Add all 65816 instruction tests
Separate CPU class into instructions and addressing files
This commit is contained in:
@@ -51,6 +51,21 @@ set(
|
||||
app/gui/pipeline.cc
|
||||
)
|
||||
|
||||
set(
|
||||
YAZE_APP_EMU_SRC
|
||||
app/emu/emulator.cc
|
||||
app/emu/audio/apu.cc
|
||||
app/emu/audio/spc700.cc
|
||||
app/emu/audio/dsp.cc
|
||||
app/emu/cpu/instructions.cc
|
||||
app/emu/cpu/addressing.cc
|
||||
app/emu/video/ppu.cc
|
||||
app/emu/memory/dma.cc
|
||||
app/emu/memory/memory.cc
|
||||
app/emu/cpu.cc
|
||||
app/emu/snes.cc
|
||||
)
|
||||
|
||||
set(SDL_TARGETS SDL2::SDL2)
|
||||
|
||||
if(WIN32 OR MINGW)
|
||||
|
||||
@@ -2,15 +2,7 @@ add_executable(
|
||||
yaze
|
||||
app/yaze.cc
|
||||
app/rom.cc
|
||||
app/emu/emulator.cc
|
||||
app/emu/audio/apu.cc
|
||||
app/emu/audio/spc700.cc
|
||||
app/emu/audio/dsp.cc
|
||||
app/emu/video/ppu.cc
|
||||
app/emu/memory/dma.cc
|
||||
app/emu/memory/memory.cc
|
||||
app/emu/cpu.cc
|
||||
app/emu/snes.cc
|
||||
${YAZE_APP_EMU_SRC}
|
||||
${YAZE_APP_CORE_SRC}
|
||||
${YAZE_APP_EDITOR_SRC}
|
||||
${YAZE_APP_GFX_SRC}
|
||||
@@ -23,10 +15,10 @@ target_include_directories(
|
||||
yaze PUBLIC
|
||||
lib/
|
||||
app/
|
||||
lib/SDL_mixer/include/
|
||||
${CMAKE_SOURCE_DIR}/src/
|
||||
${PNG_INCLUDE_DIRS}
|
||||
${SDL2_INCLUDE_DIR}
|
||||
lib/SDL_mixer/include/
|
||||
)
|
||||
|
||||
target_link_libraries(
|
||||
|
||||
1488
src/app/emu/cpu.cc
1488
src/app/emu/cpu.cc
File diff suppressed because it is too large
Load Diff
@@ -50,31 +50,46 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
void ExecuteInstruction(uint8_t opcode);
|
||||
void LogInstructions(uint16_t PC, uint8_t opcode, uint16_t operand,
|
||||
bool immediate, bool accumulator_mode);
|
||||
void HandleInterrupts();
|
||||
|
||||
void UpdatePC(uint8_t instruction_length) { PC += instruction_length; }
|
||||
|
||||
uint8_t GetInstructionLength(uint8_t opcode);
|
||||
uint16_t SP() const override { return memory.SP(); }
|
||||
void SetSP(uint16_t value) override { memory.SetSP(value); }
|
||||
void set_next_pc(uint16_t value) { next_pc_ = value; }
|
||||
void UpdateClock(int delta_time) { clock.UpdateClock(delta_time); }
|
||||
|
||||
bool IsBreakpoint(uint32_t address) {
|
||||
return std::find(breakpoints_.begin(), breakpoints_.end(), address) !=
|
||||
breakpoints_.end();
|
||||
}
|
||||
|
||||
void SetBreakpoint(uint32_t address) { breakpoints_.push_back(address); }
|
||||
|
||||
void ClearBreakpoint(uint32_t address) {
|
||||
breakpoints_.erase(
|
||||
std::remove(breakpoints_.begin(), breakpoints_.end(), address),
|
||||
breakpoints_.end());
|
||||
}
|
||||
|
||||
void ClearBreakpoints() {
|
||||
breakpoints_.clear();
|
||||
breakpoints_.shrink_to_fit();
|
||||
}
|
||||
|
||||
auto GetBreakpoints() { return breakpoints_; }
|
||||
|
||||
std::vector<uint32_t> breakpoints_;
|
||||
std::vector<InstructionEntry> instruction_log_;
|
||||
|
||||
// ======================================================
|
||||
// Interrupt Vectors
|
||||
// Emulation mode, e = 1 Native mode, e = 0
|
||||
//
|
||||
// 0xFFFE,FF - IRQ/BRK 0xFFEE,EF - IRQ
|
||||
// 0xFFFC,FD - RESET
|
||||
// 0xFFFA,FB - NMI 0xFFEA,EB - NMI
|
||||
// 0xFFF8,F9 - ABORT 0xFFE8,E9 - ABORT
|
||||
// 0xFFE6,E7 - BRK
|
||||
// 0xFFF4,F5 - COP 0xFFE4,E5 - COP
|
||||
void HandleInterrupts();
|
||||
|
||||
// ======================================================
|
||||
// Registers
|
||||
|
||||
@@ -101,8 +116,17 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
// B #$10 00010000 Break (emulation mode only)
|
||||
|
||||
// Setting flags in the status register
|
||||
bool m() { return GetAccumulatorSize() ? 1 : 0; }
|
||||
int GetAccumulatorSize() const { return status & 0x20; }
|
||||
int GetIndexSize() const { return status & 0x10; }
|
||||
void set_16_bit_mode() {
|
||||
SetAccumulatorSize(true);
|
||||
SetIndexSize(true);
|
||||
}
|
||||
void set_8_bit_mode() {
|
||||
SetAccumulatorSize(false);
|
||||
SetIndexSize(false);
|
||||
}
|
||||
void SetAccumulatorSize(bool set) { SetFlag(0x20, set); }
|
||||
void SetIndexSize(bool set) { SetFlag(0x10, set); }
|
||||
|
||||
@@ -124,6 +148,8 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
bool GetZeroFlag() const { return GetFlag(0x02); }
|
||||
bool GetCarryFlag() const { return GetFlag(0x01); }
|
||||
|
||||
enum class AccessType { Control, Data };
|
||||
|
||||
// ==========================================================================
|
||||
// Addressing Modes
|
||||
|
||||
@@ -134,7 +160,7 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
// Low: First operand byte
|
||||
//
|
||||
// LDA addr
|
||||
uint16_t Absolute() { return ReadWord((PB << 16) | PC + 1); }
|
||||
uint16_t Absolute(AccessType access_type = AccessType::Data);
|
||||
|
||||
// Effective Address:
|
||||
// The Data Bank Register is concatened with the 16-bit operand
|
||||
@@ -142,7 +168,7 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
// based on the emulation mode (16:X=0, 8:X=1)
|
||||
//
|
||||
// LDA addr, X
|
||||
uint16_t AbsoluteIndexedX() { return FetchWord() + X; }
|
||||
uint32_t AbsoluteIndexedX();
|
||||
|
||||
// Effective Address:
|
||||
// The Data Bank Register is concatened with the 16-bit operand
|
||||
@@ -150,7 +176,7 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
// based on the emulation mode (16:Y=0, 8:Y=1)
|
||||
//
|
||||
// LDA addr, Y
|
||||
uint16_t AbsoluteIndexedY() { return FetchWord() + Y; }
|
||||
uint32_t AbsoluteIndexedY();
|
||||
|
||||
// Test Me :)
|
||||
// Effective Address:
|
||||
@@ -160,10 +186,7 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
// the operand double byte and X based on the
|
||||
// emulation mode
|
||||
// JMP (addr, X)
|
||||
uint16_t AbsoluteIndexedIndirect() {
|
||||
uint16_t address = FetchWord() + X;
|
||||
return memory.ReadWord((PB << 16) | address & 0xFFFF);
|
||||
}
|
||||
uint16_t AbsoluteIndexedIndirect();
|
||||
|
||||
// Effective Address:
|
||||
// Bank: Program Bank Register (PBR)
|
||||
@@ -171,20 +194,14 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
// Indirect Address: Located in Bank Zero, at the operand double byte
|
||||
//
|
||||
// JMP (addr)
|
||||
uint16_t AbsoluteIndirect() {
|
||||
uint16_t address = FetchWord();
|
||||
return memory.ReadWord((PB << 16) | address);
|
||||
}
|
||||
uint16_t AbsoluteIndirect();
|
||||
|
||||
// Effective Address:
|
||||
// Bank/High/Low: The 24-bit Indirect Address
|
||||
// Indirect Address: Located in Bank Zero, at the operand double byte
|
||||
//
|
||||
// JMP [addr]
|
||||
uint32_t AbsoluteIndirectLong() {
|
||||
uint16_t address = FetchWord();
|
||||
return memory.ReadWordLong((PB << 16) | address);
|
||||
}
|
||||
uint32_t AbsoluteIndirectLong();
|
||||
|
||||
// Effective Address:
|
||||
// Bank: Third operand byte
|
||||
@@ -192,13 +209,13 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
// Low: First operand byte
|
||||
//
|
||||
// LDA long
|
||||
uint32_t AbsoluteLong() { return FetchLong(); }
|
||||
uint32_t AbsoluteLong();
|
||||
|
||||
// Effective Address:
|
||||
// The 24-bit operand is added to X based on the emulation mode
|
||||
//
|
||||
// LDA long, X
|
||||
uint16_t AbsoluteLongIndexedX() { return FetchLong() + X; }
|
||||
uint32_t AbsoluteLongIndexedX();
|
||||
|
||||
// Source Effective Address:
|
||||
// Bank: Second operand byte
|
||||
@@ -212,21 +229,14 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
// The number of bytes to be moved: 16-bit value in Acculumator C plus 1.
|
||||
//
|
||||
// MVN src, dst
|
||||
void BlockMove(uint16_t source, uint16_t dest, uint16_t length) {
|
||||
for (int i = 0; i < length; i++) {
|
||||
memory.WriteByte(dest + i, memory.ReadByte(source + i));
|
||||
}
|
||||
}
|
||||
void BlockMove(uint16_t source, uint16_t dest, uint16_t length);
|
||||
|
||||
// Effective Address:
|
||||
// Bank: Zero
|
||||
// High/low: Direct Page Register plus operand byte
|
||||
//
|
||||
// LDA dp
|
||||
uint16_t DirectPage() {
|
||||
uint8_t dp = memory.ReadByte((PB << 16) | PC + 1);
|
||||
return D + dp;
|
||||
}
|
||||
uint16_t DirectPage();
|
||||
|
||||
// Effective Address:
|
||||
// Bank: Zero
|
||||
@@ -234,20 +244,14 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
// based on the emulation mode
|
||||
//
|
||||
// LDA dp, X
|
||||
uint16_t DirectPageIndexedX() {
|
||||
uint8_t operand = FetchByte();
|
||||
return D + operand + X;
|
||||
}
|
||||
uint16_t DirectPageIndexedX();
|
||||
|
||||
// Effective Address:
|
||||
// Bank: Zero
|
||||
// High/low: Direct Page Register plus operand byte plus Y
|
||||
// based on the emulation mode
|
||||
// LDA dp, Y
|
||||
uint16_t DirectPageIndexedY() {
|
||||
uint8_t dp = FetchByte();
|
||||
return (dp + Y) & 0xFF;
|
||||
}
|
||||
uint16_t DirectPageIndexedY();
|
||||
|
||||
// Effective Address:
|
||||
// Bank: Data bank register
|
||||
@@ -256,12 +260,7 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
// register, the operand byte, and X based on the emulation mode in bank zero.
|
||||
//
|
||||
// LDA (dp, X)
|
||||
uint16_t DirectPageIndexedIndirectX() {
|
||||
uint8_t dp = FetchByte();
|
||||
uint16_t effective_address = D + dp + X;
|
||||
uint16_t indirect_address = memory.ReadWord(effective_address & 0xFFFF);
|
||||
return indirect_address;
|
||||
}
|
||||
uint16_t DirectPageIndexedIndirectX();
|
||||
|
||||
// Effective Address:
|
||||
// Bank: Data bank register
|
||||
@@ -270,12 +269,7 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
// zero.
|
||||
//
|
||||
// LDA (dp)
|
||||
uint16_t DirectPageIndirect() {
|
||||
uint8_t dp = FetchByte();
|
||||
// Add the Direct Page register to the fetched operand
|
||||
uint16_t effective_address = D + dp;
|
||||
return memory.ReadWord(effective_address);
|
||||
}
|
||||
uint16_t DirectPageIndirect();
|
||||
|
||||
// Effective Address:
|
||||
// Bank/High/Low: The 24-bit indirect address
|
||||
@@ -283,11 +277,7 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
// register in bank zero.
|
||||
//
|
||||
// LDA [dp]
|
||||
uint32_t DirectPageIndirectLong() {
|
||||
uint8_t dp = FetchByte();
|
||||
uint16_t effective_address = D + dp;
|
||||
return memory.ReadWordLong(effective_address);
|
||||
}
|
||||
uint32_t DirectPageIndirectLong();
|
||||
|
||||
// Effective Address:
|
||||
// Found by concatenating the data bank to the double-byte
|
||||
@@ -297,11 +287,7 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
// register and the operand byte, in bank zero.
|
||||
//
|
||||
// LDA (dp), Y
|
||||
uint16_t DirectPageIndirectIndexedY() {
|
||||
uint8_t dp = FetchByte();
|
||||
uint16_t effective_address = D + dp;
|
||||
return memory.ReadWord(effective_address) + Y;
|
||||
}
|
||||
uint16_t DirectPageIndirectIndexedY();
|
||||
|
||||
// Effective Address:
|
||||
// Found by adding to the triple-byte indirect address Y based on the
|
||||
@@ -312,11 +298,7 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
// the operand byte in bank zero.
|
||||
//
|
||||
// LDA (dp), Y
|
||||
uint16_t DirectPageIndirectLongIndexedY() {
|
||||
uint8_t dp = FetchByte();
|
||||
uint16_t effective_address = D + dp + Y;
|
||||
return memory.ReadWordLong(effective_address);
|
||||
}
|
||||
uint32_t DirectPageIndirectLongIndexedY();
|
||||
|
||||
// 8-bit data: Data Operand Byte
|
||||
// 16-bit data 65816 native mode m or x = 0
|
||||
@@ -324,23 +306,19 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
// Data Low: First Operand Byte
|
||||
//
|
||||
// LDA #const
|
||||
uint16_t Immediate() {
|
||||
if (GetAccumulatorSize()) {
|
||||
return memory.ReadByte((PB << 16) | PC + 1);
|
||||
} else {
|
||||
return memory.ReadWord((PB << 16) | PC + 1);
|
||||
}
|
||||
}
|
||||
uint16_t Immediate();
|
||||
|
||||
uint16_t StackRelative() {
|
||||
uint8_t sr = FetchByte();
|
||||
return SP() + sr;
|
||||
}
|
||||
uint16_t StackRelative();
|
||||
|
||||
uint16_t StackRelativeIndirectIndexedY() {
|
||||
uint8_t sr = FetchByte();
|
||||
return memory.ReadWord(SP() + sr + Y);
|
||||
}
|
||||
// Effective Address:
|
||||
// The Data Bank Register is concatenated to the Indirect Address;
|
||||
// the 24-bit result is added to Y (16 bits if x = 0; else 8 bits)
|
||||
// Indirect Address:
|
||||
// Located at the 16-bit sum of the 8-bit operand and the 16-bit stack
|
||||
// pointer
|
||||
//
|
||||
// LDA (sr, S), Y
|
||||
uint32_t StackRelativeIndirectIndexedY();
|
||||
|
||||
// Memory access routines
|
||||
uint8_t ReadByte(uint32_t address) const override {
|
||||
@@ -400,12 +378,11 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
uint8_t fetchedByte = memory.ReadByte(effectiveAddress);
|
||||
|
||||
next_pc_ = PC + 1;
|
||||
// PC++; // Increment the Program Counter
|
||||
|
||||
return fetchedByte;
|
||||
}
|
||||
|
||||
uint16_t ReadByBitMode(uint32_t address) {
|
||||
uint16_t ReadByteOrWord(uint32_t address) {
|
||||
if (GetAccumulatorSize()) {
|
||||
// 8-bit mode
|
||||
return memory.ReadByte(address) & 0xFF;
|
||||
@@ -415,27 +392,15 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
}
|
||||
}
|
||||
|
||||
void UpdatePC(uint8_t instruction_length) { PC += instruction_length; }
|
||||
|
||||
uint8_t GetInstructionLength(uint8_t opcode);
|
||||
void SetMemory(const std::vector<uint8_t>& data) override {
|
||||
memory.SetMemory(data);
|
||||
}
|
||||
|
||||
int16_t SP() const override { return memory.SP(); }
|
||||
void SetSP(int16_t value) override { memory.SetSP(value); }
|
||||
void set_next_pc(uint16_t value) { next_pc_ = value; }
|
||||
void UpdateClock(int delta_time) { clock.UpdateClock(delta_time); }
|
||||
|
||||
// ======================================================
|
||||
// Instructions
|
||||
|
||||
// ADC: Add with carry
|
||||
void ADC(uint8_t operand);
|
||||
void ANDAbsoluteLong(uint32_t address);
|
||||
void ADC(uint16_t operand);
|
||||
|
||||
// AND: Logical AND
|
||||
void AND(uint16_t address, bool isImmediate = false);
|
||||
void AND(uint32_t address, bool immediate = false);
|
||||
void ANDAbsoluteLong(uint32_t address);
|
||||
|
||||
// ASL: Arithmetic shift left
|
||||
void ASL(uint16_t address);
|
||||
@@ -489,19 +454,19 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
void CLV();
|
||||
|
||||
// CMP: Compare
|
||||
void CMP(uint16_t address, bool isImmediate = false);
|
||||
void CMP(uint32_t address, bool immediate = false);
|
||||
|
||||
// COP: Coprocessor enable
|
||||
void COP();
|
||||
|
||||
// CPX: Compare X register
|
||||
void CPX(uint16_t address, bool isImmediate = false);
|
||||
void CPX(uint16_t address, bool immediate = false);
|
||||
|
||||
// CPY: Compare Y register
|
||||
void CPY(uint16_t address, bool isImmediate = false);
|
||||
void CPY(uint16_t address, bool immediate = false);
|
||||
|
||||
// DEC: Decrement memory
|
||||
void DEC(uint16_t address);
|
||||
void DEC(uint32_t address, bool accumulator = false);
|
||||
|
||||
// DEX: Decrement X register
|
||||
void DEX();
|
||||
@@ -510,10 +475,10 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
void DEY();
|
||||
|
||||
// EOR: Exclusive OR
|
||||
void EOR(uint16_t address, bool isImmediate = false);
|
||||
void EOR(uint32_t address, bool immediate = false);
|
||||
|
||||
// INC: Increment memory
|
||||
void INC(uint16_t address);
|
||||
void INC(uint32_t address, bool accumulator = false);
|
||||
|
||||
// INX: Increment X register
|
||||
void INX();
|
||||
@@ -534,17 +499,16 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
void JSL(uint32_t address);
|
||||
|
||||
// LDA: Load accumulator
|
||||
void LDA(uint16_t address, bool isImmediate = false,
|
||||
bool direct_page = false);
|
||||
void LDA(uint16_t address, bool immediate = false, bool direct_page = false);
|
||||
|
||||
// LDX: Load X register
|
||||
void LDX(uint16_t address, bool isImmediate = false);
|
||||
void LDX(uint16_t address, bool immediate = false);
|
||||
|
||||
// LDY: Load Y register
|
||||
void LDY(uint16_t address, bool isImmediate = false);
|
||||
void LDY(uint16_t address, bool immediate = false);
|
||||
|
||||
// LSR: Logical shift right
|
||||
void LSR(uint16_t address);
|
||||
void LSR(uint16_t address, bool accumulator = false);
|
||||
|
||||
// MVN: Block move next
|
||||
void MVN(uint16_t source, uint16_t dest, uint16_t length);
|
||||
@@ -556,7 +520,7 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
void NOP();
|
||||
|
||||
// ORA: Logical inclusive OR
|
||||
void ORA(uint16_t address, bool isImmediate = false);
|
||||
void ORA(uint16_t address, bool immediate = false);
|
||||
|
||||
// PEA: Push effective absolute address
|
||||
void PEA();
|
||||
@@ -610,10 +574,10 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
void REP();
|
||||
|
||||
// ROL: Rotate left
|
||||
void ROL(uint16_t address);
|
||||
void ROL(uint32_t address, bool accumulator = false);
|
||||
|
||||
// ROR: Rotate right
|
||||
void ROR(uint16_t address);
|
||||
void ROR(uint32_t address, bool accumulator = false);
|
||||
|
||||
// RTI: Return from interrupt
|
||||
void RTI();
|
||||
@@ -625,7 +589,7 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
void RTS();
|
||||
|
||||
// SBC: Subtract with carry
|
||||
void SBC(uint16_t operand, bool isImmediate = false);
|
||||
void SBC(uint32_t operand, bool immediate = false);
|
||||
|
||||
// SEC: Set carry flag
|
||||
void SEC();
|
||||
@@ -640,7 +604,7 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
void SEP();
|
||||
|
||||
// STA: Store accumulator
|
||||
void STA(uint16_t address);
|
||||
void STA(uint32_t address);
|
||||
|
||||
// STP: Stop the processor
|
||||
void STP();
|
||||
@@ -726,7 +690,6 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
SetCarryFlag(register_value >= memory_value); // Carry flag
|
||||
}
|
||||
|
||||
// Helper function to set or clear a specific flag bit
|
||||
void SetFlag(uint8_t mask, bool set) {
|
||||
if (set) {
|
||||
status |= mask; // Set the bit
|
||||
@@ -735,10 +698,7 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
}
|
||||
}
|
||||
|
||||
// Helper function to get the value of a specific flag bit
|
||||
bool GetFlag(uint8_t mask) const { return (status & mask) != 0; }
|
||||
|
||||
// Appease the C++ Gods...
|
||||
void PushByte(uint8_t value) override { memory.PushByte(value); }
|
||||
void PushWord(uint16_t value) override { memory.PushWord(value); }
|
||||
uint8_t PopByte() override { return memory.PopByte(); }
|
||||
@@ -746,9 +706,6 @@ class CPU : public Memory, public Loggable, public core::ExperimentFlags {
|
||||
void PushLong(uint32_t value) override { memory.PushLong(value); }
|
||||
uint32_t PopLong() override { return memory.PopLong(); }
|
||||
void ClearMemory() override { memory.ClearMemory(); }
|
||||
void LoadData(const std::vector<uint8_t>& data) override {
|
||||
memory.LoadData(data);
|
||||
}
|
||||
uint8_t operator[](int i) const override { return 0; }
|
||||
uint8_t at(int i) const override { return 0; }
|
||||
|
||||
|
||||
122
src/app/emu/cpu/addressing.cc
Normal file
122
src/app/emu/cpu/addressing.cc
Normal file
@@ -0,0 +1,122 @@
|
||||
#include "app/emu/cpu.h"
|
||||
|
||||
namespace yaze {
|
||||
namespace app {
|
||||
namespace emu {
|
||||
|
||||
uint16_t CPU::Absolute(CPU::AccessType access_type) {
|
||||
auto operand = FetchWord();
|
||||
uint32_t bank =
|
||||
(access_type == CPU::AccessType::Data) ? (DB << 16) : (PB << 16);
|
||||
return bank | (operand & 0xFFFF);
|
||||
}
|
||||
|
||||
uint32_t CPU::AbsoluteIndexedX() {
|
||||
uint16_t address = memory.ReadWord((PB << 16) | (PC + 1));
|
||||
uint32_t effective_address = (DB << 16) | ((address + X) & 0xFFFF);
|
||||
return effective_address;
|
||||
}
|
||||
|
||||
uint32_t CPU::AbsoluteIndexedY() {
|
||||
uint16_t address = memory.ReadWord((PB << 16) | (PC + 1));
|
||||
uint32_t effective_address = (DB << 16) | address + Y;
|
||||
return effective_address;
|
||||
}
|
||||
|
||||
uint16_t CPU::AbsoluteIndexedIndirect() {
|
||||
uint16_t address = FetchWord() + X;
|
||||
return memory.ReadWord((DB << 16) | address & 0xFFFF);
|
||||
}
|
||||
|
||||
uint16_t CPU::AbsoluteIndirect() {
|
||||
uint16_t address = FetchWord();
|
||||
return memory.ReadWord((PB << 16) | address);
|
||||
}
|
||||
|
||||
uint32_t CPU::AbsoluteIndirectLong() {
|
||||
uint16_t address = FetchWord();
|
||||
return memory.ReadWordLong((PB << 16) | address);
|
||||
}
|
||||
|
||||
uint32_t CPU::AbsoluteLong() { return FetchLong(); }
|
||||
|
||||
uint32_t CPU::AbsoluteLongIndexedX() { return FetchLong() + X; }
|
||||
|
||||
void CPU::BlockMove(uint16_t source, uint16_t dest, uint16_t length) {
|
||||
for (int i = 0; i < length; i++) {
|
||||
memory.WriteByte(dest + i, memory.ReadByte(source + i));
|
||||
}
|
||||
}
|
||||
|
||||
uint16_t CPU::DirectPage() {
|
||||
uint8_t dp = FetchByte();
|
||||
return D + dp;
|
||||
}
|
||||
|
||||
uint16_t CPU::DirectPageIndexedX() {
|
||||
uint8_t operand = FetchByte();
|
||||
uint16_t x_by_mode = GetAccumulatorSize() ? X : X & 0xFF;
|
||||
return D + operand + x_by_mode;
|
||||
}
|
||||
|
||||
uint16_t CPU::DirectPageIndexedY() {
|
||||
uint8_t operand = FetchByte();
|
||||
return (operand + Y) & 0xFF;
|
||||
}
|
||||
|
||||
uint16_t CPU::DirectPageIndexedIndirectX() {
|
||||
uint8_t operand = FetchByte();
|
||||
uint16_t indirect_address = D + operand + X;
|
||||
uint16_t effective_address = memory.ReadWord(indirect_address & 0xFFFF);
|
||||
return effective_address;
|
||||
}
|
||||
|
||||
uint16_t CPU::DirectPageIndirect() {
|
||||
uint8_t dp = FetchByte();
|
||||
uint16_t effective_address = D + dp;
|
||||
return memory.ReadWord(effective_address);
|
||||
}
|
||||
|
||||
uint32_t CPU::DirectPageIndirectLong() {
|
||||
uint8_t dp = FetchByte();
|
||||
uint16_t effective_address = D + dp;
|
||||
return memory.ReadWordLong((0x00 << 0x10) | effective_address);
|
||||
}
|
||||
|
||||
uint16_t CPU::DirectPageIndirectIndexedY() {
|
||||
uint8_t operand = FetchByte();
|
||||
uint16_t indirect_address = D + operand;
|
||||
return memory.ReadWord(indirect_address) + Y;
|
||||
}
|
||||
|
||||
uint32_t CPU::DirectPageIndirectLongIndexedY() {
|
||||
uint8_t operand = FetchByte();
|
||||
uint16_t indirect_address = D + operand;
|
||||
uint16_t y_by_mode = GetAccumulatorSize() ? Y : Y & 0xFF;
|
||||
uint32_t effective_address =
|
||||
memory.ReadWordLong(indirect_address) + y_by_mode;
|
||||
return effective_address;
|
||||
}
|
||||
|
||||
uint16_t CPU::Immediate() {
|
||||
if (GetAccumulatorSize()) {
|
||||
return memory.ReadByte((PB << 16) | PC + 1);
|
||||
} else {
|
||||
return memory.ReadWord((PB << 16) | PC + 1);
|
||||
}
|
||||
}
|
||||
|
||||
uint16_t CPU::StackRelative() {
|
||||
uint8_t sr = FetchByte();
|
||||
uint16_t effective_address = SP() + sr;
|
||||
return effective_address;
|
||||
}
|
||||
|
||||
uint32_t CPU::StackRelativeIndirectIndexedY() {
|
||||
uint8_t sr = FetchByte();
|
||||
return (DB << 0x10) | (memory.ReadWord(SP() + sr) + Y);
|
||||
}
|
||||
|
||||
} // namespace emu
|
||||
} // namespace app
|
||||
} // namespace yaze
|
||||
818
src/app/emu/cpu/instructions.cc
Normal file
818
src/app/emu/cpu/instructions.cc
Normal file
@@ -0,0 +1,818 @@
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "app/emu/cpu.h"
|
||||
|
||||
namespace yaze {
|
||||
namespace app {
|
||||
namespace emu {
|
||||
|
||||
/**
|
||||
* 65816 Instruction Set
|
||||
*
|
||||
* TODO: STP, WDM
|
||||
*/
|
||||
|
||||
void CPU::ADC(uint16_t operand) {
|
||||
bool C = GetCarryFlag();
|
||||
if (GetAccumulatorSize()) { // 8-bit mode
|
||||
uint16_t result = static_cast<uint16_t>(A & 0xFF) +
|
||||
static_cast<uint16_t>(operand) + (C ? 1 : 0);
|
||||
SetCarryFlag(result > 0xFF); // Update the carry flag
|
||||
|
||||
// Update the overflow flag
|
||||
bool overflow = (~(A ^ operand) & (A ^ result) & 0x80) != 0;
|
||||
SetOverflowFlag(overflow);
|
||||
|
||||
// Update the accumulator with proper wrap-around
|
||||
A = (A & 0xFF00) | (result & 0xFF);
|
||||
|
||||
SetZeroFlag((A & 0xFF) == 0);
|
||||
SetNegativeFlag(A & 0x80);
|
||||
} else {
|
||||
uint32_t result =
|
||||
static_cast<uint32_t>(A) + static_cast<uint32_t>(operand) + (C ? 1 : 0);
|
||||
SetCarryFlag(result > 0xFFFF); // Update the carry flag
|
||||
|
||||
// Update the overflow flag
|
||||
bool overflow = (~(A ^ operand) & (A ^ result) & 0x8000) != 0;
|
||||
SetOverflowFlag(overflow);
|
||||
|
||||
// Update the accumulator
|
||||
A = result & 0xFFFF;
|
||||
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x8000);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::AND(uint32_t value, bool isImmediate) {
|
||||
uint16_t operand;
|
||||
if (GetAccumulatorSize()) { // 8-bit mode
|
||||
operand = isImmediate ? value : memory.ReadByte(value);
|
||||
A &= operand;
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x80);
|
||||
} else { // 16-bit mode
|
||||
operand = isImmediate ? value : memory.ReadWord(value);
|
||||
A &= operand;
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x8000);
|
||||
}
|
||||
}
|
||||
|
||||
// New function for absolute long addressing mode
|
||||
void CPU::ANDAbsoluteLong(uint32_t address) {
|
||||
uint32_t operand32 = memory.ReadWordLong(address);
|
||||
A &= operand32;
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x8000);
|
||||
}
|
||||
|
||||
void CPU::ASL(uint16_t address) {
|
||||
uint8_t value = memory.ReadByte(address);
|
||||
SetCarryFlag(!(value & 0x80)); // Set carry flag if bit 7 is set
|
||||
value <<= 1; // Shift left
|
||||
value &= 0xFE; // Clear bit 0
|
||||
memory.WriteByte(address, value);
|
||||
SetNegativeFlag(!value);
|
||||
SetZeroFlag(value);
|
||||
}
|
||||
|
||||
void CPU::BCC(int8_t offset) {
|
||||
if (!GetCarryFlag()) { // If the carry flag is clear
|
||||
next_pc_ = offset;
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::BCS(int8_t offset) {
|
||||
if (GetCarryFlag()) { // If the carry flag is set
|
||||
next_pc_ = offset;
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::BEQ(int8_t offset) {
|
||||
if (GetZeroFlag()) { // If the zero flag is set
|
||||
next_pc_ = offset;
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::BIT(uint16_t address) {
|
||||
uint8_t value = memory.ReadByte(address);
|
||||
SetNegativeFlag(value & 0x80);
|
||||
SetOverflowFlag(value & 0x40);
|
||||
SetZeroFlag((A & value) == 0);
|
||||
}
|
||||
|
||||
void CPU::BMI(int8_t offset) {
|
||||
if (GetNegativeFlag()) { // If the negative flag is set
|
||||
next_pc_ = offset;
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::BNE(int8_t offset) {
|
||||
if (!GetZeroFlag()) { // If the zero flag is clear
|
||||
// PC += offset;
|
||||
next_pc_ = offset;
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::BPL(int8_t offset) {
|
||||
if (!GetNegativeFlag()) { // If the negative flag is clear
|
||||
next_pc_ = offset;
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::BRA(int8_t offset) { next_pc_ = offset; }
|
||||
|
||||
void CPU::BRK() {
|
||||
next_pc_ = PC + 2; // Increment the program counter by 2
|
||||
memory.PushWord(next_pc_);
|
||||
memory.PushByte(status);
|
||||
SetInterruptFlag(true);
|
||||
try {
|
||||
next_pc_ = memory.ReadWord(0xFFFE);
|
||||
} catch (const std::exception& e) {
|
||||
std::cout << "BRK: " << e.what() << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::BRL(int16_t offset) { next_pc_ = offset; }
|
||||
|
||||
void CPU::BVC(int8_t offset) {
|
||||
if (!GetOverflowFlag()) { // If the overflow flag is clear
|
||||
next_pc_ = offset;
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::BVS(int8_t offset) {
|
||||
if (GetOverflowFlag()) { // If the overflow flag is set
|
||||
next_pc_ = offset;
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::CLC() { status &= ~0x01; }
|
||||
|
||||
void CPU::CLD() { status &= ~0x08; }
|
||||
|
||||
void CPU::CLI() { status &= ~0x04; }
|
||||
|
||||
void CPU::CLV() { status &= ~0x40; }
|
||||
|
||||
// n Set if MSB of result is set; else cleared
|
||||
// z Set if result is zero; else cleared
|
||||
// c Set if no borrow; else cleared
|
||||
void CPU::CMP(uint32_t value, bool isImmediate) {
|
||||
if (GetAccumulatorSize()) { // 8-bit
|
||||
uint8_t result;
|
||||
if (isImmediate) {
|
||||
result = A - (value & 0xFF);
|
||||
} else {
|
||||
uint8_t memory_value = memory.ReadByte(value);
|
||||
result = A - memory_value;
|
||||
}
|
||||
SetZeroFlag(result == 0);
|
||||
SetNegativeFlag(result & 0x80);
|
||||
SetCarryFlag(A >= (value & 0xFF));
|
||||
} else { // 16-bit
|
||||
uint16_t result;
|
||||
if (isImmediate) {
|
||||
result = A - (value & 0xFFFF);
|
||||
} else {
|
||||
uint16_t memory_value = memory.ReadWord(value);
|
||||
result = A - memory_value;
|
||||
}
|
||||
SetZeroFlag(result == 0);
|
||||
SetNegativeFlag(result & 0x8000);
|
||||
SetCarryFlag(A >= (value & 0xFFFF));
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::COP() {
|
||||
next_pc_ += 2; // Increment the program counter by 2
|
||||
memory.PushWord(next_pc_);
|
||||
memory.PushByte(status);
|
||||
SetInterruptFlag(true);
|
||||
if (E) {
|
||||
next_pc_ = memory.ReadWord(0xFFF4);
|
||||
} else {
|
||||
next_pc_ = memory.ReadWord(0xFFE4);
|
||||
}
|
||||
SetDecimalFlag(false);
|
||||
}
|
||||
|
||||
void CPU::CPX(uint16_t value, bool isImmediate) {
|
||||
if (GetIndexSize()) { // 8-bit
|
||||
uint8_t memory_value = isImmediate ? value : memory.ReadByte(value);
|
||||
compare(X, memory_value);
|
||||
} else { // 16-bit
|
||||
uint16_t memory_value = isImmediate ? value : memory.ReadWord(value);
|
||||
compare(X, memory_value);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::CPY(uint16_t value, bool isImmediate) {
|
||||
if (GetIndexSize()) { // 8-bit
|
||||
uint8_t memory_value = isImmediate ? value : memory.ReadByte(value);
|
||||
compare(Y, memory_value);
|
||||
} else { // 16-bit
|
||||
uint16_t memory_value = isImmediate ? value : memory.ReadWord(value);
|
||||
compare(Y, memory_value);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::DEC(uint32_t address, bool accumulator) {
|
||||
if (accumulator) {
|
||||
if (GetAccumulatorSize()) { // 8-bit
|
||||
A = (A - 1) & 0xFF;
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x80);
|
||||
} else { // 16-bit
|
||||
A = (A - 1) & 0xFFFF;
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x8000);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (GetAccumulatorSize()) {
|
||||
uint8_t value = memory.ReadByte(address);
|
||||
value--;
|
||||
memory.WriteByte(address, value);
|
||||
SetZeroFlag(value == 0);
|
||||
SetNegativeFlag(value & 0x80);
|
||||
} else {
|
||||
uint16_t value = memory.ReadWord(address);
|
||||
value--;
|
||||
memory.WriteWord(address, value);
|
||||
SetZeroFlag(value == 0);
|
||||
SetNegativeFlag(value & 0x8000);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::DEX() {
|
||||
if (GetIndexSize()) { // 8-bit
|
||||
X = static_cast<uint8_t>(X - 1);
|
||||
SetZeroFlag(X == 0);
|
||||
SetNegativeFlag(X & 0x80);
|
||||
} else { // 16-bit
|
||||
X = static_cast<uint16_t>(X - 1);
|
||||
SetZeroFlag(X == 0);
|
||||
SetNegativeFlag(X & 0x8000);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::DEY() {
|
||||
if (GetIndexSize()) { // 8-bit
|
||||
Y = static_cast<uint8_t>(Y - 1);
|
||||
SetZeroFlag(Y == 0);
|
||||
SetNegativeFlag(Y & 0x80);
|
||||
} else { // 16-bit
|
||||
Y = static_cast<uint16_t>(Y - 1);
|
||||
SetZeroFlag(Y == 0);
|
||||
SetNegativeFlag(Y & 0x8000);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::EOR(uint32_t address, bool isImmediate) {
|
||||
if (GetAccumulatorSize()) {
|
||||
A ^= isImmediate ? address : memory.ReadByte(address);
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x80);
|
||||
} else {
|
||||
A ^= isImmediate ? address : memory.ReadWord(address);
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x8000);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::INC(uint32_t address, bool accumulator) {
|
||||
if (accumulator) {
|
||||
if (GetAccumulatorSize()) { // 8-bit
|
||||
A = (A + 1) & 0xFF;
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x80);
|
||||
} else { // 16-bit
|
||||
A = (A + 1) & 0xFFFF;
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x8000);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (GetAccumulatorSize()) {
|
||||
uint8_t value = memory.ReadByte(address);
|
||||
value++;
|
||||
memory.WriteByte(address, value);
|
||||
SetNegativeFlag(value & 0x80);
|
||||
SetZeroFlag(value == 0);
|
||||
} else {
|
||||
uint16_t value = memory.ReadWord(address);
|
||||
value++;
|
||||
memory.WriteWord(address, value);
|
||||
SetNegativeFlag(value & 0x8000);
|
||||
SetZeroFlag(value == 0);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::INX() {
|
||||
if (GetIndexSize()) { // 8-bit
|
||||
X = static_cast<uint8_t>(X + 1);
|
||||
SetZeroFlag(X == 0);
|
||||
SetNegativeFlag(X & 0x80);
|
||||
} else { // 16-bit
|
||||
X = static_cast<uint16_t>(X + 1);
|
||||
SetZeroFlag(X == 0);
|
||||
SetNegativeFlag(X & 0x8000);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::INY() {
|
||||
if (GetIndexSize()) { // 8-bit
|
||||
Y = static_cast<uint8_t>(Y + 1);
|
||||
SetZeroFlag(Y == 0);
|
||||
SetNegativeFlag(Y & 0x80);
|
||||
} else { // 16-bit
|
||||
Y = static_cast<uint16_t>(Y + 1);
|
||||
SetZeroFlag(Y == 0);
|
||||
SetNegativeFlag(Y & 0x8000);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::JMP(uint16_t address) {
|
||||
next_pc_ = address; // Set program counter to the new address
|
||||
}
|
||||
|
||||
void CPU::JML(uint32_t address) {
|
||||
next_pc_ = static_cast<uint16_t>(address & 0xFFFF);
|
||||
// Set the PBR to the upper 8 bits of the address
|
||||
PB = static_cast<uint8_t>((address >> 16) & 0xFF);
|
||||
}
|
||||
|
||||
void CPU::JSR(uint16_t address) {
|
||||
memory.PushWord(PC); // Push the program counter onto the stack
|
||||
next_pc_ = address; // Set program counter to the new address
|
||||
}
|
||||
|
||||
void CPU::JSL(uint32_t address) {
|
||||
memory.PushLong(PC); // Push the program counter onto the stack as a long
|
||||
// value (24 bits)
|
||||
next_pc_ = address; // Set program counter to the new address
|
||||
}
|
||||
|
||||
void CPU::LDA(uint16_t address, bool isImmediate, bool direct_page) {
|
||||
uint8_t bank = PB;
|
||||
if (direct_page) {
|
||||
bank = 0;
|
||||
}
|
||||
if (GetAccumulatorSize()) {
|
||||
A = isImmediate ? address : memory.ReadByte((bank << 16) | address);
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x80);
|
||||
} else {
|
||||
A = isImmediate ? address : memory.ReadWord((bank << 16) | address);
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x8000);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::LDX(uint16_t address, bool isImmediate) {
|
||||
if (GetIndexSize()) {
|
||||
X = isImmediate ? address : memory.ReadByte(address);
|
||||
SetZeroFlag(X == 0);
|
||||
SetNegativeFlag(X & 0x80);
|
||||
} else {
|
||||
X = isImmediate ? address : memory.ReadWord(address);
|
||||
SetZeroFlag(X == 0);
|
||||
SetNegativeFlag(X & 0x8000);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::LDY(uint16_t address, bool isImmediate) {
|
||||
if (GetIndexSize()) {
|
||||
Y = isImmediate ? address : memory.ReadByte(address);
|
||||
SetZeroFlag(Y == 0);
|
||||
SetNegativeFlag(Y & 0x80);
|
||||
} else {
|
||||
Y = isImmediate ? address : memory.ReadWord(address);
|
||||
SetZeroFlag(Y == 0);
|
||||
SetNegativeFlag(Y & 0x8000);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::LSR(uint16_t address, bool accumulator) {
|
||||
if (accumulator) {
|
||||
if (GetAccumulatorSize()) { // 8-bit
|
||||
SetCarryFlag(A & 0x01);
|
||||
A >>= 1;
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(false);
|
||||
} else { // 16-bit
|
||||
SetCarryFlag(A & 0x0001);
|
||||
A >>= 1;
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(false);
|
||||
}
|
||||
return;
|
||||
}
|
||||
uint8_t value = memory.ReadByte(address);
|
||||
SetCarryFlag(value & 0x01);
|
||||
value >>= 1;
|
||||
memory.WriteByte(address, value);
|
||||
SetNegativeFlag(false);
|
||||
SetZeroFlag(value == 0);
|
||||
}
|
||||
|
||||
void CPU::MVN(uint16_t source, uint16_t dest, uint16_t length) {
|
||||
for (uint16_t i = 0; i < length; i++) {
|
||||
memory.WriteByte(dest, memory.ReadByte(source));
|
||||
source++;
|
||||
dest++;
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::MVP(uint16_t source, uint16_t dest, uint16_t length) {
|
||||
for (uint16_t i = 0; i < length; i++) {
|
||||
memory.WriteByte(dest, memory.ReadByte(source));
|
||||
source--;
|
||||
dest--;
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::NOP() {
|
||||
// Do nothing
|
||||
}
|
||||
|
||||
void CPU::ORA(uint16_t address, bool isImmediate) {
|
||||
if (GetAccumulatorSize()) {
|
||||
A |= isImmediate ? address : memory.ReadByte(address);
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x80);
|
||||
} else {
|
||||
A |= isImmediate ? address : memory.ReadWord(address);
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x8000);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::PEA() {
|
||||
uint16_t address = FetchWord();
|
||||
memory.PushWord(address);
|
||||
}
|
||||
|
||||
void CPU::PEI() {
|
||||
uint16_t address = FetchWord();
|
||||
memory.PushWord(memory.ReadWord(address));
|
||||
}
|
||||
|
||||
void CPU::PER() {
|
||||
uint16_t address = FetchWord();
|
||||
memory.PushWord(PC + address);
|
||||
}
|
||||
|
||||
void CPU::PHA() {
|
||||
if (GetAccumulatorSize()) {
|
||||
memory.PushByte(static_cast<uint8_t>(A));
|
||||
} else {
|
||||
memory.PushWord(A);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::PHB() { memory.PushByte(DB); }
|
||||
|
||||
void CPU::PHD() { memory.PushWord(D); }
|
||||
|
||||
void CPU::PHK() { memory.PushByte(PB); }
|
||||
|
||||
void CPU::PHP() { memory.PushByte(status); }
|
||||
|
||||
void CPU::PHX() {
|
||||
if (GetIndexSize()) {
|
||||
memory.PushByte(static_cast<uint8_t>(X));
|
||||
} else {
|
||||
memory.PushWord(X);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::PHY() {
|
||||
if (GetIndexSize()) {
|
||||
memory.PushByte(static_cast<uint8_t>(Y));
|
||||
} else {
|
||||
memory.PushWord(Y);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::PLA() {
|
||||
if (GetAccumulatorSize()) {
|
||||
A = memory.PopByte();
|
||||
SetNegativeFlag((A & 0x80) != 0);
|
||||
} else {
|
||||
A = memory.PopWord();
|
||||
SetNegativeFlag((A & 0x8000) != 0);
|
||||
}
|
||||
SetZeroFlag(A == 0);
|
||||
}
|
||||
|
||||
void CPU::PLB() {
|
||||
DB = memory.PopByte();
|
||||
SetNegativeFlag((DB & 0x80) != 0);
|
||||
SetZeroFlag(DB == 0);
|
||||
}
|
||||
|
||||
// Pull Direct Page Register from Stack
|
||||
void CPU::PLD() {
|
||||
D = memory.PopWord();
|
||||
SetNegativeFlag((D & 0x8000) != 0);
|
||||
SetZeroFlag(D == 0);
|
||||
}
|
||||
|
||||
// Pull Processor Status Register from Stack
|
||||
void CPU::PLP() { status = memory.PopByte(); }
|
||||
|
||||
void CPU::PLX() {
|
||||
if (GetIndexSize()) {
|
||||
X = memory.PopByte();
|
||||
SetNegativeFlag((A & 0x80) != 0);
|
||||
} else {
|
||||
X = memory.PopWord();
|
||||
SetNegativeFlag((A & 0x8000) != 0);
|
||||
}
|
||||
|
||||
SetZeroFlag(X == 0);
|
||||
}
|
||||
|
||||
void CPU::PLY() {
|
||||
if (GetIndexSize()) {
|
||||
Y = memory.PopByte();
|
||||
SetNegativeFlag((A & 0x80) != 0);
|
||||
} else {
|
||||
Y = memory.PopWord();
|
||||
SetNegativeFlag((A & 0x8000) != 0);
|
||||
}
|
||||
SetZeroFlag(Y == 0);
|
||||
}
|
||||
|
||||
void CPU::REP() {
|
||||
auto byte = FetchByte();
|
||||
status &= ~byte;
|
||||
}
|
||||
|
||||
void CPU::ROL(uint32_t address, bool accumulator) {
|
||||
if (accumulator) {
|
||||
if (GetAccumulatorSize()) { // 8-bit
|
||||
uint8_t carry = GetCarryFlag() ? 0x01 : 0x00;
|
||||
SetCarryFlag(A & 0x80);
|
||||
A <<= 1;
|
||||
A |= carry;
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x80);
|
||||
} else { // 16-bit
|
||||
uint8_t carry = GetCarryFlag() ? 0x01 : 0x00;
|
||||
SetCarryFlag(A & 0x8000);
|
||||
A <<= 1;
|
||||
A |= carry;
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x8000);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
uint8_t value = memory.ReadByte(address);
|
||||
uint8_t carry = GetCarryFlag() ? 0x01 : 0x00;
|
||||
SetCarryFlag(value & 0x80);
|
||||
value <<= 1;
|
||||
value |= carry;
|
||||
memory.WriteByte(address, value);
|
||||
SetNegativeFlag(value & 0x80);
|
||||
SetZeroFlag(value == 0);
|
||||
}
|
||||
|
||||
void CPU::ROR(uint32_t address, bool accumulator) {
|
||||
if (accumulator) {
|
||||
if (GetAccumulatorSize()) { // 8-bit
|
||||
uint8_t carry = GetCarryFlag() ? 0x80 : 0x00;
|
||||
SetCarryFlag(A & 0x01);
|
||||
A >>= 1;
|
||||
A |= carry;
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x80);
|
||||
} else { // 16-bit
|
||||
uint8_t carry = GetCarryFlag() ? 0x8000 : 0x00;
|
||||
SetCarryFlag(A & 0x0001);
|
||||
A >>= 1;
|
||||
A |= carry;
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x8000);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
uint8_t value = memory.ReadByte(address);
|
||||
uint8_t carry = GetCarryFlag() ? 0x80 : 0x00;
|
||||
SetCarryFlag(value & 0x01);
|
||||
value >>= 1;
|
||||
value |= carry;
|
||||
memory.WriteByte(address, value);
|
||||
SetNegativeFlag(value & 0x80);
|
||||
SetZeroFlag(value == 0);
|
||||
}
|
||||
|
||||
void CPU::RTI() {
|
||||
status = memory.PopByte();
|
||||
PC = memory.PopWord();
|
||||
}
|
||||
|
||||
void CPU::RTL() {
|
||||
next_pc_ = memory.PopWord();
|
||||
PB = memory.PopByte();
|
||||
}
|
||||
|
||||
void CPU::RTS() { last_call_frame_ = memory.PopWord(); }
|
||||
|
||||
void CPU::SBC(uint32_t value, bool isImmediate) {
|
||||
uint16_t operand;
|
||||
if (!GetAccumulatorSize()) { // 16-bit mode
|
||||
operand = isImmediate ? value : memory.ReadWord(value);
|
||||
uint16_t result = A - operand - (GetCarryFlag() ? 0 : 1);
|
||||
SetCarryFlag(!(result > 0xFFFF)); // Update the carry flag
|
||||
|
||||
// Update the overflow flag
|
||||
bool overflow = ((A ^ operand) & (A ^ result) & 0x8000) != 0;
|
||||
SetOverflowFlag(overflow);
|
||||
|
||||
// Update the accumulator
|
||||
A = result & 0xFFFF;
|
||||
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x8000);
|
||||
} else { // 8-bit mode
|
||||
operand = isImmediate ? value : memory.ReadByte(value);
|
||||
uint8_t result = A - operand - (GetCarryFlag() ? 0 : 1);
|
||||
SetCarryFlag(!(result > 0xFF)); // Update the carry flag
|
||||
|
||||
// Update the overflow flag
|
||||
bool overflow = ((A ^ operand) & (A ^ result) & 0x80) != 0;
|
||||
SetOverflowFlag(overflow);
|
||||
|
||||
// Update the accumulator
|
||||
A = result & 0xFF;
|
||||
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x80);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::SEC() { status |= 0x01; }
|
||||
|
||||
void CPU::SED() { status |= 0x08; }
|
||||
|
||||
void CPU::SEI() { status |= 0x04; }
|
||||
|
||||
void CPU::SEP() {
|
||||
auto byte = FetchByte();
|
||||
status |= byte;
|
||||
}
|
||||
|
||||
void CPU::STA(uint32_t address) {
|
||||
if (GetAccumulatorSize()) {
|
||||
memory.WriteByte(address, static_cast<uint8_t>(A));
|
||||
} else {
|
||||
memory.WriteWord(address, A);
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Make this work with the Clock class of the CPU
|
||||
|
||||
void CPU::STP() {
|
||||
// During the next phase 2 clock cycle, stop the processors oscillator input
|
||||
// The processor is effectively shut down until a reset occurs (RES` pin).
|
||||
}
|
||||
|
||||
void CPU::STX(uint16_t address) {
|
||||
if (GetIndexSize()) {
|
||||
memory.WriteByte(address, static_cast<uint8_t>(X));
|
||||
} else {
|
||||
memory.WriteWord(address, X);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::STY(uint16_t address) {
|
||||
if (GetIndexSize()) {
|
||||
memory.WriteByte(address, static_cast<uint8_t>(Y));
|
||||
} else {
|
||||
memory.WriteWord(address, Y);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::STZ(uint16_t address) {
|
||||
if (GetAccumulatorSize()) {
|
||||
memory.WriteByte(address, 0x00);
|
||||
} else {
|
||||
memory.WriteWord(address, 0x0000);
|
||||
}
|
||||
}
|
||||
|
||||
void CPU::TAX() {
|
||||
X = A;
|
||||
SetZeroFlag(X == 0);
|
||||
SetNegativeFlag(X & 0x80);
|
||||
}
|
||||
|
||||
void CPU::TAY() {
|
||||
Y = A;
|
||||
SetZeroFlag(Y == 0);
|
||||
SetNegativeFlag(Y & 0x80);
|
||||
}
|
||||
|
||||
void CPU::TCD() {
|
||||
D = A;
|
||||
SetZeroFlag(D == 0);
|
||||
SetNegativeFlag(D & 0x80);
|
||||
}
|
||||
|
||||
void CPU::TCS() { memory.SetSP(A); }
|
||||
|
||||
void CPU::TDC() {
|
||||
A = D;
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x80);
|
||||
}
|
||||
|
||||
void CPU::TRB(uint16_t address) {
|
||||
uint8_t value = memory.ReadByte(address);
|
||||
SetZeroFlag((A & value) == 0);
|
||||
value &= ~A;
|
||||
memory.WriteByte(address, value);
|
||||
}
|
||||
|
||||
void CPU::TSB(uint16_t address) {
|
||||
uint8_t value = memory.ReadByte(address);
|
||||
SetZeroFlag((A & value) == 0);
|
||||
value |= A;
|
||||
memory.WriteByte(address, value);
|
||||
}
|
||||
|
||||
void CPU::TSC() {
|
||||
A = SP();
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x80);
|
||||
}
|
||||
|
||||
void CPU::TSX() {
|
||||
X = SP();
|
||||
SetZeroFlag(X == 0);
|
||||
SetNegativeFlag(X & 0x80);
|
||||
}
|
||||
|
||||
void CPU::TXA() {
|
||||
A = X;
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x80);
|
||||
}
|
||||
|
||||
void CPU::TXS() { memory.SetSP(X); }
|
||||
|
||||
void CPU::TXY() {
|
||||
Y = X;
|
||||
SetZeroFlag(X == 0);
|
||||
SetNegativeFlag(X & 0x80);
|
||||
}
|
||||
|
||||
void CPU::TYA() {
|
||||
A = Y;
|
||||
SetZeroFlag(A == 0);
|
||||
SetNegativeFlag(A & 0x80);
|
||||
}
|
||||
|
||||
void CPU::TYX() {
|
||||
X = Y;
|
||||
SetZeroFlag(Y == 0);
|
||||
SetNegativeFlag(Y & 0x80);
|
||||
}
|
||||
|
||||
// TODO: Make this communicate with the SNES class
|
||||
|
||||
void CPU::WAI() {
|
||||
// Pull the RDY pin low
|
||||
// Power consumption is reduced(?)
|
||||
// RDY remains low until an external hardware interupt
|
||||
// (NMI, IRQ, ABORT, or RESET) is received from the SNES class
|
||||
}
|
||||
|
||||
void CPU::XBA() {
|
||||
uint8_t lowByte = A & 0xFF;
|
||||
uint8_t highByte = (A >> 8) & 0xFF;
|
||||
A = (lowByte << 8) | highByte;
|
||||
}
|
||||
|
||||
void CPU::XCE() {
|
||||
uint8_t carry = status & 0x01;
|
||||
status &= ~0x01;
|
||||
status |= E;
|
||||
E = carry;
|
||||
}
|
||||
|
||||
} // namespace emu
|
||||
} // namespace app
|
||||
} // namespace yaze
|
||||
@@ -125,12 +125,10 @@ class Memory {
|
||||
virtual void PushLong(uint32_t value) = 0;
|
||||
virtual uint32_t PopLong() = 0;
|
||||
|
||||
virtual int16_t SP() const = 0;
|
||||
virtual void SetSP(int16_t value) = 0;
|
||||
virtual uint16_t SP() const = 0;
|
||||
virtual void SetSP(uint16_t value) = 0;
|
||||
|
||||
virtual void SetMemory(const std::vector<uint8_t>& data) = 0;
|
||||
virtual void ClearMemory() = 0;
|
||||
virtual void LoadData(const std::vector<uint8_t>& data) = 0;
|
||||
|
||||
virtual uint8_t operator[](int i) const = 0;
|
||||
virtual uint8_t at(int i) const = 0;
|
||||
@@ -313,15 +311,9 @@ class MemoryImpl : public Memory, public Loggable {
|
||||
void AddObserver(Observer* observer) { observers_.push_back(observer); }
|
||||
|
||||
// Stack Pointer access.
|
||||
int16_t SP() const override { return SP_; }
|
||||
void SetSP(int16_t value) override { SP_ = value; }
|
||||
uint16_t SP() const override { return SP_; }
|
||||
void SetSP(uint16_t value) override { SP_ = value; }
|
||||
void ClearMemory() override { std::fill(memory_.begin(), memory_.end(), 0); }
|
||||
void SetMemory(const std::vector<uint8_t>& data) override {
|
||||
std::copy(data.begin(), data.end(), memory_.begin());
|
||||
}
|
||||
void LoadData(const std::vector<uint8_t>& data) override {
|
||||
std::copy(data.begin(), data.end(), memory_.begin());
|
||||
}
|
||||
|
||||
uint8_t at(int i) const override { return memory_[i]; }
|
||||
uint8_t operator[](int i) const override {
|
||||
|
||||
@@ -21,6 +21,9 @@ class MockClock : public Clock {
|
||||
MOCK_METHOD(float, GetFrequency, (), (const, override));
|
||||
};
|
||||
|
||||
// 0x1000000 is 16 MB, simplifying the memory layout for testing
|
||||
// 2 MB is = 0x200000
|
||||
|
||||
class MockMemory : public Memory {
|
||||
public:
|
||||
MOCK_CONST_METHOD1(ReadByte, uint8_t(uint32_t address));
|
||||
@@ -39,8 +42,8 @@ class MockMemory : public Memory {
|
||||
MOCK_METHOD1(PushLong, void(uint32_t value));
|
||||
MOCK_METHOD0(PopLong, uint32_t());
|
||||
|
||||
MOCK_CONST_METHOD0(SP, int16_t());
|
||||
MOCK_METHOD1(SetSP, void(int16_t value));
|
||||
MOCK_CONST_METHOD0(SP, uint16_t());
|
||||
MOCK_METHOD1(SetSP, void(uint16_t value));
|
||||
|
||||
MOCK_METHOD1(SetMemory, void(const std::vector<uint8_t>& data));
|
||||
MOCK_METHOD1(LoadData, void(const std::vector<uint8_t>& data));
|
||||
@@ -51,12 +54,16 @@ class MockMemory : public Memory {
|
||||
uint8_t operator[](int i) const override { return memory_[i]; }
|
||||
|
||||
void SetMemoryContents(const std::vector<uint8_t>& data) {
|
||||
memory_.resize(64000);
|
||||
if (data.size() > memory_.size()) {
|
||||
memory_.resize(data.size());
|
||||
}
|
||||
std::copy(data.begin(), data.end(), memory_.begin());
|
||||
}
|
||||
|
||||
void SetMemoryContents(const std::vector<uint16_t>& data) {
|
||||
memory_.resize(64000);
|
||||
if (data.size() > memory_.size()) {
|
||||
memory_.resize(data.size());
|
||||
}
|
||||
int i = 0;
|
||||
for (const auto& each : data) {
|
||||
memory_[i] = each & 0xFF;
|
||||
@@ -66,6 +73,10 @@ class MockMemory : public Memory {
|
||||
}
|
||||
|
||||
void InsertMemory(const uint64_t address, const std::vector<uint8_t>& data) {
|
||||
if (address > memory_.size()) {
|
||||
memory_.resize(address + data.size());
|
||||
}
|
||||
|
||||
int i = 0;
|
||||
for (const auto& each : data) {
|
||||
memory_[address + i] = each;
|
||||
@@ -160,6 +171,9 @@ class MockMemory : public Memory {
|
||||
this->SetSP(SP_ + 3);
|
||||
return value;
|
||||
});
|
||||
ON_CALL(*this, SP()).WillByDefault([this]() { return SP_; });
|
||||
ON_CALL(*this, SetSP(::testing::_))
|
||||
.WillByDefault([this](uint16_t value) { SP_ = value; });
|
||||
ON_CALL(*this, ClearMemory()).WillByDefault([this]() {
|
||||
memory_.resize(64000, 0x00);
|
||||
});
|
||||
|
||||
@@ -29,7 +29,6 @@ uint16_t GetHeaderOffset(const Memory& memory) {
|
||||
switch (mapMode & 0x07) {
|
||||
case 0: // LoROM
|
||||
offset = 0x7FC0;
|
||||
// offset = 0xFFC0;
|
||||
break;
|
||||
case 1: // HiROM
|
||||
offset = 0xFFC0;
|
||||
@@ -113,12 +112,13 @@ void SNES::Init(ROM& rom) {
|
||||
cpu_.E = 0;
|
||||
|
||||
// Initialize CPU
|
||||
cpu_.Init();
|
||||
cpu_.Init();
|
||||
|
||||
// Read the ROM header
|
||||
auto header_offset = GetHeaderOffset(memory_);
|
||||
rom_info_ = ReadRomHeader((0x00 << 16) + header_offset);
|
||||
cpu_.PC = rom_info_.resetVector;
|
||||
cpu_.PB = 0x00;
|
||||
cpu_.PC = 0x8000;
|
||||
|
||||
// Initialize PPU
|
||||
ppu_.Init();
|
||||
@@ -300,16 +300,28 @@ void SNES::NmiIsr() {
|
||||
|
||||
// VBlank routine
|
||||
void SNES::VBlankRoutine() {
|
||||
// Execute code that needs to run during VBlank, such as transferring data to
|
||||
// the PPU
|
||||
// Read the joypad state
|
||||
// ...
|
||||
|
||||
// Update the PPU
|
||||
// ...
|
||||
|
||||
// Update the APU
|
||||
// ...
|
||||
}
|
||||
|
||||
void SNES::BootAPUWithIPL() {
|
||||
// 1. Waiting for the SPC700 to be ready
|
||||
while (!apu_.IsReadySignalReceived()) {
|
||||
// Active waiting (this can be optimized)
|
||||
void SNES::BootApuWithIPL() {
|
||||
// 1. Check if the SPC700 is ready, else set a callback for when it becomes
|
||||
// ready
|
||||
if (!apu_.IsReadySignalReceived()) {
|
||||
apu_.SetReadyCallback([this]() { this->StartApuDataTransfer(); });
|
||||
return; // Exit and wait for callback to be called
|
||||
}
|
||||
|
||||
StartApuDataTransfer();
|
||||
}
|
||||
|
||||
void SNES::StartApuDataTransfer() {
|
||||
// 2. Setting the starting address
|
||||
const uint16_t startAddress = 0x0200;
|
||||
memory_.WriteByte(0x2142, startAddress & 0xFF); // Lower byte
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
#ifndef YAZE_APP_EMU_SNES_H
|
||||
#define YAZE_APP_EMU_SNES_H
|
||||
|
||||
#include <SDL_mixer.h>
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
@@ -48,7 +46,8 @@ class SNES : public DMA {
|
||||
void VBlankRoutine();
|
||||
|
||||
// Boot the APU with the IPL ROM
|
||||
void BootAPUWithIPL();
|
||||
void BootApuWithIPL();
|
||||
void StartApuDataTransfer();
|
||||
|
||||
// Controller input handling
|
||||
void HandleInput();
|
||||
|
||||
@@ -6,6 +6,7 @@ add_executable(
|
||||
app/rom.cc
|
||||
app/core/common.cc
|
||||
app/gui/pipeline.cc
|
||||
${YAZE_APP_EMU_SRC}
|
||||
${YAZE_APP_GFX_SRC}
|
||||
${YAZE_APP_ZELDA3_SRC}
|
||||
${YAZE_GUI_SRC}
|
||||
@@ -16,11 +17,11 @@ target_include_directories(
|
||||
z3ed PUBLIC
|
||||
lib/
|
||||
app/
|
||||
lib/SDL_mixer/include/
|
||||
${CMAKE_SOURCE_DIR}/src/
|
||||
${PNG_INCLUDE_DIRS}
|
||||
${SDL2_INCLUDE_DIR}
|
||||
${GLEW_INCLUDE_DIRS}
|
||||
lib/SDL_mixer/include/
|
||||
)
|
||||
|
||||
target_link_libraries(
|
||||
|
||||
@@ -14,12 +14,13 @@
|
||||
#include "absl/strings/str_cat.h"
|
||||
#include "app/core/common.h" // for PcToSnes, SnesToPc
|
||||
#include "app/core/constants.h" // for RETURN_IF_ERROR
|
||||
#include "app/gui/pipeline.h"
|
||||
#include "app/emu/snes.h"
|
||||
#include "app/gfx/bitmap.h"
|
||||
#include "app/gfx/compression.h"
|
||||
#include "app/gfx/snes_palette.h"
|
||||
#include "app/gfx/snes_tile.h"
|
||||
#include "app/gui/canvas.h"
|
||||
#include "app/gui/pipeline.h"
|
||||
#include "app/rom.h" // for ROM
|
||||
#include "app/zelda3/overworld.h"
|
||||
#include "cli/patch.h" // for ApplyBpsPatch, CreateBpsPatch
|
||||
@@ -273,8 +274,32 @@ class Expand : public CommandHandler {
|
||||
}
|
||||
};
|
||||
|
||||
// Start Emulator on a SNES rom file
|
||||
// -emu <rom_file> <optional:num_cpu_cycles>
|
||||
class Emulator : public CommandHandler {
|
||||
public:
|
||||
absl::Status handle(const std::vector<std::string>& arg_vec) override {
|
||||
std::string filename = arg_vec[0];
|
||||
RETURN_IF_ERROR(rom_.LoadFromFile(filename))
|
||||
|
||||
snes.SetupMemory(rom_);
|
||||
snes.Init(rom_);
|
||||
|
||||
int i = 0;
|
||||
while (i < 80000) {
|
||||
snes.Run();
|
||||
i++;
|
||||
}
|
||||
|
||||
return absl::OkStatus();
|
||||
}
|
||||
|
||||
app::emu::SNES snes;
|
||||
};
|
||||
|
||||
struct Commands {
|
||||
std::unordered_map<std::string, std::shared_ptr<CommandHandler>> handlers = {
|
||||
{"-emu", std::make_shared<Emulator>()},
|
||||
{"-a", std::make_shared<ApplyPatch>()},
|
||||
{"-c", std::make_shared<CreatePatch>()},
|
||||
{"-o", std::make_shared<Open>()},
|
||||
|
||||
@@ -23,6 +23,8 @@ add_executable(
|
||||
../src/cli/command_handler.cc
|
||||
../src/app/rom.cc
|
||||
../src/app/emu/cpu.cc
|
||||
../src/app/emu/cpu/instructions.cc
|
||||
../src/app/emu/cpu/addressing.cc
|
||||
../src/app/emu/audio/apu.cc
|
||||
../src/app/emu/video/ppu.cc
|
||||
../src/app/emu/audio/dsp.cc
|
||||
|
||||
3056
test/emu/cpu_test.cc
3056
test/emu/cpu_test.cc
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user