Files
yaze/src/app/zelda3/dungeon/room_object.h
scawful 59e7dcc7f0 GUI Updates
Add DisplaySettings, replace ImGui style editor
Update Debugger interface with memory viewer
Decompose SNES initialization routines
Update DungeonObjectRenderer plan
Add DrawObjectRenderer UI mockup fofr DungeonEditor
2023-11-21 11:07:04 -05:00

404 lines
9.9 KiB
C++

#ifndef YAZE_APP_ZELDA3_DUNGEON_ROOM_OBJECT_H
#define YAZE_APP_ZELDA3_DUNGEON_ROOM_OBJECT_H
#include <array>
#include <cstdint>
#include <stdexcept>
#include <string>
#include <vector>
#include "app/emu/cpu.h"
#include "app/emu/video/ppu.h"
#include "app/gfx/snes_palette.h"
#include "app/gfx/snes_tile.h"
#include "app/rom.h"
#include "app/zelda3/dungeon/object_names.h"
namespace yaze {
namespace app {
namespace zelda3 {
namespace dungeon {
class DungeonObjectRenderer : public SharedROM {
public:
struct PseudoVram {
std::vector<gfx::Bitmap> sheets;
// TODO: Initialize with mock VRAM data
};
DungeonObjectRenderer() {
// TODO: Constructor implementation
}
void LoadObject(uint16_t objectId) {
// Prepare the CPU and memory environment
memory_.Initialize(rom()->vector());
// Fetch the subtype pointers for the given object ID
auto subtypeInfo = FetchSubtypeInfo(objectId);
// Configure the object based on the fetched information
ConfigureObject(subtypeInfo);
// Run the CPU emulation for the object's draw routines
RenderObject(subtypeInfo);
}
private:
struct SubtypeInfo {
uint16_t subtypePtr;
uint16_t routinePtr;
// Additional fields as needed
};
SubtypeInfo FetchSubtypeInfo(uint16_t objectId) {
SubtypeInfo info;
// Determine the subtype based on objectId
// Assuming subtype is determined by some bits in objectId; modify as needed
uint8_t subtype = (objectId >> 8) & 0xFF; // Example: top 8 bits
// Based on the subtype, fetch the correct pointers
switch (subtype) {
case 1: // Subtype 1
info.subtypePtr = core::subtype1_tiles + (objectId & 0xFF) * 2;
info.routinePtr = core::subtype1_tiles + 0x200 + (objectId & 0xFF) * 2;
break;
case 2: // Subtype 2
info.subtypePtr = core::subtype2_tiles + (objectId & 0x7F) * 2;
info.routinePtr = core::subtype2_tiles + 0x80 + (objectId & 0x7F) * 2;
break;
case 3: // Subtype 3
info.subtypePtr = core::subtype3_tiles + (objectId & 0xFF) * 2;
info.routinePtr = core::subtype3_tiles + 0x100 + (objectId & 0xFF) * 2;
break;
default:
// Handle unknown subtype
throw std::runtime_error("Unknown subtype for object ID: " +
std::to_string(objectId));
}
// Convert pointers from ROM-relative to absolute (if necessary)
// info.subtypePtr = ConvertToAbsolutePtr(info.subtypePtr);
// info.routinePtr = ConvertToAbsolutePtr(info.routinePtr);
return info;
}
void ConfigureObject(const SubtypeInfo& info) {
// TODO: Use the information in info to set up the object's initial state
// This may include setting CPU registers, loading specific tiles into VRAM,
// etc.
}
void RenderObject(const SubtypeInfo& info) {
// Assuming that the routine pointer and other necessary setup is done in
// ConfigureObject Start CPU at the routine's entry point
cpu.PC =
info.routinePtr; // info should be a member or passed as a parameter
cpu.PB = 0x01; // Set the program bank; adjust based on your memory mapping
// Run the CPU emulation loop
while (true) {
// Fetch the next opcode
uint8_t opcode = cpu.FetchByte();
// Execute the fetched instruction
cpu.ExecuteInstruction(opcode);
// Handle any interrupts, if necessary
cpu.HandleInterrupts();
// Check if the end of the routine is reached (typically RTS instruction)
if (opcode == 0x60) { // RTS opcode
break;
}
// Additional checks can be added here, e.g., maximum cycles or
// instructions
// Update the PPU state if necessary
// ppu.Update();
// After PPU update, reflect any changes in the Bitmap(s)
// UpdateBitmapFromPPU();
}
// Post-rendering operations (if any)
// PostRenderOperations();
}
// Helper function to update Bitmap from PPU state
void UpdateBitmapFromPPU() {
// TODO: Implement logic to transfer PPU state changes to the Bitmap
// This involves reading the tile data and other graphics info from PPU
// and rendering it to the Bitmap object
}
// Optional: Handle any operations after rendering
void PostRenderOperations() {
// TODO: Implement any cleanup or additional processing needed after
// rendering
}
// Members
std::vector<uint8_t> rom_data_;
emu::MemoryImpl memory_;
emu::ClockImpl clock_;
emu::CPU cpu{memory_, clock_};
emu::PPU ppu{memory_, clock_};
gfx::Bitmap bitmap;
PseudoVram vram_;
};
// void CreateVramFromRoomBlockset() {
// // auto bitmap_manager = rom()->bitmap_manager();
// // uint16_t room_id = 0;
// // auto room_blockset = rom()->room_blockset_ids[room_id];
// // for (const auto blockset_id : room_blockset) {
// // auto blockset = bitmap_manager[(uint16_t)blockset_id];
// // vram_.sheets.push_back(*blockset.get());
// // }
// }
// int i = 0;
// for (const auto routine_ptr : routine_ptrs) {
// cpu.PC = routine_ptr - 2;
// cpu.PB = 0x01;
// auto cycles_to_run = clock_.GetCycleCount();
// while (true) {
// auto opcode = cpu.FetchByte();
// // Fetch and execute an instruction
// cpu.ExecuteInstruction(opcode);
// // Handle any interrupts, if necessary
// cpu.HandleInterrupts();
// // Check if the instruction is RTS
// if (opcode == 0x60) {
// break;
// }
// i++;
// if (i > 50) {
// break;
// }
// }
// }
enum class SpecialObjectType { Chest, BigChest, InterroomStairs };
struct Tile {};
enum Background2 {
Off,
Parallax,
Dark,
OnTop,
Translucent,
Addition,
Normal,
Transparent,
DarkRoom // TODO: Determine if DarkRoom will stay there or not
};
enum Sorting {
All = 0,
Wall = 1,
Horizontal = 2,
Vertical = 4,
NonScalable = 8,
Dungeons = 16,
Floors = 32,
SortStairs = 64
};
enum ObjectOption {
Nothing = 0,
Door = 1,
Chest = 2,
Block = 4,
Torch = 8,
Bgr = 16,
Stairs = 32
};
struct LayerType {
LayerType(uint8_t t) : type(t) {}
uint8_t type;
};
class RoomObject : public SharedROM {
public:
enum LayerType { BG1 = 0, BG2 = 1, BG3 = 2 };
RoomObject(int16_t id, uint8_t x, uint8_t y, uint8_t size, uint8_t layer = 0)
: id(id),
x_(x),
y_(y),
size_(size),
Layer(static_cast<LayerType>(layer)),
nx(x),
ny(y),
ox(x),
oy(y),
width(16),
height(16),
uniqueID(0) {}
virtual void Draw() {
// ... Draw function implementation here
}
void getObjectSize() {
previousSize = size_;
size_ = 1;
// Draw();
getBaseSize();
UpdateSize();
size_ = 2;
// Draw();
getSizeSized();
UpdateSize();
size_ = previousSize;
// collisionPoint.clear();
}
void getBaseSize() {
basewidth = width;
baseheight = height;
}
void getSizeSized() {
sizeheight = height - baseheight;
sizewidth = width - basewidth;
}
// virtual void Draw() { collisionPoint.clear(); }
void UpdateSize() {
width = 8;
height = 8;
}
void addTiles(int nbr, int pos) {
auto rom_data = rom()->data();
for (int i = 0; i < nbr; i++) {
// tiles.push_back(
// gfx::Tile16(rom_data[pos + (i * 2)], rom_data[pos + (i * 2) + 1]));
}
}
void DrawTile(Tile t, int xx, int yy, std::vector<uint8_t>& current_gfx16,
std::vector<uint8_t>& tiles_bg1_buffer,
std::vector<uint8_t>& tiles_bg2_buffer,
ushort tileUnder = 0xFFFF);
protected:
int16_t id;
uint8_t x_;
uint8_t y_;
uint8_t size_;
LayerType Layer;
std::vector<uint8_t> preview_object_data_;
bool allBgs = false;
bool lit = false;
std::vector<gfx::Tile16> tiles;
int tileIndex = 0;
std::string name;
uint8_t nx;
uint8_t ny;
uint8_t ox;
uint8_t oy;
int width;
int height;
int basewidth;
int baseheight;
int sizewidth;
int sizeheight;
ObjectOption options = ObjectOption::Nothing;
int offsetX = 0;
int offsetY = 0;
bool diagonalFix = false;
bool selected = false;
int previewId = 0;
uint8_t previousSize = 0;
bool showRectangle = false;
// std::vector<Point> collisionPoint;
int uniqueID = 0;
uint8_t z = 0;
bool deleted = false;
};
class Subtype1 : public RoomObject {
public:
std::vector<Tile> tiles;
std::string name;
bool allBgs;
Sorting sort;
int tile_count_;
Subtype1(int16_t id, uint8_t x, uint8_t y, uint8_t size, uint8_t layer,
int tileCount)
: RoomObject(id, x, y, size, layer), tile_count_(tileCount) {
auto rom_data = rom()->data();
name = Type1RoomObjectNames[id & 0xFF];
int pos =
core::tile_address +
static_cast<int16_t>(
(rom_data[core::subtype1_tiles + ((id & 0xFF) * 2) + 1] << 8) +
rom_data[core::subtype1_tiles + ((id & 0xFF) * 2)]);
addTiles(tile_count_, pos);
sort = (Sorting)(Sorting::Horizontal | Sorting::Wall);
}
void Draw() override {
for (int s = 0; s < size_ + (tile_count_ == 8 ? 1 : 0); s++) {
for (int i = 0; i < tile_count_; i++) {
// DrawTile(tiles[i], ((s * 2)) * 8, (i / 2) * 8);
}
}
}
};
class Subtype2_Multiple : public RoomObject {
public:
int tx = 0;
int ty = 0;
std::vector<Tile> tiles;
std::string name;
bool allBgs;
Sorting sort;
Subtype2_Multiple(int16_t id, uint8_t x, uint8_t y, uint8_t size,
uint8_t layer)
: RoomObject(id, x, y, size, layer) {
// ... Constructor implementation here
}
void Draw() override {
// ... Draw function implementation here
}
void setdata(const std::string& name, int tx, int ty, bool allbg = false) {
// ... setdata function implementation here
}
// Other member functions and variables
};
class Subtype3 : public RoomObject {};
} // namespace dungeon
} // namespace zelda3
} // namespace app
} // namespace yaze
#endif // YAZE_APP_ZELDA3_DUNGEON_ROOM_OBJECT_H