
if (b3 != 0) {
b |= 4;
}
sheet_buffer_out[x + (xx) + (y * 128) + (yy * 1024)] = b;
}
}
pos++;
ypos++;
xx += 8;
if (ypos >= 16) {
yy++;
xx = 0;
ypos = 0;
}
}
return sheet_buffer_out;
}
absl::Status ROM::LoadFromFile(const absl::string_view& filename) {
std::ifstream file(filename.data(), std::ios::binary);
if (!file.is_open()) {
return absl::InternalError(
absl::StrCat("Could not open ROM file: ", filename));
}
size_ = std::filesystem::file_size(filename);
rom_data_.resize(size_);
for (auto i = 0; i < size_; ++i) {
char byte_to_read = ' ';
file.read(&byte_to_read, sizeof(char));
rom_data_[i] = byte_to_read;
}
file.close();
is_loaded_ = true;
memcpy(title, rom_data_.data() + 32704, 20); // copy ROM title
return absl::OkStatus();
}
absl::Status ROM::LoadFromPointer(uchar* data, size_t length) {
if (data == nullptr)
return absl::InvalidArgumentError(
"Could not load ROM: parameter `data` is empty");
for (int i = 0; i < length; ++i) rom_data_.push_back(data[i]);
return absl::OkStatus();
}
// 0-112 -> compressed 3bpp bgr -> (decompressed each) 0x600 chars
// 113-114 -> compressed 2bpp -> (decompressed each) 0x800 chars
// 115-126 -> uncompressed 3bpp sprites -> (each) 0x600 chars
// 127-217 -> compressed 3bpp sprites -> (decompressed each) 0x600 chars
// 218-222 -> compressed 2bpp -> (decompressed each) 0x800 chars
absl::Status ROM::LoadAllGraphicsData() {
Bytes sheet;
for (int i = 0; i < core::NumberOfSheets; i++) {
if (i >= 115 && i <= 126) { // uncompressed sheets
sheet.resize(core::Uncompressed3BPPSize);
auto offset = GetGraphicsAddress(rom_data_.data(), i);
for (int j = 0; j < core::Uncompressed3BPPSize; j++) {
sheet[j] = rom_data_[j + offset];
}
} else {
auto offset = GetGraphicsAddress(rom_data_.data(), i);
absl::StatusOr<Bytes> new_sheet =
Decompress(offset, core::UncompressedSheetSize);
if (!new_sheet.ok()) {
return new_sheet.status();
} else {
sheet = std::move(*new_sheet);
}
}
absl::StatusOr<Bytes> converted_sheet = SNES3bppTo8bppSheet(sheet);
if (!converted_sheet.ok()) {
return converted_sheet.status();
} else {
Bytes result = std::move(*converted_sheet);
graphics_bin_[i] =
gfx::Bitmap(core::kTilesheetWidth, core::kTilesheetHeight,
core::kTilesheetDepth, result.data());
graphics_bin_.at(i).CreateTexture(renderer_);
}
}
return absl::OkStatus();
}
} // namespace app
} // namespace yaze