Files
yaze/src/app/gfx/snes_tile.cc
scawful a393303d41 Refactor tile handling functions to use std::span for improved performance and safety
- Updated UnpackBppTile and ConvertBpp functions to accept std::span instead of std::vector, enhancing flexibility and reducing unnecessary copies.
- Refactored LoadSNES4bppGFXToIndexedColorMatrix to return a std::vector instead of modifying a destination span, improving usability.
- Cleaned up variable names for consistency and readability throughout the affected functions.
2025-05-10 11:00:38 -04:00

426 lines
13 KiB
C++

#include "snes_tile.h"
#include <cassert>
#include <cstdint>
#include <stdexcept>
#include <vector>
namespace yaze {
namespace gfx {
// Bit set for object priority
constexpr uint16_t TilePriorityBit = 0x2000;
// Bit set for object hflip
constexpr uint16_t TileHFlipBit = 0x4000;
// Bit set for object vflip
constexpr uint16_t TileVFlipBit = 0x8000;
// Bits used for tile name
constexpr uint16_t TileNameMask = 0x03FF;
snes_tile8 UnpackBppTile(std::span<uint8_t> data, const uint32_t offset,
const uint32_t bpp) {
snes_tile8 tile;
assert(bpp >= 1 && bpp <= 8);
unsigned int bpp_pos[8]; // More for conveniance and readibility
for (int col = 0; col < 8; col++) {
for (int row = 0; row < 8; row++) {
if (bpp == 1) {
tile.data[col * 8 + row] = (data[offset + col] >> (7 - row)) & 0x01;
continue;
}
/* SNES bpp format interlace each byte of the first 2 bitplanes.
* | byte 1 of first bitplane | byte 1 of second bitplane |
* | byte 2 of first bitplane | byte 2 of second bitplane | ..
*/
bpp_pos[0] = offset + col * 2;
bpp_pos[1] = offset + col * 2 + 1;
char mask = 1 << (7 - row);
tile.data[col * 8 + row] = (data[bpp_pos[0]] & mask) == mask;
tile.data[col * 8 + row] |= ((data[bpp_pos[1]] & mask) == mask) << 1;
if (bpp == 3) {
// When we have 3 bitplanes, the bytes for the third bitplane are after
// the 16 bytes of the 2 bitplanes.
bpp_pos[2] = offset + 16 + col;
tile.data[col * 8 + row] |= ((data[bpp_pos[2]] & mask) == mask) << 2;
}
if (bpp >= 4) {
// For 4 bitplanes, the 2 added bitplanes are interlaced like the first
// two.
bpp_pos[2] = offset + 16 + col * 2;
bpp_pos[3] = offset + 16 + col * 2 + 1;
tile.data[col * 8 + row] |= ((data[bpp_pos[2]] & mask) == mask) << 2;
tile.data[col * 8 + row] |= ((data[bpp_pos[3]] & mask) == mask) << 3;
}
if (bpp == 8) {
bpp_pos[4] = offset + 32 + col * 2;
bpp_pos[5] = offset + 32 + col * 2 + 1;
bpp_pos[6] = offset + 48 + col * 2;
bpp_pos[7] = offset + 48 + col * 2 + 1;
tile.data[col * 8 + row] |= ((data[bpp_pos[4]] & mask) == mask) << 4;
tile.data[col * 8 + row] |= ((data[bpp_pos[5]] & mask) == mask) << 5;
tile.data[col * 8 + row] |= ((data[bpp_pos[6]] & mask) == mask) << 6;
tile.data[col * 8 + row] |= ((data[bpp_pos[7]] & mask) == mask) << 7;
}
}
}
return tile;
}
std::vector<uint8_t> PackBppTile(const snes_tile8& tile, const uint32_t bpp) {
// Allocate memory for output data
std::vector<uint8_t> output(bpp * 8, 0); // initialized with 0
unsigned maxcolor = 2 << bpp;
// Iterate over all columns and rows of the tile
for (unsigned int col = 0; col < 8; col++) {
for (unsigned int row = 0; row < 8; row++) {
uint8_t color = tile.data[col * 8 + row];
if (color > maxcolor) {
throw std::invalid_argument("Invalid color value.");
}
// 1bpp format
if (bpp == 1) output[col] += (uint8_t)((color & 1) << (7 - row));
// 2bpp format
if (bpp >= 2) {
output[col * 2] += ((color & 1) << (7 - row));
output[col * 2 + 1] += (((color & 2) == 2) << (7 - row));
}
// 3bpp format
if (bpp == 3) output[16 + col] += (((color & 4) == 4) << (7 - row));
// 4bpp format
if (bpp >= 4) {
output[16 + col * 2] += (((color & 4) == 4) << (7 - row));
output[16 + col * 2 + 1] += (((color & 8) == 8) << (7 - row));
}
// 8bpp format
if (bpp == 8) {
output[32 + col * 2] += (((color & 16) == 16) << (7 - row));
output[32 + col * 2 + 1] += (((color & 32) == 32) << (7 - row));
output[48 + col * 2] += (((color & 64) == 64) << (7 - row));
output[48 + col * 2 + 1] += (((color & 128) == 128) << (7 - row));
}
}
}
return output;
}
std::vector<uint8_t> ConvertBpp(std::span<uint8_t> tiles, uint32_t from_bpp,
uint32_t to_bpp) {
unsigned int nb_tile = tiles.size() / (from_bpp * 8);
std::vector<uint8_t> converted(nb_tile * to_bpp * 8);
for (unsigned int i = 0; i < nb_tile; i++) {
snes_tile8 tile = UnpackBppTile(tiles, i * from_bpp * 8, from_bpp);
std::vector<uint8_t> packed_tile = PackBppTile(tile, to_bpp);
std::memcpy(converted.data() + i * to_bpp * 8, packed_tile.data(),
to_bpp * 8);
}
return converted;
}
std::vector<uint8_t> SnesTo8bppSheet(std::span<uint8_t> sheet, int bpp,
int num_sheets) {
int xx = 0; // positions where we are at on the sheet
int yy = 0;
int pos = 0;
int ypos = 0;
int num_tiles = 64;
int buffer_size = 0x1000;
if (bpp == 2) {
bpp = 16;
num_tiles = 128;
buffer_size = 0x2000;
} else if (bpp == 3) {
bpp = 24;
} else if (bpp == 4) {
bpp = 32;
buffer_size = 0x4000;
} else if (bpp == 8) {
bpp = 64;
}
if (num_sheets != 1) {
num_tiles *= num_sheets;
buffer_size *= num_sheets;
}
std::vector<uint8_t> sheet_buffer_out(buffer_size);
for (int i = 0; i < num_tiles; i++) { // for each tiles, 16 per line
for (int y = 0; y < 8; y++) { // for each line
for (int x = 0; x < 8; x++) { //[0] + [1] + [16]
auto b1 = (sheet[(y * 2) + (bpp * pos)] & (kGraphicsBitmap[x]));
auto b2 = (sheet[((y * 2) + (bpp * pos)) + 1] & (kGraphicsBitmap[x]));
auto b3 = (sheet[(16 + y) + (bpp * pos)] & (kGraphicsBitmap[x]));
unsigned char b = 0;
if (b1 != 0) {
b |= 1;
}
if (b2 != 0) {
b |= 2;
}
if (b3 != 0 && bpp != 16) {
b |= 4;
}
sheet_buffer_out[x + xx + (y * 128) + (yy * 1024)] = b;
}
}
pos++;
ypos++;
xx += 8;
if (ypos >= 16) {
yy++;
xx = 0;
ypos = 0;
}
}
return sheet_buffer_out;
}
std::vector<uint8_t> Bpp8SnesToIndexed(std::vector<uint8_t> data,
uint64_t bpp) {
// 3BPP
// [r0,bp1],[r0,bp2],[r1,bp1],[r1,bp2],[r2,bp1],[r2,bp2],[r3,bp1],[r3,bp2]
// [r4,bp1],[r4,bp2],[r5,bp1],[r5,bp2],[r6,bp1],[r6,bp2],[r7,bp1],[r7,bp2]
// [r0,bp3],[r0,bp4],[r1,bp3],[r1,bp4],[r2,bp3],[r2,bp4],[r3,bp3],[r3,bp4]
// [r4,bp3],[r4,bp4],[r5,bp3],[r5,bp4],[r6,bp3],[r6,bp4],[r7,bp3],[r7,bp4]
// [r0,bp5],[r0,bp6],[r1,bp5],[r1,bp6],[r2,bp5],[r2,bp6],[r3,bp5],[r3,bp6]
// [r4,bp5],[r4,bp6],[r5,bp5],[r5,bp6],[r6,bp5],[r6,bp6],[r7,bp5],[r7,bp6]
// [r0,bp7],[r0,bp8],[r1,bp7],[r1,bp8],[r2,bp7],[r2,bp8],[r3,bp7],[r3,bp8]
// [r4,bp7],[r4,bp8],[r5,bp7],[r5,bp8],[r6,bp7],[r6,bp8],[r7,bp7],[r7,bp8]
// 16 tiles = 1024 bytes
auto buffer = std::vector<uint8_t>(data.size());
std::vector<std::vector<uint8_t>> bitmap_data;
bitmap_data.resize(0x80);
for (auto& each : bitmap_data) {
each.reserve(0x800);
}
int yy = 0;
int xx = 0;
int pos = 0;
const uint16_t sheet_width = 128;
// 64 = 4096 bytes
// 16 = 1024?
int ypos = 0;
// for each tiles //16 per lines
for (int i = 0; i < 4096; i++) {
// for each lines
for (int y = 0; y < 8; y++) {
//[0] + [1] + [16]
for (int x = 0; x < 8; x++) {
const uint16_t bitmask[] = {0x80, 0x40, 0x20, 0x10,
0x08, 0x04, 0x02, 0x01};
auto b1 = (data[(y * 2) + ((bpp * 8) * pos)] & (bitmask[x]));
auto b2 = (data[((y * 2) + ((bpp * 8) * pos)) + 1] & (bitmask[x]));
auto b3 = (data[(y * 2) + ((bpp * 8) * pos) + 16] & (bitmask[x]));
auto b4 = (data[(y * 2) + ((bpp * 8) * pos) + 17] & (bitmask[x]));
auto b5 = (data[(y * 2) + ((bpp * 8) * pos) + 32] & (bitmask[x]));
auto b6 = (data[(y * 2) + ((bpp * 8) * pos) + 33] & (bitmask[x]));
auto b7 = (data[(y * 2) + ((bpp * 8) * pos) + 48] & (bitmask[x]));
auto b8 = (data[(y * 2) + ((bpp * 8) * pos) + 49] & (bitmask[x]));
auto b = 0;
if (b1 != 0) {
b |= 1;
}
if (b2 != 0) {
b |= 2;
}
if (bpp >= 4) {
if (b3 != 0) {
b |= 4;
}
if (b4 != 0) {
b |= 8;
}
}
if (bpp >= 8) {
if (b5 != 0) {
b |= 0x10;
}
if (b6 != 0) {
b |= 0x20;
}
if (b7 != 0) {
b |= 0x40;
}
if (b8 != 0) {
b |= 0x80;
}
}
// bitmap_data[((x + xx) * sheet_width) + y + (yy * 8)] = b;
bitmap_data[x + xx][y + (yy * 8)] = b;
}
}
pos++;
ypos++;
xx += 8;
if (ypos >= 16) {
yy++;
xx = 0;
ypos = 0;
}
}
int n = 0;
for (int y = 0; y < (data.size() / 64); y++) {
for (int x = 0; x < sheet_width; x++) { // 128 assumption
if (n < data.size()) {
// buffer[n] = bitmap_data[(x * sheet_width) + y];
buffer[n] = bitmap_data[x][y];
n++;
}
}
}
return buffer;
}
uint16_t TileInfoToWord(TileInfo tile_info) {
uint16_t result = 0;
// Copy the id_ value
result |= tile_info.id_ & 0x3FF; // ids are 10 bits
// Set the vertical_mirror_, horizontal_mirror_, and over_ flags
result |= (tile_info.vertical_mirror_ ? 1 : 0) << 15;
result |= (tile_info.horizontal_mirror_ ? 1 : 0) << 14;
result |= (tile_info.over_ ? 1 : 0) << 13;
// Set the palette_
result |= (tile_info.palette_ & 0x07) << 10; // palettes are 3 bits
return result;
}
TileInfo WordToTileInfo(uint16_t word) {
// Extract the id_ value
uint16_t id = word & 0x3FF; // ids are 10 bits
// Extract the vertical_mirror_, horizontal_mirror_, and over_ flags
bool vertical_mirror = (word >> 15) & 0x01;
bool horizontal_mirror = (word >> 14) & 0x01;
bool over = (word >> 13) & 0x01;
// Extract the palette_
uint8_t palette = (word >> 10) & 0x07; // palettes are 3 bits
return TileInfo(id, palette, vertical_mirror, horizontal_mirror, over);
}
uint16_t TileInfoToShort(TileInfo tile_info) {
// uint16_t result = 0;
// Copy the id_ value
// result |= tile_info.id_ & 0x3FF; // ids are 10 bits
// Set the vertical_mirror_, horizontal_mirror_, and over_ flags
// result |= (tile_info.vertical_mirror_ ? 1 : 0) << 10;
// result |= (tile_info.horizontal_mirror_ ? 1 : 0) << 11;
// result |= (tile_info.over_ ? 1 : 0) << 12;
// Set the palette_
// result |= (tile_info.palette_ & 0x07) << 13; // palettes are 3 bits
uint16_t value = 0;
// vhopppcc cccccccc
if (tile_info.over_) {
value |= TilePriorityBit;
}
if (tile_info.horizontal_mirror_) {
value |= TileHFlipBit;
}
if (tile_info.vertical_mirror_) {
value |= TileVFlipBit;
}
value |= (uint16_t)((tile_info.palette_ << 10) & 0x1C00);
value |= (uint16_t)(tile_info.id_ & TileNameMask);
return value;
}
TileInfo GetTilesInfo(uint16_t tile) {
// vhopppcc cccccccc
uint16_t tid = (uint16_t)(tile & TileNameMask);
uint8_t p = (uint8_t)((tile >> 10) & 0x07);
bool o = ((tile & TilePriorityBit) == TilePriorityBit);
bool h = ((tile & TileHFlipBit) == TileHFlipBit);
bool v = ((tile & TileVFlipBit) == TileVFlipBit);
return TileInfo(tid, p, v, h, o);
}
void CopyTile8bpp16(int x, int y, int tile, std::vector<uint8_t>& bitmap,
std::vector<uint8_t>& blockset) {
int src_pos =
((tile - ((tile / 0x08) * 0x08)) * 0x10) + ((tile / 0x08) * 2048);
int dest_pos = (x + (y * 0x200));
for (int yy = 0; yy < 0x10; yy++) {
for (int xx = 0; xx < 0x10; xx++) {
bitmap[dest_pos + xx + (yy * 0x200)] =
blockset[src_pos + xx + (yy * 0x80)];
}
}
}
std::vector<uint8_t> LoadSNES4bppGFXToIndexedColorMatrix(
std::span<uint8_t> src) {
std::vector<uint8_t> dest;
uint8_t b0;
uint8_t b1;
uint8_t b2;
uint8_t b3;
int res;
int mul;
int y_adder = 0;
int src_index;
int dest_x;
int dest_y;
int dest_index;
int main_index_limit = src.size() / 32;
for (int main_index = 0; main_index <= main_index_limit; main_index += 32) {
src_index = (main_index << 5);
if (src_index + 31 >= src.size()) {
throw std::invalid_argument("src_index + 31 >= src.size()");
}
dest_x = main_index & 0x0F;
dest_y = main_index >> 4;
dest_index = ((dest_y << 7) + dest_x) << 3;
if (dest_index + 903 >= dest.size()) {
throw std::invalid_argument("dest_index + 903 >= dest.size()");
}
for (int i = 0; i < 16; i += 2) {
mul = 1;
b0 = src[src_index + i];
b1 = src[src_index + i + 1];
b2 = src[src_index + i + 16];
b3 = src[src_index + i + 17];
for (int j = 0; j < 8; j++) {
res = ((b0 & mul) | ((b1 & mul) << 1) | ((b2 & mul) << 2) |
((b3 & mul) << 3)) >>
j;
dest[dest_index + (7 - j) + y_adder] = res;
mul <<= 1;
}
y_adder += 128;
}
}
return dest;
}
} // namespace gfx
} // namespace yaze