Files
yaze/test/emu/audio/apu_test.cc
scawful 3734884ba3 Refactor Snes class and enhance Apu functionality
- Updated Snes constructor to initialize CPU callbacks directly, improving readability and maintainability.
- Removed unnecessary CpuCallbacks parameter from Cpu constructor, streamlining the class design.
- Added new methods in Apu for retrieving cycles, status, control, and handling DMA transfers, enhancing audio processing capabilities.
- Introduced unit tests for Apu to validate initialization, sample generation, and handshake timing, ensuring robust audio functionality.
2025-09-24 12:51:29 -04:00

134 lines
3.4 KiB
C++

#include "app/emu/audio/apu.h"
#include "app/emu/memory/memory.h"
#include <gmock/gmock-nice-strict.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
namespace yaze {
namespace test {
using testing::_;
using testing::Return;
using yaze::emu::Apu;
using yaze::emu::MemoryImpl;
class ApuTest : public ::testing::Test {
protected:
void SetUp() override {
memory_ = std::make_unique<MemoryImpl>();
apu_ = std::make_unique<Apu>(*memory_);
apu_->Init();
}
std::unique_ptr<MemoryImpl> memory_;
std::unique_ptr<Apu> apu_;
};
// Test the IPL ROM handshake sequence timing
TEST_F(ApuTest, IplRomHandshakeTiming) {
// 1. Initial state check
EXPECT_EQ(apu_->Read(0x00) & 0x80, 0); // Ready bit should be clear
// 2. Start handshake
apu_->Write(0x00, 0x80); // Set control register bit 7
// 3. Wait for APU ready signal with cycle counting
int cycles = 0;
const int max_cycles = 1000; // Maximum expected cycles for handshake
while (!(apu_->Read(0x00) & 0x80) && cycles < max_cycles) {
apu_->RunCycles(1);
cycles++;
}
// 4. Verify timing constraints
EXPECT_LT(cycles, max_cycles); // Should complete within max cycles
EXPECT_GT(cycles, 0); // Should take some cycles
EXPECT_TRUE(apu_->Read(0x00) & 0x80); // Ready bit should be set
// 5. Verify handshake completion
EXPECT_EQ(apu_->GetStatus() & 0x80, 0x80); // Ready bit in status register
}
// Test APU initialization sequence
TEST_F(ApuTest, ApuInitialization) {
// 1. Check initial state
EXPECT_EQ(apu_->GetStatus(), 0x00);
EXPECT_EQ(apu_->GetControl(), 0x00);
// 2. Initialize APU
apu_->Init();
// 3. Verify initialization
EXPECT_EQ(apu_->GetStatus(), 0x00);
EXPECT_EQ(apu_->GetControl(), 0x00);
// 4. Check DSP registers are initialized
for (int i = 0; i < 128; i++) {
EXPECT_EQ(apu_->Read(0x00 + i), 0x00);
}
}
// Test sample generation and timing
TEST_F(ApuTest, SampleGenerationTiming) {
// 1. Generate samples
const int sample_count = 1024;
std::vector<int16_t> samples(sample_count);
// 2. Measure timing
uint64_t start_cycles = apu_->GetCycles();
apu_->GetSamples(samples.data(), sample_count, false);
uint64_t end_cycles = apu_->GetCycles();
// 3. Verify timing
EXPECT_GT(end_cycles - start_cycles, 0);
// 4. Verify samples
bool has_non_zero = false;
for (int i = 0; i < sample_count; ++i) {
if (samples[i] != 0) {
has_non_zero = true;
break;
}
}
EXPECT_TRUE(has_non_zero);
}
// Test DSP register access timing
TEST_F(ApuTest, DspRegisterAccessTiming) {
// 1. Write to DSP registers
const uint8_t test_value = 0x42;
uint64_t start_cycles = apu_->GetCycles();
apu_->Write(0x00, 0x80); // Set control register
apu_->Write(0x01, test_value); // Write to DSP address
uint64_t end_cycles = apu_->GetCycles();
// 2. Verify timing
EXPECT_GT(end_cycles - start_cycles, 0);
// 3. Verify register access
EXPECT_EQ(apu_->Read(0x01), test_value);
}
// Test DMA transfer timing
TEST_F(ApuTest, DmaTransferTiming) {
// 1. Prepare DMA data
const uint8_t data[] = {0x01, 0x02, 0x03, 0x04};
// 2. Measure DMA timing
uint64_t start_cycles = apu_->GetCycles();
apu_->WriteDma(0x00, data, sizeof(data));
uint64_t end_cycles = apu_->GetCycles();
// 3. Verify timing
EXPECT_GT(end_cycles - start_cycles, 0);
// 4. Verify DMA transfer
EXPECT_EQ(apu_->Read(0x00), 0x01);
EXPECT_EQ(apu_->Read(0x01), 0x02);
}
} // namespace test
} // namespace yaze