- Introduced a new document detailing the architecture of the z3ed AI agent system, covering features like learned knowledge, TODO management, and advanced routing. - Added a debugging guide for the AI agent, outlining the gRPC-based debugging service, available tools, and practical debugging workflows. - Updated existing documentation to reflect recent improvements in the emulator's audio system and overall debugging capabilities. Benefits: - Provides clear guidance for developers on the AI agent's architecture and debugging processes, enhancing usability and understanding of the system. - Facilitates faster onboarding and better collaboration by offering structured documentation and real-world examples.
16 KiB
C3 - z3ed Agent Architecture Guide
Date: October 12, 2025
Version: v0.2.2-alpha
Status: Core Features Integrated ✅
Overview
This guide documents the architecture of the z3ed AI agent system, including learned knowledge, TODO management, advanced routing, pretraining, and agent handoff capabilities.
Architecture Overview
┌───────────────────────────────────────────────────────────────┐
│ User / AI Agent │
└────────────┬──────────────────────────────────────────────────┘
│
│ z3ed CLI commands
│
┌────────────▼──────────────────────────────────────────────────┐
│ CLI Command Router (agent.cc) │
│ │
│ Routes to: │
│ ├─ agent simple-chat → SimpleChatCommand │
│ ├─ agent learn → HandleLearnCommand │
│ ├─ agent todo → HandleTodoCommand │
│ ├─ agent test → HandleTestCommand │
│ ├─ agent plan/run/diff → Proposal system │
│ └─ emulator-* → EmulatorCommandHandler │
└───────────┬───────────────────────────────────────────────────┘
│
┌───────────▼───────────────────────────────────────────────────┐
│ ConversationalAgentService │
│ │
│ Integrates: │
│ ├─ LearnedKnowledgeService (preferences, patterns, memory) │
│ ├─ TodoManager (task tracking, dependencies) │
│ ├─ AdvancedRouter (response enhancement) │
│ ├─ AgentPretraining (knowledge injection) │
│ └─ ToolDispatcher (command execution) │
└────────────┬──────────────────────────────────────────────────┘
│
┌────────────▼──────────────────────────────────────────────────┐
│ Tool Dispatcher │
│ │
│ Routes tool calls to: │
│ ├─ Resource Commands (dungeon, overworld, sprites) │
│ ├─ Emulator Commands (breakpoints, memory, step) │
│ ├─ GUI Commands (automation, screenshots) │
│ └─ Custom Tools (extensible via CommandHandler) │
└────────────┬──────────────────────────────────────────────────┘
│
┌────────────▼──────────────────────────────────────────────────┐
│ Command Handlers (CommandHandler base class) │
│ │
│ Unified pattern: │
│ 1. Parse arguments (ArgumentParser) │
│ 2. Get ROM context (CommandContext) │
│ 3. Execute business logic │
│ 4. Format output (OutputFormatter) │
└────────────┬──────────────────────────────────────────────────┘
│
┌────────────▼──────────────────────────────────────────────────┐
│ Persistent Storage │
│ │
│ ~/.yaze/agent/ │
│ ├─ preferences.json (user preferences) │
│ ├─ patterns.json (learned ROM patterns) │
│ ├─ projects.json (project contexts) │
│ ├─ memories.json (conversation summaries) │
│ ├─ todos.json (task management) │
│ └─ sessions/ (collaborative chat history) │
└────────────────────────────────────────────────────────────────┘
Feature 1: Learned Knowledge Service
What It Does
Persists information across agent sessions:
- Preferences: User's default settings (palette, tool choices)
- ROM Patterns: Learned behaviors (frequently accessed rooms, sprite patterns)
- Project Context: ROM-specific goals and notes
- Conversation Memory: Summaries of past discussions for continuity
Integration Status: ✅ Complete
Files:
cli/service/agent/learned_knowledge_service.{h,cc}- Core servicecli/handlers/agent/general_commands.cc- CLI handlerscli/handlers/agent.cc- Routing
Usage Examples
# Save preference
z3ed agent learn --preference default_palette=2
# Get preference
z3ed agent learn --get-preference default_palette
# Save project context
z3ed agent learn --project "myrom" --context "Vanilla+ difficulty hack"
# Get project details
z3ed agent learn --get-project "myrom"
# Search past conversations
z3ed agent learn --search-memories "dungeon room 5"
# Export all learned data
z3ed agent learn --export learned_data.json
# View statistics
z3ed agent learn --stats
AI Agent Integration
The ConversationalAgentService now:
- Initializes
LearnedKnowledgeServiceon startup - Can inject learned context into prompts (when
inject_learned_context_=true) - Can access preferences/patterns/memories during tool execution
API:
ConversationalAgentService service;
service.learned_knowledge().SetPreference("palette", "2");
auto pref = service.learned_knowledge().GetPreference("palette");
Data Persistence
Location: ~/.yaze/agent/
Format: JSON
Files:
preferences.json- Key-value pairspatterns.json- Timestamped ROM patterns with confidence scoresprojects.json- Project metadata and contextmemories.json- Conversation summaries (last 100)
Feature 2: TODO Management System
What It Does
Enables AI agents to break down complex tasks into executable steps with dependency tracking and prioritization.
Integration Status: ✅ Complete
Files:
cli/service/agent/todo_manager.{h,cc}- Core servicecli/handlers/agent/todo_commands.{h,cc}- CLI handlerscli/handlers/agent.cc- Routing
Usage Examples
# Create TODO
z3ed agent todo create "Fix input handling" --category=emulator --priority=1
# List TODOs
z3ed agent todo list
# Filter by status
z3ed agent todo list --status=in_progress
# Update status
z3ed agent todo update 1 --status=completed
# Get next actionable task
z3ed agent todo next
# Generate dependency-aware execution plan
z3ed agent todo plan
# Clear completed
z3ed agent todo clear-completed
AI Agent Integration
ConversationalAgentService service;
service.todo_manager().CreateTodo("Debug A button", "emulator", 1);
auto next = service.todo_manager().GetNextActionableTodo();
Storage
Location: ~/.yaze/agent/todos.json
Format: JSON array with dependencies:
{
"todos": [
{
"id": "1",
"description": "Debug input handling",
"status": "in_progress",
"category": "emulator",
"priority": 1,
"dependencies": [],
"tools_needed": ["emulator-set-breakpoint", "emulator-read-memory"]
}
]
}
Feature 3: Advanced Routing
What It Does
Optimizes tool responses for AI consumption with:
- Data type inference (sprite data vs tile data vs palette)
- Pattern extraction (repeating values, structures)
- Structured summaries (high-level + detailed + next steps)
- GUI action generation (converts analysis → automation script)
Integration Status: ⏳ Implemented, Not Integrated
Files:
cli/service/agent/advanced_routing.{h,cc}- Implementation ✅cli/agent.cmake- Added to build ✅cli/service/agent/conversational_agent_service.cc- Needs integration ⏳
How to Integrate
Option 1: In ToolDispatcher (Automatic)
// In tool_dispatcher.cc, after tool execution:
auto result = handler->Run(args, rom_context_);
if (result.ok()) {
std::string output = output_buffer.str();
// Route through advanced router for enhanced response
AdvancedRouter::RouteContext ctx;
ctx.rom = rom_context_;
ctx.tool_calls_made = {call.tool_name};
if (call.tool_name == "hex-read") {
auto routed = AdvancedRouter::RouteHexAnalysis(data, address, ctx);
return absl::StrCat(routed.summary, "\n\n", routed.detailed_data);
}
return output;
}
Option 2: In ConversationalAgentService (Selective)
// After getting tool results, enhance the response:
ChatMessage ConversationalAgentService::EnhanceResponse(
const ChatMessage& response,
const std::string& user_message) {
AdvancedRouter::RouteContext ctx;
ctx.rom = rom_context_;
ctx.user_intent = user_message;
// Use advanced router to synthesize multi-tool responses
auto routed = AdvancedRouter::SynthesizeMultiToolResponse(
tool_results_, ctx);
ChatMessage enhanced = response;
enhanced.message = routed.summary;
// Attach routed.gui_actions as metadata
return enhanced;
}
Feature 4: Agent Pretraining
What It Does
Injects structured knowledge into the agent's first message to teach it about:
- ROM structure (memory map, data formats)
- Hex analysis patterns (how to recognize sprites, tiles, palettes)
- Map editing workflows (tile placement, warp creation)
- Tool usage best practices
Integration Status: ⏳ Implemented, Not Integrated
Files:
cli/service/agent/agent_pretraining.{h,cc}- Implementation ✅cli/agent.cmake- Added to build ✅cli/service/agent/conversational_agent_service.cc- Needs integration ⏳
How to Integrate
In ConversationalAgentService::SendMessage():
absl::StatusOr<ChatMessage> ConversationalAgentService::SendMessage(
const std::string& message) {
// One-time pretraining injection on first message
if (inject_pretraining_ && !pretraining_injected_ && rom_context_) {
std::string pretraining = AgentPretraining::GeneratePretrainingPrompt(rom_context_);
ChatMessage pretraining_msg;
pretraining_msg.sender = ChatMessage::Sender::kUser;
pretraining_msg.message = pretraining;
pretraining_msg.is_internal = true; // Don't show to user
history_.insert(history_.begin(), pretraining_msg);
pretraining_injected_ = true;
}
// Continue with normal message processing...
}
Knowledge Modules
auto modules = AgentPretraining::GetModules();
for (const auto& module : modules) {
std::cout << "Module: " << module.name << std::endl;
std::cout << "Required: " << (module.required ? "Yes" : "No") << std::endl;
std::cout << module.content << std::endl;
}
Modules include:
rom_structure- Memory map, data formatshex_analysis- Pattern recognition for sprites/tiles/palettesmap_editing- Overworld/dungeon editing workflowstool_usage- Best practices for tool calling
Feature 5: Agent Handoff
Concept
Handoff allows transitioning control between:
- CLI → GUI: Start debugging in terminal, continue in editor
- Agent → Agent: Specialized agents for different tasks
- Human → AI: Let AI continue work autonomously
Implementation Status: 🚧 Architecture Defined
Handoff Data Structure
struct HandoffContext {
std::string handoff_id;
std::string source_agent;
std::string target_agent;
// State preservation
std::vector<ChatMessage> conversation_history;
Rom* rom_snapshot; // ROM state at handoff
std::vector<uint32_t> active_breakpoints;
std::map<std::string, std::string> variables; // Key findings
// Task context
std::vector<TodoItem> remaining_todos;
std::string current_goal;
std::string progress_summary;
// Tool state
std::vector<std::string> tools_used;
std::map<std::string, std::string> cached_results;
};
Implementation Plan
Phase 1: State Serialization
- Serialize ConversationalAgentService state to JSON
- Include learned knowledge, TODOs, breakpoints
- Generate handoff token (UUID + encrypted state)
Phase 2: Cross-Surface Handoff
- CLI saves handoff to
~/.yaze/agent/handoffs/<token>.json - GUI Agent Chat widget can import handoff
- Restore full conversation + tool state
Phase 3: Specialized Agents
- Define agent personas (EmulatorDebugAgent, ROMHackAgent, TestAgent)
- Implement handoff protocol (request → accept → execute → return)
- Add handoff commands to CLI
Current Integration Status
✅ Fully Integrated
-
LearnedKnowledgeService
- ✅ Implemented and integrated into ConversationalAgentService
- ✅ CLI commands available
- ✅ Persistent storage in
~/.yaze/agent/
-
TodoManager
- ✅ Implemented and integrated into ConversationalAgentService
- ✅ CLI commands available
- ✅ Persistent storage in
~/.yaze/agent/todos.json
-
Emulator Debugging Service
- ✅ gRPC service implemented
- ✅ 20/24 methods implemented
- ✅ Function schemas for AI tool calling
- ✅ See E9-ai-agent-debugging-guide.md for details
⏳ Implemented But Not Integrated
-
AdvancedRouter
- ✅ Implemented
- ⏳ Needs integration into ToolDispatcher or ConversationalAgentService
-
AgentPretraining
- ✅ Implemented
- ⏳ Needs injection into first message of conversation
🚧 Architecture Defined
- Agent Handoff
- ⏳ Architecture designed
- ⏳ Implementation pending
Benefits Summary
For AI Agents
| Feature | Without Integration | With Integration |
|---|---|---|
| Learned Knowledge | Forgets between sessions | Remembers preferences, patterns |
| TODO Management | Ad-hoc task tracking | Structured dependency-aware plans |
| Advanced Routing | Raw tool output | Synthesized insights + GUI actions |
| Pretraining | Generic LLM knowledge | ROM-specific expertise |
| Handoff | Restart from scratch | Seamless context preservation |
For Users
- Faster onboarding: AI learns your preferences
- Better continuity: Past conversations inform current session
- Complex tasks: AI breaks down goals automatically
- Cross-surface: Start in CLI, continue in GUI
- Reproducible: TODO plans serve as executable scripts
References
- Main CLI Guide: C1-z3ed-agent-guide.md
- Debugging Guide: E9-ai-agent-debugging-guide.md
- Changelog: H1-changelog.md (v0.2.2 section)
- Learned Knowledge:
cli/service/agent/learned_knowledge_service.{h,cc} - TODO Manager:
cli/service/agent/todo_manager.{h,cc} - Advanced Routing:
cli/service/agent/advanced_routing.{h,cc} - Pretraining:
cli/service/agent/agent_pretraining.{h,cc} - Agent Service:
cli/service/agent/conversational_agent_service.{h,cc}
Last Updated: October 12, 2025
Status: Core Features Integrated ✅
Next: Context injection, Advanced routing, Handoff protocol