Files
yaze/src/app/gfx/render/tilemap.cc
scawful fa3da8fc27 fix: apply clang-format to all source files
Fixes formatting violations that were causing CI failures.
Applied clang-format-14 to ensure consistent code formatting
across the codebase.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-20 01:35:33 -05:00

396 lines
14 KiB
C++

#include "app/gfx/render/tilemap.h"
#include <vector>
#include "app/gfx/core/bitmap.h"
#include "app/gfx/debug/performance/performance_profiler.h"
#include "app/gfx/render/atlas_renderer.h"
#include "app/gfx/resource/arena.h"
#include "app/gfx/types/snes_tile.h"
namespace yaze {
namespace gfx {
Tilemap CreateTilemap(IRenderer* renderer, std::vector<uint8_t>& data,
int width, int height, int tile_size, int num_tiles,
SnesPalette& palette) {
Tilemap tilemap;
tilemap.tile_size.x = tile_size;
tilemap.tile_size.y = tile_size;
tilemap.map_size.x = num_tiles;
tilemap.map_size.y = num_tiles;
tilemap.atlas = Bitmap(width, height, 8, data);
tilemap.atlas.SetPalette(palette);
// Queue texture creation directly via Arena
if (tilemap.atlas.is_active() && tilemap.atlas.surface()) {
Arena::Get().QueueTextureCommand(Arena::TextureCommandType::CREATE,
&tilemap.atlas);
}
return tilemap;
}
void UpdateTilemap(IRenderer* renderer, Tilemap& tilemap,
const std::vector<uint8_t>& data) {
tilemap.atlas.set_data(data);
// Queue texture update directly via Arena
if (tilemap.atlas.texture() && tilemap.atlas.is_active() &&
tilemap.atlas.surface()) {
Arena::Get().QueueTextureCommand(Arena::TextureCommandType::UPDATE,
&tilemap.atlas);
} else if (!tilemap.atlas.texture() && tilemap.atlas.is_active() &&
tilemap.atlas.surface()) {
// Create if doesn't exist yet
Arena::Get().QueueTextureCommand(Arena::TextureCommandType::CREATE,
&tilemap.atlas);
}
}
void RenderTile(IRenderer* renderer, Tilemap& tilemap, int tile_id) {
// Validate tilemap state before proceeding
if (!tilemap.atlas.is_active() || tilemap.atlas.vector().empty()) {
return;
}
if (tile_id < 0) {
return;
}
// Get tile data without using problematic tile cache
auto tile_data = GetTilemapData(tilemap, tile_id);
if (tile_data.empty()) {
return;
}
// Note: Tile cache disabled to prevent std::move() related crashes
}
void RenderTile16(IRenderer* renderer, Tilemap& tilemap, int tile_id) {
// Validate tilemap state before proceeding
if (!tilemap.atlas.is_active() || tilemap.atlas.vector().empty()) {
return;
}
if (tile_id < 0) {
return;
}
int tiles_per_row = tilemap.atlas.width() / tilemap.tile_size.x;
if (tiles_per_row <= 0) {
return;
}
int tile_x = (tile_id % tiles_per_row) * tilemap.tile_size.x;
int tile_y = (tile_id / tiles_per_row) * tilemap.tile_size.y;
// Validate tile position
if (tile_x < 0 || tile_x >= tilemap.atlas.width() || tile_y < 0 ||
tile_y >= tilemap.atlas.height()) {
return;
}
// Note: Tile cache disabled to prevent std::move() related crashes
}
void UpdateTile16(IRenderer* renderer, Tilemap& tilemap, int tile_id) {
// Check if tile is cached
Bitmap* cached_tile = tilemap.tile_cache.GetTile(tile_id);
if (cached_tile) {
// Update cached tile data
int tiles_per_row = tilemap.atlas.width() / tilemap.tile_size.x;
int tile_x = (tile_id % tiles_per_row) * tilemap.tile_size.x;
int tile_y = (tile_id / tiles_per_row) * tilemap.tile_size.y;
std::vector<uint8_t> tile_data(tilemap.tile_size.x * tilemap.tile_size.y,
0x00);
int tile_data_offset = 0;
tilemap.atlas.Get16x16Tile(tile_x, tile_y, tile_data, tile_data_offset);
cached_tile->set_data(tile_data);
// Queue texture update directly via Arena
if (cached_tile->texture() && cached_tile->is_active()) {
Arena::Get().QueueTextureCommand(Arena::TextureCommandType::UPDATE,
cached_tile);
}
} else {
// Tile not cached, render it fresh
RenderTile16(renderer, tilemap, tile_id);
}
}
std::vector<uint8_t> FetchTileDataFromGraphicsBuffer(
const std::vector<uint8_t>& data, int tile_id, int sheet_offset) {
const int tile_width = 8;
const int tile_height = 8;
const int buffer_width = 128;
const int sheet_height = 32;
const int tiles_per_row = buffer_width / tile_width;
const int rows_per_sheet = sheet_height / tile_height;
const int tiles_per_sheet = tiles_per_row * rows_per_sheet;
int sheet = (tile_id / tiles_per_sheet) % 4 + sheet_offset;
int position_in_sheet = tile_id % tiles_per_sheet;
int row_in_sheet = position_in_sheet / tiles_per_row;
int column_in_sheet = position_in_sheet % tiles_per_row;
assert(sheet >= sheet_offset && sheet <= sheet_offset + 3);
std::vector<uint8_t> tile_data(tile_width * tile_height);
for (int y = 0; y < tile_height; ++y) {
for (int x = 0; x < tile_width; ++x) {
int src_x = column_in_sheet * tile_width + x;
int src_y = (sheet * sheet_height) + (row_in_sheet * tile_height) + y;
int src_index = (src_y * buffer_width) + src_x;
int dest_index = y * tile_width + x;
tile_data[dest_index] = data[src_index];
}
}
return tile_data;
}
namespace {
void MirrorTileDataVertically(std::vector<uint8_t>& tile_data) {
for (int y = 0; y < 4; ++y) {
for (int x = 0; x < 8; ++x) {
std::swap(tile_data[y * 8 + x], tile_data[(7 - y) * 8 + x]);
}
}
}
void MirrorTileDataHorizontally(std::vector<uint8_t>& tile_data) {
for (int y = 0; y < 8; ++y) {
for (int x = 0; x < 4; ++x) {
std::swap(tile_data[y * 8 + x], tile_data[y * 8 + (7 - x)]);
}
}
}
void ComposeAndPlaceTilePart(Tilemap& tilemap, const std::vector<uint8_t>& data,
const TileInfo& tile_info, int base_x, int base_y,
int sheet_offset) {
std::vector<uint8_t> tile_data =
FetchTileDataFromGraphicsBuffer(data, tile_info.id_, sheet_offset);
if (tile_info.vertical_mirror_) {
MirrorTileDataVertically(tile_data);
}
if (tile_info.horizontal_mirror_) {
MirrorTileDataHorizontally(tile_data);
}
for (int y = 0; y < 8; ++y) {
for (int x = 0; x < 8; ++x) {
int src_index = y * 8 + x;
int dest_x = base_x + x;
int dest_y = base_y + y;
int dest_index = (dest_y * tilemap.atlas.width()) + dest_x;
tilemap.atlas.WriteToPixel(dest_index, tile_data[src_index]);
}
};
}
} // namespace
void ModifyTile16(Tilemap& tilemap, const std::vector<uint8_t>& data,
const TileInfo& top_left, const TileInfo& top_right,
const TileInfo& bottom_left, const TileInfo& bottom_right,
int sheet_offset, int tile_id) {
// Calculate the base position for this Tile16 in the full-size bitmap
int tiles_per_row = tilemap.atlas.width() / tilemap.tile_size.x;
int tile16_row = tile_id / tiles_per_row;
int tile16_column = tile_id % tiles_per_row;
int base_x = tile16_column * tilemap.tile_size.x;
int base_y = tile16_row * tilemap.tile_size.y;
// Compose and place each part of the Tile16
ComposeAndPlaceTilePart(tilemap, data, top_left, base_x, base_y,
sheet_offset);
ComposeAndPlaceTilePart(tilemap, data, top_right, base_x + 8, base_y,
sheet_offset);
ComposeAndPlaceTilePart(tilemap, data, bottom_left, base_x, base_y + 8,
sheet_offset);
ComposeAndPlaceTilePart(tilemap, data, bottom_right, base_x + 8, base_y + 8,
sheet_offset);
tilemap.tile_info[tile_id] = {top_left, top_right, bottom_left, bottom_right};
}
void ComposeTile16(Tilemap& tilemap, const std::vector<uint8_t>& data,
const TileInfo& top_left, const TileInfo& top_right,
const TileInfo& bottom_left, const TileInfo& bottom_right,
int sheet_offset) {
int num_tiles = tilemap.tile_info.size();
int tiles_per_row = tilemap.atlas.width() / tilemap.tile_size.x;
int tile16_row = num_tiles / tiles_per_row;
int tile16_column = num_tiles % tiles_per_row;
int base_x = tile16_column * tilemap.tile_size.x;
int base_y = tile16_row * tilemap.tile_size.y;
ComposeAndPlaceTilePart(tilemap, data, top_left, base_x, base_y,
sheet_offset);
ComposeAndPlaceTilePart(tilemap, data, top_right, base_x + 8, base_y,
sheet_offset);
ComposeAndPlaceTilePart(tilemap, data, bottom_left, base_x, base_y + 8,
sheet_offset);
ComposeAndPlaceTilePart(tilemap, data, bottom_right, base_x + 8, base_y + 8,
sheet_offset);
tilemap.tile_info.push_back({top_left, top_right, bottom_left, bottom_right});
}
std::vector<uint8_t> GetTilemapData(Tilemap& tilemap, int tile_id) {
// Comprehensive validation to prevent crashes
if (tile_id < 0) {
SDL_Log("GetTilemapData: Invalid tile_id %d (negative)", tile_id);
return std::vector<uint8_t>(256, 0); // Return empty 16x16 tile data
}
if (!tilemap.atlas.is_active()) {
SDL_Log("GetTilemapData: Atlas is not active for tile_id %d", tile_id);
return std::vector<uint8_t>(256, 0); // Return empty 16x16 tile data
}
if (tilemap.atlas.vector().empty()) {
SDL_Log("GetTilemapData: Atlas vector is empty for tile_id %d", tile_id);
return std::vector<uint8_t>(256, 0); // Return empty 16x16 tile data
}
if (tilemap.tile_size.x <= 0 || tilemap.tile_size.y <= 0) {
SDL_Log("GetTilemapData: Invalid tile size (%d, %d) for tile_id %d",
tilemap.tile_size.x, tilemap.tile_size.y, tile_id);
return std::vector<uint8_t>(256, 0); // Return empty 16x16 tile data
}
int tile_size = tilemap.tile_size.x;
int width = tilemap.atlas.width();
int height = tilemap.atlas.height();
// Validate atlas dimensions
if (width <= 0 || height <= 0) {
SDL_Log("GetTilemapData: Invalid atlas dimensions (%d, %d) for tile_id %d",
width, height, tile_id);
return std::vector<uint8_t>(tile_size * tile_size, 0);
}
// Calculate maximum possible tile_id based on atlas size
int tiles_per_row = width / tile_size;
int tiles_per_column = height / tile_size;
int max_tile_id = tiles_per_row * tiles_per_column - 1;
if (tile_id > max_tile_id) {
SDL_Log(
"GetTilemapData: tile_id %d exceeds maximum %d (atlas: %dx%d, "
"tile_size: %d)",
tile_id, max_tile_id, width, height, tile_size);
return std::vector<uint8_t>(tile_size * tile_size, 0);
}
std::vector<uint8_t> data(tile_size * tile_size);
for (int ty = 0; ty < tile_size; ty++) {
for (int tx = 0; tx < tile_size; tx++) {
// Calculate atlas position more safely
int tile_row = tile_id / tiles_per_row;
int tile_col = tile_id % tiles_per_row;
int atlas_x = tile_col * tile_size + tx;
int atlas_y = tile_row * tile_size + ty;
int atlas_index = atlas_y * width + atlas_x;
// Comprehensive bounds checking
if (atlas_x >= 0 && atlas_x < width && atlas_y >= 0 && atlas_y < height &&
atlas_index >= 0 &&
atlas_index < static_cast<int>(tilemap.atlas.vector().size())) {
uint8_t value = tilemap.atlas.vector()[atlas_index];
data[ty * tile_size + tx] = value;
} else {
SDL_Log(
"GetTilemapData: Atlas position (%d, %d) or index %d out of bounds "
"(atlas: %dx%d, size: %zu)",
atlas_x, atlas_y, atlas_index, width, height,
tilemap.atlas.vector().size());
data[ty * tile_size + tx] = 0; // Default to 0 if out of bounds
}
}
}
return data;
}
void RenderTilesBatch(IRenderer* renderer, Tilemap& tilemap,
const std::vector<int>& tile_ids,
const std::vector<std::pair<float, float>>& positions,
const std::vector<std::pair<float, float>>& scales) {
if (tile_ids.empty() || positions.empty() ||
tile_ids.size() != positions.size()) {
return;
}
ScopedTimer timer("tilemap_batch_render");
// Initialize atlas renderer if not already done
auto& atlas_renderer = AtlasRenderer::Get();
if (!renderer) {
// For now, we'll use the existing rendering approach
// In a full implementation, we'd get the renderer from the core system
return;
}
// Prepare render commands
std::vector<RenderCommand> render_commands;
render_commands.reserve(tile_ids.size());
for (size_t i = 0; i < tile_ids.size(); ++i) {
int tile_id = tile_ids[i];
float x = positions[i].first;
float y = positions[i].second;
// Get scale factors (default to 1.0 if not provided)
float scale_x = 1.0F;
float scale_y = 1.0F;
if (i < scales.size()) {
scale_x = scales[i].first;
scale_y = scales[i].second;
}
// Try to get tile from cache first
Bitmap* cached_tile = tilemap.tile_cache.GetTile(tile_id);
if (!cached_tile) {
// Create and cache the tile if not found
gfx::Bitmap new_tile = gfx::Bitmap(
tilemap.tile_size.x, tilemap.tile_size.y, 8,
gfx::GetTilemapData(tilemap, tile_id), tilemap.atlas.palette());
tilemap.tile_cache.CacheTile(tile_id, std::move(new_tile));
cached_tile = tilemap.tile_cache.GetTile(tile_id);
if (cached_tile) {
cached_tile->CreateTexture();
}
}
if (cached_tile && cached_tile->is_active()) {
// Queue texture creation if needed
if (!cached_tile->texture() && cached_tile->surface()) {
Arena::Get().QueueTextureCommand(Arena::TextureCommandType::CREATE,
cached_tile);
}
// Add to atlas renderer
int atlas_id = atlas_renderer.AddBitmap(*cached_tile);
if (atlas_id >= 0) {
render_commands.emplace_back(atlas_id, x, y, scale_x, scale_y);
}
}
}
// Render all commands in batch
if (!render_commands.empty()) {
atlas_renderer.RenderBatch(render_commands);
}
}
} // namespace gfx
} // namespace yaze