Files
yaze/test/integration/asar_rom_test.cc
2025-11-21 21:35:50 -05:00

424 lines
11 KiB
C++

// Must define before any ImGui includes
#ifndef IMGUI_DEFINE_MATH_OPERATORS
#define IMGUI_DEFINE_MATH_OPERATORS
#endif
#include <gtest/gtest.h>
#include <filesystem>
#include <fstream>
#include "app/rom.h"
#include "core/asar_wrapper.h"
#include "test_utils.h"
#include "testing.h"
namespace yaze {
namespace test {
namespace integration {
/**
* @brief Test class for Asar integration with real ROM files
* These tests are only run when ROM testing is enabled
*/
class AsarRomIntegrationTest : public RomDependentTest {
protected:
void SetUp() override {
RomDependentTest::SetUp();
wrapper_ = std::make_unique<core::AsarWrapper>();
ASSERT_OK(wrapper_->Initialize());
// Create test directory
test_dir_ = std::filesystem::temp_directory_path() / "yaze_asar_rom_test";
std::filesystem::create_directories(test_dir_);
CreateTestPatches();
}
void TearDown() override {
try {
if (std::filesystem::exists(test_dir_)) {
std::filesystem::remove_all(test_dir_);
}
} catch (const std::exception& e) {
// Ignore cleanup errors
}
}
void CreateTestPatches() {
// Create a simple test patch
simple_patch_path_ = test_dir_ / "simple_test.asm";
std::ofstream simple_file(simple_patch_path_);
simple_file << R"(
; Simple Asar patch for real ROM testing
org $008000
yaze_test_entry:
sei ; Disable interrupts
clc ; Clear carry
xce ; Switch to native mode
rep #$30 ; 16-bit A and X/Y
ldx #$1FFF
txs ; Set stack pointer
; Test data writing
lda #$CAFE
sta $7E0000 ; Write test value to RAM
; Set a custom value that we can verify
lda #$BEEF
sta $7E0002
sep #$20 ; 8-bit A
lda #$42
sta $7E0004 ; Another test value
rep #$20 ; Back to 16-bit A
rts
; Subroutine for testing
yaze_test_subroutine:
pha
lda #$1337
sta $7E0010
pla
rts
; Data for testing
yaze_test_data:
db "YAZE", $00
dw $1234, $5678, $9ABC, $DEF0
)";
simple_file.close();
// Create a patch that modifies game behavior
gameplay_patch_path_ = test_dir_ / "gameplay_test.asm";
std::ofstream gameplay_file(gameplay_patch_path_);
gameplay_file << R"(
; Gameplay modification patch for testing
; This modifies Link's starting health and magic
; Increase Link's maximum health
org $7EF36C
db $A0 ; 160/8 = 20 hearts (was usually $60 = 12 hearts)
; Increase Link's maximum magic
org $7EF36E
db $80 ; Full magic meter
; Custom routine for health restoration
org $00C000
yaze_health_restore:
sep #$20 ; 8-bit A
lda #$A0 ; Full health
sta $7EF36C ; Current health
lda #$80 ; Full magic
sta $7EF36E ; Current magic
rep #$20 ; 16-bit A
rtl
; Hook into the game's main loop (example address)
org $008012
jsl yaze_health_restore
nop ; Pad if needed
)";
gameplay_file.close();
// Create a symbol extraction test patch
symbols_patch_path_ = test_dir_ / "symbols_test.asm";
std::ofstream symbols_file(symbols_patch_path_);
symbols_file << R"(
; Comprehensive symbol test for Asar integration
; Define some constants
!player_x = $7E0020
!player_y = $7E0022
!player_health = $7EF36C
!player_magic = $7EF36E
; Main code section
org $008000
main_routine:
jsr init_player
jsr game_loop
rts
; Player initialization
init_player:
rep #$30 ; 16-bit A and X/Y
; Set initial position
lda #$0080
sta !player_x
lda #$0070
sta !player_y
; Set initial stats
sep #$20 ; 8-bit A
lda #$A0
sta !player_health
lda #$80
sta !player_magic
rep #$30 ; Back to 16-bit
rts
; Main game loop
game_loop:
jsr update_player
jsr update_enemies
jsr update_graphics
rts
; Player update routine
update_player:
; Read controller input
sep #$20
lda $4016 ; Controller 1
; Process movement
bit #$08 ; Up
beq +
dec !player_y
+ bit #$04 ; Down
beq +
inc !player_y
+ bit #$02 ; Left
beq +
dec !player_x
+ bit #$01 ; Right
beq +
inc !player_x
+
rep #$20
rts
; Enemy update routine
update_enemies:
; Placeholder for enemy logic
rts
; Graphics update routine
update_graphics:
; Placeholder for graphics updates
rts
; Utility functions
multiply_by_two:
asl a
rts
divide_by_two:
lsr a
rts
; Data tables
enemy_data_table:
dw enemy_goomba, enemy_koopa, enemy_shell
dw $0000 ; End marker
enemy_goomba:
dw $0010, $0020, $0001 ; x, y, type
enemy_koopa:
dw $0050, $0030, $0002 ; x, y, type
enemy_shell:
dw $0080, $0040, $0003 ; x, y, type
)";
symbols_file.close();
}
std::unique_ptr<core::AsarWrapper> wrapper_;
std::filesystem::path test_dir_;
std::filesystem::path simple_patch_path_;
std::filesystem::path gameplay_patch_path_;
std::filesystem::path symbols_patch_path_;
};
TEST_F(AsarRomIntegrationTest, SimplePatchOnRealRom) {
// Make a copy of the ROM for testing
std::vector<uint8_t> rom_copy = test_rom_;
size_t original_size = rom_copy.size();
// Apply simple patch
auto patch_result =
wrapper_->ApplyPatch(simple_patch_path_.string(), rom_copy);
ASSERT_OK(patch_result.status());
const auto& result = patch_result.value();
EXPECT_TRUE(result.success)
<< "Patch failed: " << testing::PrintToString(result.errors);
// Verify ROM was modified
EXPECT_NE(rom_copy, test_rom_); // Should be different
EXPECT_GE(rom_copy.size(), original_size); // Size may have grown
// Check for expected symbols
bool found_entry = false;
bool found_subroutine = false;
for (const auto& symbol : result.symbols) {
if (symbol.name == "yaze_test_entry") {
found_entry = true;
EXPECT_EQ(symbol.address, 0x008000);
} else if (symbol.name == "yaze_test_subroutine") {
found_subroutine = true;
}
}
EXPECT_TRUE(found_entry) << "yaze_test_entry symbol not found";
EXPECT_TRUE(found_subroutine) << "yaze_test_subroutine symbol not found";
}
TEST_F(AsarRomIntegrationTest, SymbolExtractionFromRealRom) {
// Extract symbols from comprehensive test
auto symbols_result = wrapper_->ExtractSymbols(symbols_patch_path_.string());
ASSERT_OK(symbols_result.status());
const auto& symbols = symbols_result.value();
EXPECT_GT(symbols.size(), 0);
// Check for specific symbols we expect
std::vector<std::string> expected_symbols = {
"main_routine", "init_player", "game_loop", "update_player",
"update_enemies", "update_graphics", "multiply_by_two", "divide_by_two"};
for (const auto& expected_symbol : expected_symbols) {
bool found = false;
for (const auto& symbol : symbols) {
if (symbol.name == expected_symbol) {
found = true;
EXPECT_GT(symbol.address, 0)
<< "Symbol " << expected_symbol << " has invalid address";
break;
}
}
EXPECT_TRUE(found) << "Expected symbol not found: " << expected_symbol;
}
// Test symbol lookup functionality
auto symbol_table = wrapper_->GetSymbolTable();
EXPECT_GT(symbol_table.size(), 0);
auto main_symbol = wrapper_->FindSymbol("main_routine");
EXPECT_TRUE(main_symbol.has_value());
if (main_symbol) {
EXPECT_EQ(main_symbol->name, "main_routine");
EXPECT_EQ(main_symbol->address, 0x008000);
}
}
TEST_F(AsarRomIntegrationTest, GameplayModificationPatch) {
// Make a copy of the ROM
std::vector<uint8_t> rom_copy = test_rom_;
// Apply gameplay modification patch
auto patch_result =
wrapper_->ApplyPatch(gameplay_patch_path_.string(), rom_copy);
ASSERT_OK(patch_result.status());
const auto& result = patch_result.value();
EXPECT_TRUE(result.success)
<< "Gameplay patch failed: " << testing::PrintToString(result.errors);
// Verify specific memory locations were modified
// Note: These addresses are based on the patch content
// Check health modification at 0x7EF36C -> ROM offset would need calculation
// For a proper test, we'd need to convert SNES addresses to ROM offsets
// Check if custom routine was inserted at 0xC000 -> ROM offset 0x18000 (in
// LoROM)
const uint32_t rom_offset = 0x18000; // Bank $00:C000 in LoROM
if (rom_offset < rom_copy.size()) {
// Check for SEP #$20 instruction (0xE2 0x20)
EXPECT_EQ(rom_copy[rom_offset], 0xE2);
EXPECT_EQ(rom_copy[rom_offset + 1], 0x20);
}
}
TEST_F(AsarRomIntegrationTest, LargeRomPatchingStability) {
// Test with the actual ROM which might be larger
std::vector<uint8_t> rom_copy = test_rom_;
size_t original_size = rom_copy.size();
// Apply multiple patches in sequence
auto result1 = wrapper_->ApplyPatch(simple_patch_path_.string(), rom_copy);
ASSERT_OK(result1.status());
EXPECT_TRUE(result1->success);
// Reset and apply another patch
wrapper_->Reset();
auto result2 = wrapper_->ApplyPatch(symbols_patch_path_.string(), rom_copy);
ASSERT_OK(result2.status());
EXPECT_TRUE(result2->success);
// Verify stability
EXPECT_GE(rom_copy.size(), original_size);
EXPECT_GT(result2->symbols.size(), 0);
}
TEST_F(AsarRomIntegrationTest, ErrorHandlingWithRealRom) {
// Create an intentionally broken patch
auto broken_patch_path = test_dir_ / "broken_test.asm";
std::ofstream broken_file(broken_patch_path);
broken_file << R"(
; Broken patch for error testing
org $008000
broken_routine:
invalid_opcode ; This will cause an error
lda unknown_symbol ; This will cause an error
sta $FFFFFF ; Invalid address
)";
broken_file.close();
std::vector<uint8_t> rom_copy = test_rom_;
auto patch_result =
wrapper_->ApplyPatch(broken_patch_path.string(), rom_copy);
// Should fail with proper error messages
EXPECT_FALSE(patch_result.ok());
EXPECT_THAT(patch_result.status().message(),
testing::AnyOf(testing::HasSubstr("invalid"),
testing::HasSubstr("unknown"),
testing::HasSubstr("error")));
}
TEST_F(AsarRomIntegrationTest, PatchValidationWorkflow) {
// Test the complete workflow: validate -> patch -> verify
// Step 1: Validate assembly
auto validation_result =
wrapper_->ValidateAssembly(simple_patch_path_.string());
EXPECT_OK(validation_result);
// Step 2: Apply patch
std::vector<uint8_t> rom_copy = test_rom_;
auto patch_result =
wrapper_->ApplyPatch(simple_patch_path_.string(), rom_copy);
ASSERT_OK(patch_result.status());
EXPECT_TRUE(patch_result->success);
// Step 3: Verify results
EXPECT_GT(patch_result->symbols.size(), 0);
EXPECT_GT(patch_result->rom_size, 0);
// Step 4: Test symbol operations
auto entry_symbol = wrapper_->FindSymbol("yaze_test_entry");
EXPECT_TRUE(entry_symbol.has_value());
if (entry_symbol) {
auto symbols_at_address =
wrapper_->GetSymbolsAtAddress(entry_symbol->address);
EXPECT_GT(symbols_at_address.size(), 0);
}
}
} // namespace integration
} // namespace test
} // namespace yaze