Files
yaze/src/app/emu/memory/memory.h
2023-12-03 06:16:17 -05:00

393 lines
12 KiB
C++

#ifndef MEM_H
#define MEM_H
#include <cstdint>
#include <iostream>
#include <string>
#include <vector>
#include "app/emu/debug/log.h"
// LoROM (Mode 20):
// Banks Offset Purpose
// 00-3F 0000-1FFF LowRAM (shadowed from 7E)
// 2000-2FFF PPU1, APU
// 3000-3FFF SFX, DSP, etc.
// 4000-41FF Controller
// 4200-5FFF PPU2, DMA, etc.
// 6000-7FFF Expansion RAM (reserved)
// 8000-FFFF 32k ROM Chunk
// 40-7C 0000-7FFF 32k ROM Chunk
// 8000-FFFF 32k ROM Chunk
// 7D 0000-FFFF SRAM
// 7E 0000-1FFF LowRAM
// 2000-FFFF System RAM
// 7F 0000-FFFF System RAM
namespace yaze {
namespace app {
namespace emu {
enum ROMSpeed { SLOW_ROM = 0x00, FAST_ROM = 0x07 };
enum BankSize { LOW_ROM = 0x00, HI_ROM = 0x01 };
enum ROMType {
ROM_DEFAULT = 0x00,
ROM_RAM = 0x01,
ROM_SRAM = 0x02,
ROM_DSP1 = 0x03,
ROM_DSP1_RAM = 0x04,
ROM_DSP1_SRAM = 0x05,
FX = 0x06
};
enum ROMSize {
SIZE_2_MBIT = 0x08,
SIZE_4_MBIT = 0x09,
SIZE_8_MBIT = 0x0A,
SIZE_16_MBIT = 0x0B,
SIZE_32_MBIT = 0x0C
};
enum SRAMSize {
NO_SRAM = 0x00,
SRAM_16_KBIT = 0x01,
SRAM_32_KBIT = 0x02,
SRAM_64_KBIT = 0x03
};
enum CountryCode {
JAPAN = 0x00,
USA = 0x01,
EUROPE_OCEANIA_ASIA = 0x02,
// ... and other countries
};
enum License {
INVALID = 0,
NINTENDO = 1,
ZAMUSE = 5,
CAPCOM = 8,
// ... and other licenses
};
class ROMInfo {
public:
std::string title;
ROMSpeed romSpeed;
BankSize bankSize;
ROMType romType;
ROMSize romSize;
SRAMSize sramSize;
CountryCode countryCode;
License license;
uint8_t version;
uint16_t checksumComplement;
uint16_t checksum;
uint16_t nmiVblVector;
uint16_t resetVector;
};
class Observer {
public:
virtual ~Observer() = default;
virtual void Notify(uint32_t address, uint8_t data) = 0;
};
constexpr uint32_t kROMStart = 0x008000;
constexpr uint32_t kROMSize = 0x200000;
constexpr uint32_t kRAMStart = 0x7E0000;
constexpr uint32_t kRAMSize = 0x20000;
constexpr uint32_t kVRAMStart = 0x210000;
constexpr uint32_t kVRAMSize = 0x10000;
constexpr uint32_t kOAMStart = 0x218000;
constexpr uint32_t kOAMSize = 0x220;
// memory.h
class Memory {
public:
virtual ~Memory() = default;
virtual uint8_t ReadByte(uint32_t address) const = 0;
virtual uint16_t ReadWord(uint32_t address) const = 0;
virtual uint32_t ReadWordLong(uint32_t address) const = 0;
virtual std::vector<uint8_t> ReadByteVector(uint32_t address,
uint16_t length) const = 0;
virtual void WriteByte(uint32_t address, uint8_t value) = 0;
virtual void WriteWord(uint32_t address, uint16_t value) = 0;
virtual void PushByte(uint8_t value) = 0;
virtual uint8_t PopByte() = 0;
virtual void PushWord(uint16_t value) = 0;
virtual uint16_t PopWord() = 0;
virtual void PushLong(uint32_t value) = 0;
virtual uint32_t PopLong() = 0;
virtual uint16_t SP() const = 0;
virtual void SetSP(uint16_t value) = 0;
virtual void ClearMemory() = 0;
virtual uint8_t operator[](int i) const = 0;
virtual uint8_t at(int i) const = 0;
};
enum class MemoryMapping { SNES_LOROM = 0, PC_ADDRESS = 1 };
class MemoryImpl : public Memory, public Loggable {
public:
void Initialize(const std::vector<uint8_t>& romData,
MemoryMapping mapping = MemoryMapping::SNES_LOROM) {
mapping_ = mapping;
if (mapping == MemoryMapping::PC_ADDRESS) {
memory_.resize(romData.size());
std::copy(romData.begin(), romData.end(), memory_.begin());
return;
}
memory_.resize(0x1000000); // 16 MB
const size_t ROM_CHUNK_SIZE = 0x8000; // 32 KB
const size_t SRAM_SIZE = 0x10000; // 64 KB
const size_t SYSTEM_RAM_SIZE = 0x20000; // 128 KB
const size_t EXPANSION_RAM_SIZE = 0x2000; // 8 KB
const size_t HARDWARE_REGISTERS_SIZE = 0x4000; // 16 KB
// Clear memory
std::fill(memory_.begin(), memory_.end(), 0);
// Load ROM data into memory based on LoROM mapping
size_t romSize = romData.size();
size_t romAddress = 0;
for (size_t bank = 0x00; bank <= 0x3F; ++bank) {
for (size_t offset = 0x8000; offset <= 0xFFFF; offset += ROM_CHUNK_SIZE) {
if (romAddress < romSize) {
std::copy(romData.begin() + romAddress,
romData.begin() + romAddress + ROM_CHUNK_SIZE,
memory_.begin() + (bank << 16) + offset);
romAddress += ROM_CHUNK_SIZE;
}
}
}
// Initialize SRAM at banks 0x7D and 0xFD
std::fill(memory_.begin() + (0x7D << 16), memory_.begin() + (0x7E << 16),
0);
std::fill(memory_.begin() + (0xFD << 16), memory_.begin() + (0xFE << 16),
0);
// Initialize System RAM at banks 0x7E and 0x7F
std::fill(memory_.begin() + (0x7E << 16),
memory_.begin() + (0x7E << 16) + SYSTEM_RAM_SIZE, 0);
// Initialize Shadow RAM at banks 0x00-0x3F and 0x80-0xBF
for (size_t bank = 0x00; bank <= 0xBF; bank += 0x80) {
std::fill(memory_.begin() + (bank << 16),
memory_.begin() + (bank << 16) + 0x2000, 0);
}
// Initialize Hardware Registers at banks 0x00-0x3F and 0x80-0xBF
for (size_t bank = 0x00; bank <= 0xBF; bank += 0x80) {
std::fill(
memory_.begin() + (bank << 16) + 0x2000,
memory_.begin() + (bank << 16) + 0x2000 + HARDWARE_REGISTERS_SIZE, 0);
}
// Initialize Expansion RAM at banks 0x00-0x3F and 0x80-0xBF
for (size_t bank = 0x00; bank <= 0xBF; bank += 0x80) {
std::fill(memory_.begin() + (bank << 16) + 0x6000,
memory_.begin() + (bank << 16) + 0x6000 + EXPANSION_RAM_SIZE,
0);
}
// Initialize Reset and NMI Vectors at bank 0xFF
std::fill(memory_.begin() + (0xFF << 16) + 0xFF00,
memory_.begin() + (0xFF << 16) + 0xFFFF + 1, 0);
// Copy data into rom_ vector
rom_.resize(kROMSize);
std::copy(memory_.begin() + kROMStart,
memory_.begin() + kROMStart + kROMSize, rom_.begin());
// Copy data into ram_ vector
ram_.resize(kRAMSize);
std::copy(memory_.begin() + kRAMStart,
memory_.begin() + kRAMStart + kRAMSize, ram_.begin());
// Copy data into vram_ vector
vram_.resize(kVRAMSize);
std::copy(memory_.begin() + kVRAMStart,
memory_.begin() + kVRAMStart + kVRAMSize, vram_.begin());
// Copy data into oam_ vector
oam_.resize(kOAMSize);
std::copy(memory_.begin() + kOAMStart,
memory_.begin() + kOAMStart + kOAMSize, oam_.begin());
}
uint8_t ReadByte(uint32_t address) const override {
uint32_t mapped_address = GetMappedAddress(address);
NotifyObservers(mapped_address, /*data=*/0);
return memory_.at(mapped_address);
}
uint16_t ReadWord(uint32_t address) const override {
uint32_t mapped_address = GetMappedAddress(address);
NotifyObservers(mapped_address, /*data=*/0);
return static_cast<uint16_t>(memory_.at(mapped_address)) |
(static_cast<uint16_t>(memory_.at(mapped_address + 1)) << 8);
}
uint32_t ReadWordLong(uint32_t address) const override {
uint32_t mapped_address = GetMappedAddress(address);
NotifyObservers(mapped_address, /*data=*/0);
return static_cast<uint32_t>(memory_.at(mapped_address)) |
(static_cast<uint32_t>(memory_.at(mapped_address + 1)) << 8) |
(static_cast<uint32_t>(memory_.at(mapped_address + 2)) << 16);
}
std::vector<uint8_t> ReadByteVector(uint32_t address,
uint16_t length) const override {
uint32_t mapped_address = GetMappedAddress(address);
NotifyObservers(mapped_address, /*data=*/0);
return std::vector<uint8_t>(memory_.begin() + mapped_address,
memory_.begin() + mapped_address + length);
}
void WriteByte(uint32_t address, uint8_t value) override {
uint32_t mapped_address = GetMappedAddress(address);
memory_[mapped_address] = value;
}
void WriteWord(uint32_t address, uint16_t value) override {
uint32_t mapped_address = GetMappedAddress(address);
memory_.at(mapped_address) = value & 0xFF;
memory_.at(mapped_address + 1) = (value >> 8) & 0xFF;
}
// Stack operations
void PushByte(uint8_t value) override {
if (SP_ > 0x0100) {
memory_.at(SP_--) = value;
} else {
// Handle stack underflow
std::cout << "Stack underflow!" << std::endl;
throw std::runtime_error("Stack underflow!");
}
}
uint8_t PopByte() override {
if (SP_ < 0x1FF) {
return memory_.at(++SP_);
} else {
// Handle stack overflow
std::cout << "Stack overflow!" << std::endl;
throw std::runtime_error("Stack overflow!");
}
}
void PushWord(uint16_t value) override {
PushByte(value >> 8);
PushByte(value & 0xFF);
}
uint16_t PopWord() override {
uint8_t low = PopByte();
uint8_t high = PopByte();
return (static_cast<uint16_t>(high) << 8) | low;
}
void PushLong(uint32_t value) override {
PushByte(value >> 16);
PushByte(value >> 8);
PushByte(value & 0xFF);
}
uint32_t PopLong() override {
uint8_t low = PopByte();
uint8_t mid = PopByte();
uint8_t high = PopByte();
return (static_cast<uint32_t>(high) << 16) |
(static_cast<uint32_t>(mid) << 8) | low;
}
void AddObserver(Observer* observer) { observers_.push_back(observer); }
// Stack Pointer access.
uint16_t SP() const override { return SP_; }
void SetSP(uint16_t value) override { SP_ = value; }
void ClearMemory() override { std::fill(memory_.begin(), memory_.end(), 0); }
uint8_t at(int i) const override { return memory_[i]; }
uint8_t operator[](int i) const override {
if (i > memory_.size()) {
std::cout << i << " out of bounds \n";
return memory_[0];
}
return memory_[i];
}
auto size() const { return memory_.size(); }
auto begin() const { return memory_.begin(); }
auto end() const { return memory_.end(); }
auto data() const { return memory_.data(); }
// Define memory regions
std::vector<uint8_t> rom_;
std::vector<uint8_t> ram_;
std::vector<uint8_t> vram_;
std::vector<uint8_t> oam_;
private:
uint32_t GetMappedAddress(uint32_t address) const {
uint32_t bank = address >> 16;
uint32_t offset = address & 0xFFFF;
if (mapping_ == MemoryMapping::PC_ADDRESS) {
return address;
}
if (bank <= 0x3F) {
if (offset <= 0x1FFF) {
return offset; // Shadow RAM
} else if (offset <= 0x5FFF) {
return offset - 0x2000 + 0x2000; // Hardware Registers
} else if (offset <= 0x7FFF) {
return offset - 0x6000 + 0x6000; // Expansion RAM
} else {
// Return lorom mapping
return (bank << 16) + (offset - 0x8000) + 0x8000; // ROM
}
} else if (bank == 0x7D) {
return offset + 0x7D0000; // SRAM
} else if (bank == 0x7E || bank == 0x7F) {
return offset + 0x7E0000; // System RAM
} else if (bank >= 0x80) {
// Handle HiROM and mirrored areas
}
return address; // Return the original address if no mapping is defined
}
void NotifyObservers(uint32_t address, uint8_t data) const {
for (auto observer : observers_) {
observer->Notify(address, data);
}
}
std::vector<Observer*> observers_;
// Memory (64KB)
std::vector<uint8_t> memory_;
// Stack Pointer
uint16_t SP_ = 0x01FF;
MemoryMapping mapping_ = MemoryMapping::SNES_LOROM;
};
void DrawSnesMemoryMapping(const MemoryImpl& memory);
} // namespace emu
} // namespace app
} // namespace yaze
#endif // MEM_H