Files
yaze/src/app/emu/audio/dsp.cc
scawful a582210fa8 feat(emu): implement SDL audio stream support in emulator
- Added functionality to enable SDL audio streaming in the Emulator class, allowing for improved audio handling.
- Introduced environment variable checks to configure audio streaming on initialization.
- Updated audio backend to support native audio frame queuing and resampling, enhancing audio performance and flexibility.

Benefits:
- Enhances audio playback quality and responsiveness in the emulator.
- Provides users with the option to utilize SDL audio streaming for better audio management.
2025-10-13 14:26:33 -04:00

778 lines
25 KiB
C++

#include "app/emu/audio/dsp.h"
#include <cmath>
#include <cstring>
namespace yaze {
namespace emu {
static const int rateValues[32] = {0, 2048, 1536, 1280, 1024, 768, 640, 512,
384, 320, 256, 192, 160, 128, 96, 80,
64, 48, 40, 32, 24, 20, 16, 12,
10, 8, 6, 5, 4, 3, 2, 1};
static const int rateOffsets[32] = {0, 0, 1040, 536, 0, 1040, 536, 0, 1040,
536, 0, 1040, 536, 0, 1040, 536, 0, 1040,
536, 0, 1040, 536, 0, 1040, 536, 0, 1040,
536, 0, 1040, 536, 0};
static const int gaussValues[512] = {
0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,
0x000, 0x000, 0x000, 0x000, 0x000, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001,
0x001, 0x001, 0x001, 0x001, 0x001, 0x002, 0x002, 0x002, 0x002, 0x002, 0x002,
0x002, 0x003, 0x003, 0x003, 0x003, 0x003, 0x004, 0x004, 0x004, 0x004, 0x004,
0x005, 0x005, 0x005, 0x005, 0x006, 0x006, 0x006, 0x006, 0x007, 0x007, 0x007,
0x008, 0x008, 0x008, 0x009, 0x009, 0x009, 0x00a, 0x00a, 0x00a, 0x00b, 0x00b,
0x00b, 0x00c, 0x00c, 0x00d, 0x00d, 0x00e, 0x00e, 0x00f, 0x00f, 0x00f, 0x010,
0x010, 0x011, 0x011, 0x012, 0x013, 0x013, 0x014, 0x014, 0x015, 0x015, 0x016,
0x017, 0x017, 0x018, 0x018, 0x019, 0x01a, 0x01b, 0x01b, 0x01c, 0x01d, 0x01d,
0x01e, 0x01f, 0x020, 0x020, 0x021, 0x022, 0x023, 0x024, 0x024, 0x025, 0x026,
0x027, 0x028, 0x029, 0x02a, 0x02b, 0x02c, 0x02d, 0x02e, 0x02f, 0x030, 0x031,
0x032, 0x033, 0x034, 0x035, 0x036, 0x037, 0x038, 0x03a, 0x03b, 0x03c, 0x03d,
0x03e, 0x040, 0x041, 0x042, 0x043, 0x045, 0x046, 0x047, 0x049, 0x04a, 0x04c,
0x04d, 0x04e, 0x050, 0x051, 0x053, 0x054, 0x056, 0x057, 0x059, 0x05a, 0x05c,
0x05e, 0x05f, 0x061, 0x063, 0x064, 0x066, 0x068, 0x06a, 0x06b, 0x06d, 0x06f,
0x071, 0x073, 0x075, 0x076, 0x078, 0x07a, 0x07c, 0x07e, 0x080, 0x082, 0x084,
0x086, 0x089, 0x08b, 0x08d, 0x08f, 0x091, 0x093, 0x096, 0x098, 0x09a, 0x09c,
0x09f, 0x0a1, 0x0a3, 0x0a6, 0x0a8, 0x0ab, 0x0ad, 0x0af, 0x0b2, 0x0b4, 0x0b7,
0x0ba, 0x0bc, 0x0bf, 0x0c1, 0x0c4, 0x0c7, 0x0c9, 0x0cc, 0x0cf, 0x0d2, 0x0d4,
0x0d7, 0x0da, 0x0dd, 0x0e0, 0x0e3, 0x0e6, 0x0e9, 0x0ec, 0x0ef, 0x0f2, 0x0f5,
0x0f8, 0x0fb, 0x0fe, 0x101, 0x104, 0x107, 0x10b, 0x10e, 0x111, 0x114, 0x118,
0x11b, 0x11e, 0x122, 0x125, 0x129, 0x12c, 0x130, 0x133, 0x137, 0x13a, 0x13e,
0x141, 0x145, 0x148, 0x14c, 0x150, 0x153, 0x157, 0x15b, 0x15f, 0x162, 0x166,
0x16a, 0x16e, 0x172, 0x176, 0x17a, 0x17d, 0x181, 0x185, 0x189, 0x18d, 0x191,
0x195, 0x19a, 0x19e, 0x1a2, 0x1a6, 0x1aa, 0x1ae, 0x1b2, 0x1b7, 0x1bb, 0x1bf,
0x1c3, 0x1c8, 0x1cc, 0x1d0, 0x1d5, 0x1d9, 0x1dd, 0x1e2, 0x1e6, 0x1eb, 0x1ef,
0x1f3, 0x1f8, 0x1fc, 0x201, 0x205, 0x20a, 0x20f, 0x213, 0x218, 0x21c, 0x221,
0x226, 0x22a, 0x22f, 0x233, 0x238, 0x23d, 0x241, 0x246, 0x24b, 0x250, 0x254,
0x259, 0x25e, 0x263, 0x267, 0x26c, 0x271, 0x276, 0x27b, 0x280, 0x284, 0x289,
0x28e, 0x293, 0x298, 0x29d, 0x2a2, 0x2a6, 0x2ab, 0x2b0, 0x2b5, 0x2ba, 0x2bf,
0x2c4, 0x2c9, 0x2ce, 0x2d3, 0x2d8, 0x2dc, 0x2e1, 0x2e6, 0x2eb, 0x2f0, 0x2f5,
0x2fa, 0x2ff, 0x304, 0x309, 0x30e, 0x313, 0x318, 0x31d, 0x322, 0x326, 0x32b,
0x330, 0x335, 0x33a, 0x33f, 0x344, 0x349, 0x34e, 0x353, 0x357, 0x35c, 0x361,
0x366, 0x36b, 0x370, 0x374, 0x379, 0x37e, 0x383, 0x388, 0x38c, 0x391, 0x396,
0x39b, 0x39f, 0x3a4, 0x3a9, 0x3ad, 0x3b2, 0x3b7, 0x3bb, 0x3c0, 0x3c5, 0x3c9,
0x3ce, 0x3d2, 0x3d7, 0x3dc, 0x3e0, 0x3e5, 0x3e9, 0x3ed, 0x3f2, 0x3f6, 0x3fb,
0x3ff, 0x403, 0x408, 0x40c, 0x410, 0x415, 0x419, 0x41d, 0x421, 0x425, 0x42a,
0x42e, 0x432, 0x436, 0x43a, 0x43e, 0x442, 0x446, 0x44a, 0x44e, 0x452, 0x455,
0x459, 0x45d, 0x461, 0x465, 0x468, 0x46c, 0x470, 0x473, 0x477, 0x47a, 0x47e,
0x481, 0x485, 0x488, 0x48c, 0x48f, 0x492, 0x496, 0x499, 0x49c, 0x49f, 0x4a2,
0x4a6, 0x4a9, 0x4ac, 0x4af, 0x4b2, 0x4b5, 0x4b7, 0x4ba, 0x4bd, 0x4c0, 0x4c3,
0x4c5, 0x4c8, 0x4cb, 0x4cd, 0x4d0, 0x4d2, 0x4d5, 0x4d7, 0x4d9, 0x4dc, 0x4de,
0x4e0, 0x4e3, 0x4e5, 0x4e7, 0x4e9, 0x4eb, 0x4ed, 0x4ef, 0x4f1, 0x4f3, 0x4f5,
0x4f6, 0x4f8, 0x4fa, 0x4fb, 0x4fd, 0x4ff, 0x500, 0x502, 0x503, 0x504, 0x506,
0x507, 0x508, 0x50a, 0x50b, 0x50c, 0x50d, 0x50e, 0x50f, 0x510, 0x511, 0x511,
0x512, 0x513, 0x514, 0x514, 0x515, 0x516, 0x516, 0x517, 0x517, 0x517, 0x518,
0x518, 0x518, 0x518, 0x518, 0x519, 0x519};
void Dsp::Reset() {
memset(ram, 0, sizeof(ram));
ram[0x7c] = 0xff; // set ENDx
for (int i = 0; i < 8; i++) {
channel[i].pitch = 0;
channel[i].pitchCounter = 0;
channel[i].pitchModulation = false;
memset(channel[i].decodeBuffer, 0, sizeof(channel[i].decodeBuffer));
channel[i].bufferOffset = 0;
channel[i].srcn = 0;
channel[i].decodeOffset = 0;
channel[i].blockOffset = 0;
channel[i].brrHeader = 0;
channel[i].useNoise = false;
channel[i].startDelay = 0;
memset(channel[i].adsrRates, 0, sizeof(channel[i].adsrRates));
channel[i].adsrState = 0;
channel[i].sustainLevel = 0;
channel[i].gainSustainLevel = 0;
channel[i].useGain = false;
channel[i].gainMode = 0;
channel[i].directGain = false;
channel[i].gainValue = 0;
channel[i].preclampGain = 0;
channel[i].gain = 0;
channel[i].keyOn = false;
channel[i].keyOff = false;
channel[i].sampleOut = 0;
channel[i].volumeL = 0;
channel[i].volumeR = 0;
channel[i].echoEnable = false;
}
counter = 0;
dirPage = 0;
evenCycle = true;
mute = true;
reset = true;
masterVolumeL = 0;
masterVolumeR = 0;
sampleOutL = 0;
sampleOutR = 0;
echoOutL = 0;
echoOutR = 0;
noiseSample = 0x4000;
noiseRate = 0;
echoWrites = false;
echoVolumeL = 0;
echoVolumeR = 0;
feedbackVolume = 0;
echoBufferAdr = 0;
echoDelay = 0;
echoLength = 0;
echoBufferIndex = 0;
firBufferIndex = 0;
memset(firValues, 0, sizeof(firValues));
memset(firBufferL, 0, sizeof(firBufferL));
memset(firBufferR, 0, sizeof(firBufferR));
memset(sampleBuffer, 0, sizeof(sampleBuffer));
sampleOffset = 0;
lastFrameBoundary = 0;
}
void Dsp::NewFrame() {
lastFrameBoundary = sampleOffset;
}
void Dsp::Cycle() {
sampleOutL = 0;
sampleOutR = 0;
echoOutL = 0;
echoOutR = 0;
for (int i = 0; i < 8; i++) {
CycleChannel(i);
}
HandleEcho(); // also applies master volume
counter = counter == 0 ? 30720 : counter - 1;
HandleNoise();
evenCycle = !evenCycle;
// handle mute flag
if (mute) {
sampleOutL = 0;
sampleOutR = 0;
}
// put final sample in the ring buffer and advance pointer
sampleBuffer[(sampleOffset & 0x3ff) * 2] = sampleOutL;
sampleBuffer[(sampleOffset & 0x3ff) * 2 + 1] = sampleOutR;
sampleOffset = (sampleOffset + 1) & 0x3ff;
}
static int clamp16(int val) {
return val < -0x8000 ? -0x8000 : (val > 0x7fff ? 0x7fff : val);
}
static int clip16(int val) { return (int16_t)(val & 0xffff); }
bool Dsp::CheckCounter(int rate) {
if (rate == 0) return false;
return ((counter + rateOffsets[rate]) % rateValues[rate]) == 0;
}
void Dsp::HandleEcho() {
// increment fir buffer index
firBufferIndex++;
firBufferIndex &= 0x7;
// get value out of ram
uint16_t adr = echoBufferAdr + echoBufferIndex;
int16_t ramSample = aram_[adr] | (aram_[(adr + 1) & 0xffff] << 8);
firBufferL[firBufferIndex] = ramSample >> 1;
ramSample = aram_[(adr + 2) & 0xffff] | (aram_[(adr + 3) & 0xffff] << 8);
firBufferR[firBufferIndex] = ramSample >> 1;
// calculate FIR-sum
int sumL = 0, sumR = 0;
for (int i = 0; i < 8; i++) {
sumL += (firBufferL[(firBufferIndex + i + 1) & 0x7] * firValues[i]) >> 6;
sumR += (firBufferR[(firBufferIndex + i + 1) & 0x7] * firValues[i]) >> 6;
if (i == 6) {
// clip to 16-bit before last addition
sumL = clip16(sumL);
sumR = clip16(sumR);
}
}
sumL = clamp16(sumL) & ~1;
sumR = clamp16(sumR) & ~1;
// apply master volume and modify output with sum
sampleOutL = clamp16(((sampleOutL * masterVolumeL) >> 7) +
((sumL * echoVolumeL) >> 7));
sampleOutR = clamp16(((sampleOutR * masterVolumeR) >> 7) +
((sumR * echoVolumeR) >> 7));
// get echo value
int echoL = clamp16(echoOutL + clip16((sumL * feedbackVolume) >> 7)) & ~1;
int echoR = clamp16(echoOutR + clip16((sumR * feedbackVolume) >> 7)) & ~1;
// write it to ram
if (echoWrites) {
aram_[adr] = echoL & 0xff;
aram_[(adr + 1) & 0xffff] = echoL >> 8;
aram_[(adr + 2) & 0xffff] = echoR & 0xff;
aram_[(adr + 3) & 0xffff] = echoR >> 8;
}
// handle indexes
if (echoBufferIndex == 0) {
echoLength = echoDelay * 4;
}
echoBufferIndex += 4;
if (echoBufferIndex >= echoLength) {
echoBufferIndex = 0;
}
}
void Dsp::CycleChannel(int ch) {
// handle pitch counter
int pitch = channel[ch].pitch;
if (ch > 0 && channel[ch].pitchModulation) {
pitch += ((channel[ch - 1].sampleOut >> 5) * pitch) >> 10;
}
// get current brr header and get sample address
channel[ch].brrHeader = aram_[channel[ch].decodeOffset];
uint16_t samplePointer = dirPage + 4 * channel[ch].srcn;
if (channel[ch].startDelay == 0) samplePointer += 2;
uint16_t sampleAdr =
aram_[samplePointer] | (aram_[(samplePointer + 1) & 0xffff] << 8);
// handle starting of sample
if (channel[ch].startDelay > 0) {
if (channel[ch].startDelay == 5) {
// first keyed on
channel[ch].decodeOffset = sampleAdr;
channel[ch].blockOffset = 1;
channel[ch].bufferOffset = 0;
channel[ch].brrHeader = 0;
ram[0x7c] &= ~(1 << ch); // clear ENDx
}
channel[ch].gain = 0;
channel[ch].startDelay--;
channel[ch].pitchCounter = 0;
if (channel[ch].startDelay > 0 && channel[ch].startDelay < 4) {
channel[ch].pitchCounter = 0x4000;
}
pitch = 0;
}
// get sample
int sample = 0;
if (channel[ch].useNoise) {
sample = clip16(noiseSample * 2);
} else {
sample = GetSample(ch);
}
sample = ((sample * channel[ch].gain) >> 11) & ~1;
// handle reset and release
if (reset || (channel[ch].brrHeader & 0x03) == 1) {
channel[ch].adsrState = 3; // go to release
channel[ch].gain = 0;
}
// handle keyon/keyoff
if (evenCycle) {
if (channel[ch].keyOff) {
channel[ch].adsrState = 3; // go to release
}
if (channel[ch].keyOn) {
channel[ch].startDelay = 5;
channel[ch].adsrState = 0; // go to attack
channel[ch].keyOn = false;
}
}
// handle envelope
if (channel[ch].startDelay == 0) {
HandleGain(ch);
}
// decode new brr samples if needed and update offsets
if (channel[ch].pitchCounter >= 0x4000) {
DecodeBrr(ch);
if (channel[ch].blockOffset >= 7) {
if (channel[ch].brrHeader & 0x1) {
channel[ch].decodeOffset = sampleAdr;
ram[0x7c] |= 1 << ch; // set ENDx
} else {
channel[ch].decodeOffset += 9;
}
channel[ch].blockOffset = 1;
} else {
channel[ch].blockOffset += 2;
}
}
// update pitch counter
channel[ch].pitchCounter &= 0x3fff;
channel[ch].pitchCounter += pitch;
if (channel[ch].pitchCounter > 0x7fff) channel[ch].pitchCounter = 0x7fff;
// set outputs
ram[(ch << 4) | 8] = channel[ch].gain >> 4;
ram[(ch << 4) | 9] = sample >> 8;
channel[ch].sampleOut = sample;
sampleOutL = clamp16(sampleOutL + ((sample * channel[ch].volumeL) >> 7));
sampleOutR = clamp16(sampleOutR + ((sample * channel[ch].volumeR) >> 7));
if (channel[ch].echoEnable) {
echoOutL = clamp16(echoOutL + ((sample * channel[ch].volumeL) >> 7));
echoOutR = clamp16(echoOutR + ((sample * channel[ch].volumeR) >> 7));
}
}
void Dsp::HandleGain(int ch) {
int newGain = channel[ch].gain;
int rate = 0;
// handle gain mode
if (channel[ch].adsrState == 3) { // release
rate = 31;
newGain -= 8;
} else {
if (!channel[ch].useGain) {
rate = channel[ch].adsrRates[channel[ch].adsrState];
switch (channel[ch].adsrState) {
case 0:
newGain += rate == 31 ? 1024 : 32;
break; // attack
case 1:
newGain -= ((newGain - 1) >> 8) + 1;
break; // decay
case 2:
newGain -= ((newGain - 1) >> 8) + 1;
break; // sustain
}
} else {
if (!channel[ch].directGain) {
rate = channel[ch].adsrRates[3];
switch (channel[ch].gainMode) {
case 0:
newGain -= 32;
break; // linear decrease
case 1:
newGain -= ((newGain - 1) >> 8) + 1;
break; // exponential decrease
case 2:
newGain += 32;
break; // linear increase
case 3:
newGain += (channel[ch].preclampGain < 0x600) ? 32 : 8;
break; // bent increase
}
} else { // direct gain
rate = 31;
newGain = channel[ch].gainValue;
}
}
}
// use sustain level according to mode
int sustainLevel = channel[ch].useGain ? channel[ch].gainSustainLevel
: channel[ch].sustainLevel;
if (channel[ch].adsrState == 1 && (newGain >> 8) == sustainLevel) {
channel[ch].adsrState = 2; // go to sustain
}
// store pre-clamped gain (for bent increase)
channel[ch].preclampGain = newGain & 0xffff;
// clamp gain
if (newGain < 0 || newGain > 0x7ff) {
newGain = newGain < 0 ? 0 : 0x7ff;
if (channel[ch].adsrState == 0) {
channel[ch].adsrState = 1; // go to decay
}
}
// store new value
if (CheckCounter(rate)) channel[ch].gain = newGain;
}
int16_t Dsp::GetSample(int ch) {
int pos = (channel[ch].pitchCounter >> 12) + channel[ch].bufferOffset;
int offset = (channel[ch].pitchCounter >> 4) & 0xff;
int16_t news = channel[ch].decodeBuffer[(pos + 3) % 12];
int16_t olds = channel[ch].decodeBuffer[(pos + 2) % 12];
int16_t olders = channel[ch].decodeBuffer[(pos + 1) % 12];
int16_t oldests = channel[ch].decodeBuffer[pos % 12];
int out = (gaussValues[0xff - offset] * oldests) >> 11;
out += (gaussValues[0x1ff - offset] * olders) >> 11;
out += (gaussValues[0x100 + offset] * olds) >> 11;
out = clip16(out) + ((gaussValues[offset] * news) >> 11);
return clamp16(out) & ~1;
}
void Dsp::DecodeBrr(int ch) {
int shift = channel[ch].brrHeader >> 4;
int filter = (channel[ch].brrHeader & 0xc) >> 2;
int bOff = channel[ch].bufferOffset;
int old = channel[ch].decodeBuffer[bOff == 0 ? 11 : bOff - 1] >> 1;
int older = channel[ch].decodeBuffer[bOff == 0 ? 10 : bOff - 2] >> 1;
uint8_t curByte = 0;
for (int i = 0; i < 4; i++) {
int s = 0;
if (i & 1) {
s = curByte & 0xf;
} else {
curByte = aram_[(channel[ch].decodeOffset + channel[ch].blockOffset +
(i >> 1)) &
0xffff];
s = curByte >> 4;
}
if (s > 7) s -= 16;
if (shift <= 0xc) {
s = (s << shift) >> 1;
} else {
s = (s >> 3) << 12;
}
switch (filter) {
case 1:
s += old + (-old >> 4);
break;
case 2:
s += 2 * old + ((3 * -old) >> 5) - older + (older >> 4);
break;
case 3:
s += 2 * old + ((13 * -old) >> 6) - older + ((3 * older) >> 4);
break;
}
channel[ch].decodeBuffer[bOff + i] = clamp16(s) * 2; // cuts off bit 15
older = old;
old = channel[ch].decodeBuffer[bOff + i] >> 1;
}
channel[ch].bufferOffset += 4;
if (channel[ch].bufferOffset >= 12) channel[ch].bufferOffset = 0;
}
void Dsp::HandleNoise() {
if (CheckCounter(noiseRate)) {
int bit = (noiseSample & 1) ^ ((noiseSample >> 1) & 1);
noiseSample = ((noiseSample >> 1) & 0x3fff) | (bit << 14);
}
}
uint8_t Dsp::Read(uint8_t adr) { return ram[adr]; }
void Dsp::Write(uint8_t adr, uint8_t val) {
int ch = adr >> 4;
switch (adr) {
case 0x00:
case 0x10:
case 0x20:
case 0x30:
case 0x40:
case 0x50:
case 0x60:
case 0x70: {
channel[ch].volumeL = val;
break;
}
case 0x01:
case 0x11:
case 0x21:
case 0x31:
case 0x41:
case 0x51:
case 0x61:
case 0x71: {
channel[ch].volumeR = val;
break;
}
case 0x02:
case 0x12:
case 0x22:
case 0x32:
case 0x42:
case 0x52:
case 0x62:
case 0x72: {
channel[ch].pitch = (channel[ch].pitch & 0x3f00) | val;
break;
}
case 0x03:
case 0x13:
case 0x23:
case 0x33:
case 0x43:
case 0x53:
case 0x63:
case 0x73: {
channel[ch].pitch = ((channel[ch].pitch & 0x00ff) | (val << 8)) & 0x3fff;
break;
}
case 0x04:
case 0x14:
case 0x24:
case 0x34:
case 0x44:
case 0x54:
case 0x64:
case 0x74: {
channel[ch].srcn = val;
break;
}
case 0x05:
case 0x15:
case 0x25:
case 0x35:
case 0x45:
case 0x55:
case 0x65:
case 0x75: {
channel[ch].adsrRates[0] = (val & 0xf) * 2 + 1;
channel[ch].adsrRates[1] = ((val & 0x70) >> 4) * 2 + 16;
channel[ch].useGain = (val & 0x80) == 0;
break;
}
case 0x06:
case 0x16:
case 0x26:
case 0x36:
case 0x46:
case 0x56:
case 0x66:
case 0x76: {
channel[ch].adsrRates[2] = val & 0x1f;
channel[ch].sustainLevel = (val & 0xe0) >> 5;
break;
}
case 0x07:
case 0x17:
case 0x27:
case 0x37:
case 0x47:
case 0x57:
case 0x67:
case 0x77: {
channel[ch].directGain = (val & 0x80) == 0;
channel[ch].gainMode = (val & 0x60) >> 5;
channel[ch].adsrRates[3] = val & 0x1f;
channel[ch].gainValue = (val & 0x7f) * 16;
channel[ch].gainSustainLevel = (val & 0xe0) >> 5;
break;
}
case 0x0c: {
masterVolumeL = val;
break;
}
case 0x1c: {
masterVolumeR = val;
break;
}
case 0x2c: {
echoVolumeL = val;
break;
}
case 0x3c: {
echoVolumeR = val;
break;
}
case 0x4c: {
for (int i = 0; i < 8; i++) {
channel[i].keyOn = val & (1 << i);
}
break;
}
case 0x5c: {
for (int i = 0; i < 8; i++) {
channel[i].keyOff = val & (1 << i);
}
break;
}
case 0x6c: {
reset = val & 0x80;
mute = val & 0x40;
echoWrites = (val & 0x20) == 0;
noiseRate = val & 0x1f;
break;
}
case 0x7c: {
val = 0; // any write clears ENDx
break;
}
case 0x0d: {
feedbackVolume = val;
break;
}
case 0x2d: {
for (int i = 0; i < 8; i++) {
channel[i].pitchModulation = val & (1 << i);
}
break;
}
case 0x3d: {
for (int i = 0; i < 8; i++) {
channel[i].useNoise = val & (1 << i);
}
break;
}
case 0x4d: {
for (int i = 0; i < 8; i++) {
channel[i].echoEnable = val & (1 << i);
}
break;
}
case 0x5d: {
dirPage = val << 8;
break;
}
case 0x6d: {
echoBufferAdr = val << 8;
break;
}
case 0x7d: {
echoDelay =
(val & 0xf) * 512; // 2048-byte steps, stereo sample is 4 bytes
break;
}
case 0x0f:
case 0x1f:
case 0x2f:
case 0x3f:
case 0x4f:
case 0x5f:
case 0x6f:
case 0x7f: {
firValues[ch] = val;
break;
}
}
ram[adr] = val;
}
// Helper for 4-point cubic interpolation (Catmull-Rom)
// Provides higher quality resampling compared to linear interpolation.
inline int16_t InterpolateCubic(int16_t p0, int16_t p1, int16_t p2, int16_t p3,
double t) {
double t2 = t * t;
double t3 = t2 * t;
double c0 = p1;
double c1 = 0.5 * (p2 - p0);
double c2 = (p0 - 2.5 * p1 + 2.0 * p2 - 0.5 * p3);
double c3 = 0.5 * (-p0 + 3.0 * p1 - 3.0 * p2 + p3);
double result = c0 + c1 * t + c2 * t2 + c3 * t3;
// Clamp to 16-bit range
return result > 32767.0
? 32767
: (result < -32768.0 ? -32768 : static_cast<int16_t>(result));
}
// Helper for cosine interpolation
inline int16_t InterpolateCosine(int16_t s0, int16_t s1, double mu) {
const double mu2 = (1.0 - cos(mu * 3.14159265358979323846)) / 2.0;
return static_cast<int16_t>(s0 * (1.0 - mu2) + s1 * mu2);
}
// Helper for linear interpolation
inline int16_t InterpolateLinear(int16_t s0, int16_t s1, double frac) {
return static_cast<int16_t>(s0 + frac * (s1 - s0));
}
// Helper for Hermite interpolation (used by bsnes/Snes9x)
// Provides smoother interpolation than linear with minimal overhead
inline int16_t InterpolateHermite(int16_t p0, int16_t p1, int16_t p2, int16_t p3, double t) {
const double c0 = p1;
const double c1 = (p2 - p0) * 0.5;
const double c2 = p0 - 2.5 * p1 + 2.0 * p2 - 0.5 * p3;
const double c3 = (p3 - p0) * 0.5 + 1.5 * (p1 - p2);
const double result = c0 + c1 * t + c2 * t * t + c3 * t * t * t;
// Clamp to 16-bit range
return result > 32767.0 ? 32767
: (result < -32768.0 ? -32768
: static_cast<int16_t>(result));
}
void Dsp::GetSamples(int16_t* sample_data, int samples_per_frame,
bool pal_timing) {
// Resample from native samples-per-frame (NTSC: ~534, PAL: ~641)
const double native_per_frame = pal_timing ? 641.0 : 534.0;
const double step = native_per_frame / static_cast<double>(samples_per_frame);
// Start reading one native frame behind the frame boundary
double location = static_cast<double>((lastFrameBoundary + 0x400) & 0x3ff);
location -= native_per_frame;
// Ensure location is within valid range
while (location < 0) location += 0x400;
for (int i = 0; i < samples_per_frame; i++) {
const int idx = static_cast<int>(location) & 0x3ff;
const double frac = location - static_cast<int>(location);
switch (interpolation_type) {
case InterpolationType::Linear: {
const int next_idx = (idx + 1) & 0x3ff;
// Linear interpolation for left channel
const int16_t s0_l = sampleBuffer[(idx * 2) + 0];
const int16_t s1_l = sampleBuffer[(next_idx * 2) + 0];
sample_data[(i * 2) + 0] = static_cast<int16_t>(
s0_l + frac * (s1_l - s0_l));
// Linear interpolation for right channel
const int16_t s0_r = sampleBuffer[(idx * 2) + 1];
const int16_t s1_r = sampleBuffer[(next_idx * 2) + 1];
sample_data[(i * 2) + 1] = static_cast<int16_t>(
s0_r + frac * (s1_r - s0_r));
break;
}
case InterpolationType::Hermite: {
const int idx0 = (idx - 1 + 0x400) & 0x3ff;
const int idx1 = idx & 0x3ff;
const int idx2 = (idx + 1) & 0x3ff;
const int idx3 = (idx + 2) & 0x3ff;
// Left channel
const int16_t p0_l = sampleBuffer[(idx0 * 2) + 0];
const int16_t p1_l = sampleBuffer[(idx1 * 2) + 0];
const int16_t p2_l = sampleBuffer[(idx2 * 2) + 0];
const int16_t p3_l = sampleBuffer[(idx3 * 2) + 0];
sample_data[(i * 2) + 0] = InterpolateHermite(p0_l, p1_l, p2_l, p3_l, frac);
// Right channel
const int16_t p0_r = sampleBuffer[(idx0 * 2) + 1];
const int16_t p1_r = sampleBuffer[(idx1 * 2) + 1];
const int16_t p2_r = sampleBuffer[(idx2 * 2) + 1];
const int16_t p3_r = sampleBuffer[(idx3 * 2) + 1];
sample_data[(i * 2) + 1] = InterpolateHermite(p0_r, p1_r, p2_r, p3_r, frac);
break;
}
case InterpolationType::Cosine: {
const int next_idx = (idx + 1) & 0x3ff;
const int16_t s0_l = sampleBuffer[(idx * 2) + 0];
const int16_t s1_l = sampleBuffer[(next_idx * 2) + 0];
sample_data[(i * 2) + 0] = InterpolateCosine(s0_l, s1_l, frac);
const int16_t s0_r = sampleBuffer[(idx * 2) + 1];
const int16_t s1_r = sampleBuffer[(next_idx * 2) + 1];
sample_data[(i * 2) + 1] = InterpolateCosine(s0_r, s1_r, frac);
break;
}
case InterpolationType::Cubic: {
const int idx0 = (idx - 1 + 0x400) & 0x3ff;
const int idx1 = idx & 0x3ff;
const int idx2 = (idx + 1) & 0x3ff;
const int idx3 = (idx + 2) & 0x3ff;
// Left channel
const int16_t p0_l = sampleBuffer[(idx0 * 2) + 0];
const int16_t p1_l = sampleBuffer[(idx1 * 2) + 0];
const int16_t p2_l = sampleBuffer[(idx2 * 2) + 0];
const int16_t p3_l = sampleBuffer[(idx3 * 2) + 0];
sample_data[(i * 2) + 0] =
InterpolateCubic(p0_l, p1_l, p2_l, p3_l, frac);
// Right channel
const int16_t p0_r = sampleBuffer[(idx0 * 2) + 1];
const int16_t p1_r = sampleBuffer[(idx1 * 2) + 1];
const int16_t p2_r = sampleBuffer[(idx2 * 2) + 1];
const int16_t p3_r = sampleBuffer[(idx3 * 2) + 1];
sample_data[(i * 2) + 1] =
InterpolateCubic(p0_r, p1_r, p2_r, p3_r, frac);
break;
}
}
location += step;
}
}
int Dsp::CopyNativeFrame(int16_t* sample_data, bool pal_timing) {
if (sample_data == nullptr) {
return 0;
}
const int native_per_frame = pal_timing ? 641 : 534;
const int total_samples = native_per_frame * 2;
int start_index = static_cast<int>(
(lastFrameBoundary + 0x400 - native_per_frame) & 0x3ff);
for (int i = 0; i < native_per_frame; ++i) {
const int idx = (start_index + i) & 0x3ff;
sample_data[(i * 2) + 0] = sampleBuffer[(idx * 2) + 0];
sample_data[(i * 2) + 1] = sampleBuffer[(idx * 2) + 1];
}
return total_samples / 2; // return frames per channel
}
} // namespace emu
} // namespace yaze