Add CPU and Memory class for SNES emulator

This commit is contained in:
scawful
2023-08-19 02:08:17 -04:00
parent 878b1ee1eb
commit a5f1a23de8
6 changed files with 1673 additions and 0 deletions

View File

@@ -2,6 +2,7 @@ add_executable(
yaze
app/yaze.cc
app/rom.cc
app/emu/cpu.cc
${YAZE_APP_CORE_SRC}
${YAZE_APP_EDITOR_SRC}
${YAZE_APP_GFX_SRC}

1038
src/app/emu/cpu.cc Normal file

File diff suppressed because it is too large Load Diff

334
src/app/emu/cpu.h Normal file
View File

@@ -0,0 +1,334 @@
#include <cstdint>
#include <iostream>
#include <vector>
#include "mem.h"
namespace yaze {
namespace app {
namespace emu {
// ADC: Add with carry
// AND: Logical AND
// ASL: Arithmetic shift left
// BCC: Branch if carry clear
// BCS: Branch if carry set
// BEQ: Branch if equal (zero set)
// BIT: Bit test
// BMI: Branch if minus (negative set)
// BNE: Branch if not equal (zero clear)
// BPL: Branch if plus (negative clear)
// BRA: Branch always
// BRK: Break
// BRL: Branch always long
// BVC: Branch if overflow clear
// BVS: Branch if overflow set
// CLC: Clear carry
// CLD: Clear decimal
// CLI: Clear interrupt disable
// CLV: Clear overflow
// CMP: Compare
// COP: Coprocessor
// CPX: Compare X register
// CPY: Compare Y register
// DEC: Decrement
// DEX: Decrement X register
// DEY: Decrement Y register
// EOR: Exclusive OR
// INC: Increment
// INX: Increment X register
// INY: Increment Y register
// JMP: Jump
// JML: Jump long
// JSR: Jump to subroutine
// JSL: Jump to subroutine long
// LDA: Load accumulator
// LDX: Load X register
// LDY: Load Y register
// LSR: Logical shift right
// MVN: Move negative
// MVP: Move positive
// NOP: No operation
// ORA: Logical OR
// PEA: Push effective address
// PEI: Push effective indirect address
// PER: Push effective PC-relative address
// PHA: Push accumulator
// PHB: Push data bank register
// PHD: Push direct page register
// PHK: Push program bank register
// PHP: Push processor status register
// PHX: Push X register
// PHY: Push Y register
// PLA: Pull accumulator
// PLB: Pull data bank register
// PLD: Pull direct page register
// PLP: Pull processor status register
// PLX: Pull X register
// PLY: Pull Y register
// ROL: Rotate left
// ROR: Rotate right
// RTI: Return from interrupt
// RTL: Return from subroutine long
// RTS: Return from subroutine
// SBC: Subtract with carry
// STA: Store accumulator
// STP: Stop the clock
// STX: Store X register
// STY: Store Y register
// STZ: Store zero
// TDC: Transfer direct page register to accumulator
// TRB: Test and reset bits
// TSB: Test and set bits
// WAI: Wait for interrupt
// XBA: Exchange B and A accumulator
// XCE: Exchange carry and emulation
class CPU : public Memory {
private:
Memory& memory;
public:
explicit CPU(Memory& mem) : memory(mem) {}
uint8_t ReadByte(uint16_t address) const override;
uint16_t ReadWord(uint16_t address) const override;
uint32_t ReadWordLong(uint16_t address) const override;
void SetMemory(const std::vector<uint8_t>& data) override {
memory.SetMemory(data);
}
uint8_t FetchByte();
uint16_t FetchWord();
uint32_t FetchLong();
int8_t FetchSignedByte();
int16_t FetchSignedWord();
uint8_t FetchByteDirectPage(uint8_t operand);
uint16_t DirectPageIndexedIndirectX();
uint16_t StackRelative();
uint16_t DirectPage();
uint16_t DirectPageIndirectLong();
uint16_t Immediate();
uint16_t Absolute();
uint16_t AbsoluteLong();
uint16_t DirectPageIndirectIndexedY();
uint16_t DirectPageIndirect();
uint16_t StackRelativeIndirectIndexedY();
uint16_t DirectPageIndexedX();
uint16_t DirectPageIndirectLongIndexedY();
uint16_t AbsoluteIndexedY();
uint16_t AbsoluteIndexedX();
uint16_t AbsoluteLongIndexedX();
void ExecuteInstruction(uint8_t opcode);
void loadROM(const std::vector<uint8_t>& rom) {
// if (rom.size() > memory.size()) {
// std::cerr << "ROM too large" << std::endl;
// return;
// }
// std::copy(rom.begin(), rom.end(), memory.begin());
}
// Registers
uint8_t A = 0; // Accumulator
uint8_t X = 0; // X index register
uint8_t Y = 0; // Y index register
uint8_t SP = 0; // Stack Pointer
uint16_t DB = 0; // Data Bank register
uint16_t D = 0; // Direct Page register
uint16_t PB = 0; // Program Bank register
uint16_t PC = 0; // Program Counter
uint8_t status; // Processor Status (P)
// Mnemonic Value Binary Description
// N #$80 10000000 Negative
// V #$40 01000000 Overflow
// M #$20 00100000 Accumulator size (0 = 16-bit, 1 = 8-bit)
// X #$10 00010000 Index size (0 = 16-bit, 1 = 8-bit)
// D #$08 00001000 Decimal
// I #$04 00000100 IRQ disable
// Z #$02 00000010 Zero
// C #$01 00000001 Carry
// E 6502 emulation mode
// B #$10 00010000 Break (emulation mode only)
// Setting flags in the status register
void SetZeroFlag(bool condition) {
if (condition) {
status |= 0x02;
} else {
status &= ~0x02;
}
}
void SetNegativeFlag(bool condition) {
if (condition) {
status |= 0x80;
} else {
status &= ~0x80;
}
}
void SetOverflowFlag(bool condition) {
if (condition) {
status |= 0x40;
} else {
status &= ~0x40;
}
}
void SetCarryFlag(bool condition) {
if (condition) {
status |= 0x01;
} else {
status &= ~0x01;
}
}
int GetCarryFlag() { return status & 0x01; }
int GetZeroFlag() { return status & 0x02; }
int GetAccumulatorSize() { return status & 0x20; }
int GetIndexSize() { return status & 0x10; }
int GetEmulationMode() { return status & 0x04; }
// Instructions
void ADC(uint8_t operand);
void BEQ(int8_t offset) {
if (GetZeroFlag()) { // If the zero flag is set
PC += offset; // Add the offset to the program counter
}
}
void BCC(int8_t offset) {
if (!GetCarryFlag()) { // If the carry flag is clear
PC += offset; // Add the offset to the program counter
}
}
void BRL(int16_t offset) {
PC += offset; // Add the offset to the program counter
}
void LDA() {
A = memory[PC];
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x80);
PC++;
}
void SEC() { status |= 0x01; }
void CLC() { status &= ~0x01; }
void CLD() { status &= ~0x08; }
void CLI() { status &= ~0x04; }
void CLV() { status &= ~0x40; }
void SEI() { status |= 0x04; }
void SED() { status |= 0x08; }
void SEP() {
PC++;
auto byte = FetchByte();
status |= byte;
}
void REP() {
PC++;
auto byte = FetchByte();
status &= ~byte;
}
void TCD() {
D = A;
SetZeroFlag(D == 0);
SetNegativeFlag(D & 0x80);
}
void TDC() {
A = D;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x80);
}
void TCS() { SP = A; }
void TAX() {
X = A;
SetZeroFlag(X == 0);
SetNegativeFlag(X & 0x80);
}
void TAY() {
Y = A;
SetZeroFlag(Y == 0);
SetNegativeFlag(Y & 0x80);
}
void TYA() {
A = Y;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x80);
}
void TXA() {
A = X;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x80);
}
void TXY() {
X = Y;
SetZeroFlag(X == 0);
SetNegativeFlag(X & 0x80);
}
void TYX() {
Y = X;
SetZeroFlag(Y == 0);
SetNegativeFlag(Y & 0x80);
}
void TSX() {
X = SP;
SetZeroFlag(X == 0);
SetNegativeFlag(X & 0x80);
}
void TXS() { SP = X; }
void TSC() {
A = SP;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x80);
}
void INX() {
X++;
SetZeroFlag(X == 0);
SetNegativeFlag(X & 0x80);
}
void INY() {
Y++;
SetZeroFlag(Y == 0);
SetNegativeFlag(Y & 0x80);
}
// Appease the C++ Gods...
uint8_t operator[](int i) const override { return 0; }
uint8_t at(int i) const override { return 0; }
};
} // namespace emu
} // namespace app
} // namespace yaze

45
src/app/emu/mem.h Normal file
View File

@@ -0,0 +1,45 @@
#ifndef MEM_H
#define MEM_H
// memory.h
class Memory {
public:
virtual ~Memory() = default;
virtual uint8_t ReadByte(uint16_t address) const = 0;
virtual uint16_t ReadWord(uint16_t address) const = 0;
virtual uint32_t ReadWordLong(uint16_t address) const = 0;
virtual void SetMemory(const std::vector<uint8_t>& data) = 0;
virtual uint8_t operator[](int i) const = 0;
virtual uint8_t at(int i) const = 0;
};
class MemoryImpl : public Memory {
public:
uint8_t ReadByte(uint16_t address) const override {
return memory_.at(address);
}
uint16_t ReadWord(uint16_t address) const override {
return static_cast<uint16_t>(memory_.at(address)) |
(static_cast<uint16_t>(memory_.at(address + 1)) << 8);
}
void SetMemory(const std::vector<uint8_t>& data) override { memory_ = data; }
uint8_t at(int i) const override { return memory_[i]; }
auto size() const { return memory_.size(); }
auto begin() const { return memory_.begin(); }
auto end() const { return memory_.end(); }
uint8_t operator[](int i) const override {
if (i > memory_.size()) {
std::cout << i << " out of bounds \n";
return memory_[0];
}
return memory_[i];
}
// Memory (64KB)
std::vector<uint8_t> memory_;
};
#endif // MEM_H

View File

@@ -14,11 +14,13 @@ add_executable(
yaze_test
yaze_test.cc
z3ed_test.cc
cpu_test.cc
../src/cli/patch.cc
../src/cli/command_handler.cc
compression_test.cc
snes_palette_test.cc
../src/app/rom.cc
../src/app/emu/cpu.cc
../src/app/gfx/bitmap.cc
../src/app/gfx/snes_tile.cc
../src/app/gfx/snes_palette.cc

253
test/cpu_test.cc Normal file
View File

@@ -0,0 +1,253 @@
#include "app/emu/cpu.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "app/emu/mem.h"
namespace yaze {
namespace app {
namespace emu {
class MockMemory : public Memory {
public:
MOCK_CONST_METHOD1(ReadByte, uint8_t(uint16_t address));
MOCK_CONST_METHOD1(ReadWord, uint16_t(uint16_t address));
MOCK_CONST_METHOD1(ReadWordLong, uint32_t(uint16_t address));
MOCK_CONST_METHOD1(at, uint8_t(int i));
uint8_t operator[](int i) const override { return at(i); }
MOCK_METHOD1(SetMemory, void(const std::vector<uint8_t>& data));
void SetMemoryContents(const std::vector<uint8_t>& data) {
memory_ = data;
ON_CALL(*this, ReadByte(::testing::_))
.WillByDefault(
[this](uint16_t address) { return memory_.at(address); });
ON_CALL(*this, ReadWord(::testing::_))
.WillByDefault([this](uint16_t address) {
return static_cast<uint16_t>(memory_.at(address)) |
(static_cast<uint16_t>(memory_.at(address + 1)) << 8);
});
}
private:
std::vector<uint8_t> memory_;
};
using ::testing::_;
using ::testing::Return;
TEST(CPUTest, CheckMemoryContents) {
MockMemory memory;
std::vector<uint8_t> data = {0x00, 0x01, 0x02, 0x03, 0x04};
memory.SetMemoryContents(data);
EXPECT_EQ(memory.ReadByte(0), 0x00);
EXPECT_EQ(memory.ReadByte(1), 0x01);
EXPECT_EQ(memory.ReadByte(2), 0x02);
EXPECT_EQ(memory.ReadByte(3), 0x03);
EXPECT_EQ(memory.ReadByte(4), 0x04);
}
TEST(CPUTest, AddTwoPositiveNumbers) {
MockMemory mock_memory;
CPU cpu(mock_memory);
cpu.A = 0x01;
std::vector<uint8_t> data = {0x69, 0x01};
mock_memory.SetMemoryContents(data);
EXPECT_CALL(mock_memory, ReadByte(_)).WillOnce(Return(0x01));
cpu.ExecuteInstruction(0x69); // ADC Immediate
EXPECT_EQ(cpu.A, 0x02);
}
TEST(CPUTest, AddPositiveAndNegativeNumbers) {
MockMemory mock_memory;
CPU cpu(mock_memory);
cpu.A = 10;
std::vector<uint8_t> data = {0x69, static_cast<uint8_t>(-20)};
mock_memory.SetMemoryContents(data);
EXPECT_CALL(mock_memory, ReadByte(_)).WillOnce(Return(-20));
cpu.ExecuteInstruction(0x69); // ADC Immediate
EXPECT_EQ(cpu.A, static_cast<uint8_t>(-10));
}
TEST(CPUTest, CheckCarryFlag) {
MockMemory mock_memory;
CPU cpu(mock_memory);
cpu.A = 0xFF;
cpu.status = 0;
std::vector<uint8_t> data = {0x15, 0x01}; // Operand at address 0x15
mock_memory.SetMemoryContents(data);
EXPECT_CALL(mock_memory, ReadByte(_)).WillOnce(Return(1));
cpu.ExecuteInstruction(0x69); // ADC Immediate
EXPECT_EQ(cpu.A, 0x00);
EXPECT_TRUE(cpu.GetCarryFlag());
}
TEST(CPUTest, BCCWhenCarryFlagClear) {
MockMemory mock_memory;
CPU cpu(mock_memory);
cpu.SetCarryFlag(false);
cpu.PC = 0x1000;
std::vector<uint8_t> data(0x1001, 2); // Operand at address 0x1001
mock_memory.SetMemoryContents(data);
EXPECT_CALL(mock_memory, ReadByte(_)).WillOnce(Return(2));
cpu.ExecuteInstruction(0x90); // BCC
EXPECT_EQ(cpu.PC, 0x1002);
}
TEST(CPUTest, BCCWhenCarryFlagSet) {
MockMemory mock_memory;
CPU cpu(mock_memory);
cpu.SetCarryFlag(true);
cpu.PC = 0x1000;
std::vector<uint8_t> data(0x1001, 2); // Operand at address 0x1001
mock_memory.SetMemoryContents(data);
EXPECT_CALL(mock_memory, ReadByte(_)).WillOnce(Return(2));
cpu.ExecuteInstruction(0x90); // BCC
cpu.BCC(2);
EXPECT_EQ(cpu.PC, 0x1000);
}
TEST(CPUTest, BranchLongAlways) {
MockMemory mock_memory;
CPU cpu(mock_memory);
cpu.PC = 0x1000;
std::vector<uint8_t> data(0x1001, 2); // Operand at address 0x1001
mock_memory.SetMemoryContents(data);
EXPECT_CALL(mock_memory, ReadWord(_)).WillOnce(Return(2));
cpu.ExecuteInstruction(0x82); // BRL
EXPECT_EQ(cpu.PC, 0x1004);
}
TEST(CPUTest, REP) {
MockMemory mock_memory;
CPU cpu(mock_memory);
cpu.status = 0xFF; // All flags set
std::vector<uint8_t> data = {0xC2, 0x30, 0x00}; // REP #0x30 (clear N & Z flags)
mock_memory.SetMemoryContents(data);
cpu.ExecuteInstruction(0xC2); // REP
EXPECT_EQ(cpu.status, 0xCF); // 11001111
}
TEST(CPUTest, SEP) {
MockMemory mock_memory;
CPU cpu(mock_memory);
cpu.status = 0x00; // All flags cleared
std::vector<uint8_t> data = {0xE2, 0x30, 0x00}; // SEP #0x30 (set N & Z flags)
mock_memory.SetMemoryContents(data);
cpu.ExecuteInstruction(0xE2); // SEP
EXPECT_EQ(cpu.status, 0x30); // 00110000
}
TEST(CPUTest, TXA) {
MockMemory mock_memory;
CPU cpu(mock_memory);
cpu.X = 0xAB; // X register
std::vector<uint8_t> data = {0x8A}; // TXA
mock_memory.SetMemoryContents(data);
cpu.ExecuteInstruction(0x8A); // TXA
EXPECT_EQ(cpu.A, 0xAB); // A register should now be equal to X
}
TEST(CPUTest, TAX) {
MockMemory mock_memory;
CPU cpu(mock_memory);
cpu.A = 0xBC; // A register
std::vector<uint8_t> data = {0xAA}; // TAX
mock_memory.SetMemoryContents(data);
cpu.ExecuteInstruction(0xAA); // TAX
EXPECT_EQ(cpu.X, 0xBC); // X register should now be equal to A
}
TEST(CPUTest, TYA) {
MockMemory mock_memory;
CPU cpu(mock_memory);
cpu.Y = 0xCD; // Y register
std::vector<uint8_t> data = {0x98}; // TYA
mock_memory.SetMemoryContents(data);
cpu.ExecuteInstruction(0x98); // TYA
EXPECT_EQ(cpu.A, 0xCD); // A register should now be equal to Y
}
TEST(CPUTest, TAY) {
MockMemory mock_memory;
CPU cpu(mock_memory);
cpu.A = 0xDE; // A register
std::vector<uint8_t> data = {0xA8}; // TAY
mock_memory.SetMemoryContents(data);
cpu.ExecuteInstruction(0xA8); // TAY
EXPECT_EQ(cpu.Y, 0xDE); // Y register should now be equal to A
}
TEST(CPUTest, ADCDirectPage) {
MockMemory mock_memory;
CPU cpu(mock_memory);
cpu.A = 0x01;
cpu.D = 0x0000;
std::vector<uint8_t> data = {0x65, 0x01, 0x05};
mock_memory.SetMemoryContents(data);
EXPECT_CALL(mock_memory, ReadByte(_)).WillOnce(Return(0x01));
cpu.ExecuteInstruction(0x65); // ADC Direct Page
EXPECT_EQ(cpu.A, 0x06);
}
TEST(CPUTest, ADCAbsolute) {
MockMemory mock_memory;
CPU cpu(mock_memory);
cpu.A = 0x01;
std::vector<uint8_t> data = {0x6D, 0x10, 0x00, 0x05};
mock_memory.SetMemoryContents(data);
cpu.ExecuteInstruction(0x6D); // ADC Absolute
EXPECT_EQ(cpu.A, 0x06);
}
TEST(CPUTest, ADCIndirectX) {
MockMemory mock_memory;
CPU cpu(mock_memory);
cpu.A = 0x01;
cpu.X = 0x02;
std::vector<uint8_t> data = {0x72, 0x10, 0x00, 0x00, 0x20, 0x05};
mock_memory.SetMemoryContents(data);
cpu.ExecuteInstruction(0x72); // ADC Indirect Indexed with X
EXPECT_EQ(cpu.A, 0x06);
}
TEST(CPUTest, ADCIndexedIndirect) {
MockMemory mock_memory;
CPU cpu(mock_memory);
cpu.A = 0x01;
cpu.X = 0x02;
std::vector<uint8_t> data = {0x61, 0x10, 0x18, 0x20, 0x05};
mock_memory.SetMemoryContents(data);
cpu.ExecuteInstruction(0x61); // ADC Indexed Indirect
EXPECT_EQ(cpu.A, 0x06);
}
} // namespace emu
} // namespace app
} // namespace yaze