backend-infra-engineer: Release v0.3.0 snapshot

This commit is contained in:
scawful
2025-09-27 00:25:45 -04:00
parent 8ce29e1436
commit e32ac75b9c
346 changed files with 55946 additions and 11764 deletions

View File

@@ -0,0 +1,431 @@
#include "app/gfx/compression.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <cstdint>
#include <array>
#include "absl/status/statusor.h"
#include "app/rom.h"
#define BUILD_HEADER(command, length) (command << 5) + (length - 1)
namespace yaze {
namespace test {
using yaze::Rom;
using yaze::gfx::lc_lz2::CompressionContext;
using yaze::gfx::lc_lz2::CompressionPiece;
using yaze::gfx::lc_lz2::CompressV2;
using yaze::gfx::lc_lz2::CompressV3;
using yaze::gfx::lc_lz2::DecompressV2;
using yaze::gfx::lc_lz2::kCommandByteFill;
using yaze::gfx::lc_lz2::kCommandDirectCopy;
using yaze::gfx::lc_lz2::kCommandIncreasingFill;
using yaze::gfx::lc_lz2::kCommandLongLength;
using yaze::gfx::lc_lz2::kCommandRepeatingBytes;
using yaze::gfx::lc_lz2::kCommandWordFill;
using ::testing::ElementsAre;
using ::testing::ElementsAreArray;
using ::testing::TypedEq;
namespace {
std::vector<uint8_t> ExpectCompressOk(Rom& rom, uint8_t* in, int in_size) {
std::vector<uint8_t> data(in, in + in_size);
auto load_status = rom.LoadFromData(data, false);
EXPECT_TRUE(load_status.ok());
auto compression_status = CompressV3(rom.vector(), 0, in_size);
EXPECT_TRUE(compression_status.ok());
auto compressed_bytes = std::move(*compression_status);
return compressed_bytes;
}
std::vector<uint8_t> ExpectDecompressBytesOk(Rom& rom,
std::vector<uint8_t>& in) {
auto load_status = rom.LoadFromData(in, false);
EXPECT_TRUE(load_status.ok());
auto decompression_status = DecompressV2(rom.data(), 0, in.size());
EXPECT_TRUE(decompression_status.ok());
auto decompressed_bytes = std::move(*decompression_status);
return decompressed_bytes;
}
std::vector<uint8_t> ExpectDecompressOk(Rom& rom, uint8_t* in, int in_size) {
std::vector<uint8_t> data(in, in + in_size);
auto load_status = rom.LoadFromData(data, false);
EXPECT_TRUE(load_status.ok());
auto decompression_status = DecompressV2(rom.data(), 0, in_size);
EXPECT_TRUE(decompression_status.ok());
auto decompressed_bytes = std::move(*decompression_status);
return decompressed_bytes;
}
std::shared_ptr<CompressionPiece> ExpectNewCompressionPieceOk(
const char command, const int length, std::string& args,
const int argument_length) {
auto new_piece = std::make_shared<CompressionPiece>(command, length, args,
argument_length);
EXPECT_TRUE(new_piece != nullptr);
return new_piece;
}
// Helper function to assert compression quality.
void AssertCompressionQuality(
const std::vector<uint8_t>& uncompressed_data,
const std::vector<uint8_t>& expected_compressed_data) {
absl::StatusOr<std::vector<uint8_t>> result =
CompressV3(uncompressed_data, 0, uncompressed_data.size(), 0, false);
ASSERT_TRUE(result.ok());
auto compressed_data = std::move(*result);
EXPECT_THAT(compressed_data, ElementsAreArray(expected_compressed_data));
}
std::vector<uint8_t> ExpectCompressV3Ok(
const std::vector<uint8_t>& uncompressed_data,
const std::vector<uint8_t>& expected_compressed_data) {
absl::StatusOr<std::vector<uint8_t>> result =
CompressV3(uncompressed_data, 0, uncompressed_data.size(), 0, false);
EXPECT_TRUE(result.ok());
auto compressed_data = std::move(*result);
return compressed_data;
}
std::vector<uint8_t> CreateRepeatedBetweenUncompressable(
int leftUncompressedSize, int repeatedByteSize, int rightUncompressedSize) {
std::vector<uint8_t> result(
leftUncompressedSize + repeatedByteSize + rightUncompressedSize, 0);
std::fill_n(result.begin() + leftUncompressedSize, repeatedByteSize, 0x00);
return result;
}
} // namespace
TEST(LC_LZ2_CompressionTest, TrivialRepeatedBytes) {
AssertCompressionQuality({0x00, 0x00, 0x00}, {0x22, 0x00, 0xFF});
}
TEST(LC_LZ2_CompressionTest, RepeatedBytesBetweenUncompressable) {
AssertCompressionQuality({0x01, 0x00, 0x00, 0x00, 0x10},
{0x04, 0x01, 0x00, 0x00, 0x00, 0x10, 0xFF});
}
TEST(LC_LZ2_CompressionTest, RepeatedBytesBeforeUncompressable) {
AssertCompressionQuality({0x00, 0x00, 0x00, 0x10},
{0x22, 0x00, 0x00, 0x10, 0xFF});
}
TEST(LC_LZ2_CompressionTest, RepeatedBytesAfterUncompressable) {
AssertCompressionQuality({0x01, 0x00, 0x00, 0x00},
{0x00, 0x01, 0x22, 0x00, 0xFF});
}
TEST(LC_LZ2_CompressionTest, RepeatedBytesAfterUncompressableRepeated) {
AssertCompressionQuality(
{0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02},
{0x22, 0x00, 0x04, 0x01, 0x00, 0x00, 0x00, 0x02, 0xFF});
}
TEST(LC_LZ2_CompressionTest, RepeatedBytesBeforeUncompressableRepeated) {
AssertCompressionQuality(
{0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00},
{0x04, 0x01, 0x00, 0x00, 0x00, 0x02, 0x22, 0x00, 0xFF});
}
TEST(LC_LZ2_CompressionTest, NewDecompressionPieceOk) {
char command = 1;
int length = 1;
char args[] = "aaa";
int argument_length = 0x02;
CompressionPiece old_piece;
old_piece.command = command;
old_piece.length = length;
old_piece.argument = args;
old_piece.argument_length = argument_length;
old_piece.next = nullptr;
std::string new_args = "aaa";
auto new_piece = ExpectNewCompressionPieceOk(0x01, 0x01, new_args, 0x02);
EXPECT_EQ(old_piece.command, new_piece->command);
EXPECT_EQ(old_piece.length, new_piece->length);
ASSERT_EQ(old_piece.argument_length, new_piece->argument_length);
for (int i = 0; i < old_piece.argument_length; ++i) {
EXPECT_EQ(old_piece.argument[i], new_piece->argument[i]);
}
}
// TODO: Check why header built is off by one
// 0x25 instead of 0x24
TEST(LC_LZ2_CompressionTest, CompressionSingleSet) {
Rom rom;
uint8_t single_set[5] = {0x2A, 0x2A, 0x2A, 0x2A, 0x2A};
uint8_t single_set_expected[3] = {BUILD_HEADER(1, 5), 0x2A, 0xFF};
auto comp_result = ExpectCompressOk(rom, single_set, 5);
EXPECT_THAT(single_set_expected, ElementsAreArray(comp_result.data(), 3));
}
TEST(LC_LZ2_CompressionTest, CompressionSingleWord) {
Rom rom;
uint8_t single_word[6] = {0x2A, 0x01, 0x2A, 0x01, 0x2A, 0x01};
uint8_t single_word_expected[4] = {BUILD_HEADER(0x02, 0x06), 0x2A, 0x01, 0xFF};
auto comp_result = ExpectCompressOk(rom, single_word, 6);
EXPECT_THAT(single_word_expected, ElementsAreArray(comp_result.data(), 4));
}
TEST(LC_LZ2_CompressionTest, CompressionSingleIncrement) {
Rom rom;
uint8_t single_inc[3] = {0x01, 0x02, 0x03};
uint8_t single_inc_expected[3] = {BUILD_HEADER(0x03, 0x03), 0x01, 0xFF};
auto comp_result = ExpectCompressOk(rom, single_inc, 3);
EXPECT_THAT(single_inc_expected, ElementsAreArray(comp_result.data(), 3));
}
TEST(LC_LZ2_CompressionTest, CompressionSingleCopy) {
Rom rom;
uint8_t single_copy[4] = {0x03, 0x0A, 0x07, 0x14};
uint8_t single_copy_expected[6] = {
BUILD_HEADER(0x00, 0x04), 0x03, 0x0A, 0x07, 0x14, 0xFF};
auto comp_result = ExpectCompressOk(rom, single_copy, 4);
EXPECT_THAT(single_copy_expected, ElementsAreArray(comp_result.data(), 6));
}
TEST(LC_LZ2_CompressionTest, CompressionSingleOverflowIncrement) {
AssertCompressionQuality({0xFE, 0xFF, 0x00, 0x01},
{BUILD_HEADER(0x03, 0x04), 0xFE, 0xFF});
}
/**
TEST(LC_LZ2_CompressionTest, CompressionSingleCopyRepeat) {
std::vector<uint8_t> single_copy_expected = {0x03, 0x0A, 0x07, 0x14,
0x03, 0x0A, 0x07, 0x14};
auto comp_result = ExpectCompressV3Ok(
single_copy_expected, {BUILD_HEADER(0x00, 0x04), 0x03, 0x0A, 0x07, 0x14,
BUILD_HEADER(0x04, 0x04), 0x00, 0x00, 0xFF});
EXPECT_THAT(single_copy_expected, ElementsAreArray(comp_result.data(), 6));
}
TEST(LC_LZ2_CompressionTest, CompressionMixedRepeatIncrement) {
AssertCompressionQuality(
{0x05, 0x05, 0x05, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
0x05, 0x02, 0x05, 0x02, 0x05, 0x02, 0x0A, 0x0B, 0x05, 0x02,
0x05, 0x02, 0x05, 0x02, 0x08, 0x0A, 0x00, 0x05},
{BUILD_HEADER(0x01, 0x04), 0x05, BUILD_HEADER(0x03, 0x06), 0x06,
BUILD_HEADER(0x00, 0x01), 0x05, 0xFF});
}
TEST(LC_LZ2_CompressionTest, CompressionMixedIncrementIntraCopyOffset) {
// "Mixing, inc, alternate, intra copy"
// compress start: 3, length: 21
// compressed length: 9
AssertCompressionQuality(
{0x05, 0x05, 0x05, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
0x05, 0x02, 0x05, 0x02, 0x05, 0x02, 0x0A, 0x0B, 0x05, 0x02,
0x05, 0x02, 0x05, 0x02, 0x08, 0x0A, 0x00, 0x05},
{BUILD_HEADER(0x03, 0x07), 0x05, BUILD_HEADER(0x02, 0x06), 0x05, 0x02,
BUILD_HEADER(0x04, 0x08), 0x05, 0x00, 0xFF});
}
TEST(LC_LZ2_CompressionTest, CompressionMixedIncrementIntraCopySource) {
// "Mixing, inc, alternate, intra copy"
// 0, 28
// 16
AssertCompressionQuality(
{0x05, 0x05, 0x05, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
0x05, 0x02, 0x05, 0x02, 0x05, 0x02, 0x0A, 0x0B, 0x05, 0x02,
0x05, 0x02, 0x05, 0x02, 0x08, 0x0A, 0x00, 0x05},
{BUILD_HEADER(0x01, 0x04), 0x05, BUILD_HEADER(0x03, 0x06), 0x06,
BUILD_HEADER(0x02, 0x06), 0x05, 0x02, BUILD_HEADER(0x04, 0x08), 0x08,
0x00, BUILD_HEADER(0x00, 0x04), 0x08, 0x0A, 0x00, 0x05, 0xFF});
}
// Extended Header
// 111CCCLL LLLLLLLL
// CCC: Real command
// LLLLLLLLLL: Length
// Normally you have 5 bits for the length, so the maximum value you can
// represent is 31 (which outputs 32 bytes). With the long length, you get 5
// more bits for the length, so the maximum value you can represent becomes
// 1023, outputting 1024 bytes at a time.
void build_extended_header(uint8_t command, uint8_t length, uint8_t& byte1,
uint8_t& byte2) {
byte1 = command << 3;
byte1 += (length - 1);
byte1 += 0b11100000;
byte2 = length >> 3;
}
std::vector<uint8_t> CreateRepeatedBetweenUncompressable(
int leftUncompressedSize, int repeatedByteSize, int rightUncompressedSize) {
std::vector<uint8_t> result(
leftUncompressedSize + repeatedByteSize + rightUncompressedSize, 0);
std::fill_n(result.begin() + leftUncompressedSize, repeatedByteSize, 0x00);
return result;
}
TEST(LC_LZ2_CompressionTest, LengthBorderCompression) {
// "Length border compression"
std::vector<uint8_t> result(42, 0);
std::fill_n(result.begin(), 42, 0x05);
AssertCompressionQuality(result, {BUILD_HEADER(0x04, 42), 0x05, 0x05, 0xFF});
// "Extended length, 400 repeat of 5"
std::vector<uint8_t> result2(400, 0);
std::fill_n(result2.begin(), 400, 0x05);
uint8_t byte1;
uint8_t byte2;
build_extended_header(0x01, 42, byte1, byte2);
AssertCompressionQuality(result2, {byte1, byte2, 0x05, 0x05, 0xFF});
// "Extended length, 1050 repeat of 5"
std::vector<uint8_t> result3(1050, 0);
std::fill_n(result3.begin(), 1050, 0x05);
uint8_t byte3;
uint8_t byte4;
build_extended_header(0x04, 1050, byte3, byte4);
AssertCompressionQuality(result3, {byte3, byte4, 0x05, 0x05, 0xFF});
// // "Extended length, 2050 repeat of 5"
std::vector<uint8_t> result4(2050, 0);
std::fill_n(result4.begin(), 2050, 0x05);
uint8_t byte5;
uint8_t byte6;
build_extended_header(0x04, 2050, byte5, byte6);
AssertCompressionQuality(result4, {byte5, byte6, 0x05, 0x05, 0xFF});
}
TEST(LC_LZ2_CompressionTest, CompressionExtendedWordCopy) {
// ROM rom;
// uint8_t buffer[3000];
// for (unsigned int i = 0; i < 3000; i += 2) {
// buffer[i] = 0x05;
// buffer[i + 1] = 0x06;
// }
// uint8_t hightlength_word_1050[] = {
// 0b11101011, 0xFF, 0x05, 0x06, BUILD_HEADER(0x02, 0x1A), 0x05, 0x06,
// 0xFF};
// // "Extended word copy"
// auto comp_result = ExpectCompressOk(rom, buffer, 1050);
// EXPECT_THAT(hightlength_word_1050, ElementsAreArray(comp_result.data(),
// 8));
std::vector<uint8_t> buffer(3000, 0);
std::fill_n(buffer.begin(), 3000, 0x05);
for (unsigned int i = 0; i < 3000; i += 2) {
buffer[i] = 0x05;
buffer[i + 1] = 0x06;
}
uint8_t byte1;
uint8_t byte2;
build_extended_header(0x02, 0x1A, byte1, byte2);
AssertCompressionQuality(
buffer, {0b11101011, 0xFF, 0x05, 0x06, byte1, byte2, 0x05, 0x06, 0xFF});
}
TEST(LC_LZ2_CompressionTest, CompressionMixedPatterns) {
AssertCompressionQuality(
{0x05, 0x05, 0x05, 0x06, 0x07, 0x06, 0x07, 0x08, 0x09, 0x0A},
{BUILD_HEADER(0x01, 0x03), 0x05, BUILD_HEADER(0x02, 0x04), 0x06, 0x07,
BUILD_HEADER(0x03, 0x03), 0x08, 0xFF});
}
TEST(LC_LZ2_CompressionTest, CompressionLongIntraCopy) {
ROM rom;
uint8_t long_data[15] = {0x05, 0x06, 0x07, 0x08, 0x05, 0x06, 0x07, 0x08,
0x05, 0x06, 0x07, 0x08, 0x05, 0x06, 0x07};
uint8_t long_expected[] = {BUILD_HEADER(0x00, 0x04), 0x05, 0x06, 0x07, 0x08,
BUILD_HEADER(0x04, 0x0C), 0x00, 0x00, 0xFF};
auto comp_result = ExpectCompressOk(rom, long_data, 15);
EXPECT_THAT(long_expected,
ElementsAreArray(comp_result.data(), sizeof(long_expected)));
}
*/
// Tests for HandleDirectCopy
TEST(HandleDirectCopyTest, NotDirectCopyWithAccumulatedBytes) {
CompressionContext context({0x01, 0x02, 0x03}, 0, 3);
context.cmd_with_max = kCommandByteFill;
context.comp_accumulator = 2;
HandleDirectCopy(context);
EXPECT_EQ(context.compressed_data.size(), 3);
}
TEST(HandleDirectCopyTest, NotDirectCopyWithoutAccumulatedBytes) {
CompressionContext context({0x01, 0x02, 0x03}, 0, 3);
context.cmd_with_max = kCommandByteFill;
HandleDirectCopy(context);
EXPECT_EQ(context.compressed_data.size(), 2); // Header + 1 byte
}
TEST(HandleDirectCopyTest, AccumulateBytesWithoutMax) {
CompressionContext context({0x01, 0x02, 0x03}, 0, 3);
context.cmd_with_max = kCommandDirectCopy;
HandleDirectCopy(context);
EXPECT_EQ(context.comp_accumulator, 1);
EXPECT_EQ(context.compressed_data.size(), 0); // No data added yet
}
// Tests for CheckIncByteV3
TEST(CheckIncByteV3Test, IncreasingSequence) {
CompressionContext context({0x01, 0x02, 0x03}, 0, 3);
CheckIncByteV3(context);
EXPECT_EQ(context.current_cmd.data_size[kCommandIncreasingFill], 3);
}
TEST(CheckIncByteV3Test, IncreasingSequenceSurroundedByIdenticalBytes) {
CompressionContext context({0x01, 0x02, 0x03, 0x04, 0x01}, 1,
3); // Start from index 1
CheckIncByteV3(context);
EXPECT_EQ(context.current_cmd.data_size[kCommandIncreasingFill],
0); // Reset to prioritize direct copy
}
TEST(CheckIncByteV3Test, NotAnIncreasingSequence) {
CompressionContext context({0x01, 0x01, 0x03}, 0, 3);
CheckIncByteV3(context);
EXPECT_EQ(context.current_cmd.data_size[kCommandIncreasingFill],
1); // Only one byte is detected
}
TEST(LC_LZ2_CompressionTest, DecompressionValidCommand) {
Rom rom;
std::vector<uint8_t> simple_copy_input = {BUILD_HEADER(0x00, 0x02), 0x2A,
0x45, 0xFF};
uint8_t simple_copy_output[2] = {0x2A, 0x45};
auto decomp_result = ExpectDecompressBytesOk(rom, simple_copy_input);
EXPECT_THAT(simple_copy_output, ElementsAreArray(decomp_result.data(), 2));
}
TEST(LC_LZ2_CompressionTest, DecompressionMixingCommand) {
Rom rom;
uint8_t random1_i[11] = {BUILD_HEADER(0x01, 0x03),
0x2A,
BUILD_HEADER(0x00, 0x04),
0x01,
0x02,
0x03,
0x04,
BUILD_HEADER(0x02, 0x02),
0x0B,
0x16,
0xFF};
uint8_t random1_o[9] = {42, 42, 42, 1, 2, 3, 4, 11, 22};
auto decomp_result = ExpectDecompressOk(rom, random1_i, 11);
EXPECT_THAT(random1_o, ElementsAreArray(decomp_result.data(), 9));
}
} // namespace test
} // namespace yaze

View File

@@ -0,0 +1,199 @@
#include "app/gfx/snes_palette.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "app/gfx/snes_color.h"
namespace yaze {
namespace test {
using ::testing::ElementsAreArray;
using yaze::gfx::ConvertRgbToSnes;
using yaze::gfx::ConvertSnesToRgb;
using yaze::gfx::Extract;
namespace {
unsigned int test_convert(snes_color col) {
unsigned int toret;
toret = col.red << 16;
toret += col.green << 8;
toret += col.blue;
return toret;
}
} // namespace
// SnesColor Tests
TEST(SnesColorTest, DefaultConstructor) {
yaze::gfx::SnesColor color;
EXPECT_EQ(color.rgb().x, 0.0f);
EXPECT_EQ(color.rgb().y, 0.0f);
EXPECT_EQ(color.rgb().z, 0.0f);
EXPECT_EQ(color.rgb().w, 0.0f);
EXPECT_EQ(color.snes(), 0);
}
TEST(SnesColorTest, RGBConstructor) {
ImVec4 rgb(1.0f, 0.5f, 0.25f, 1.0f);
yaze::gfx::SnesColor color(rgb);
EXPECT_EQ(color.rgb().x, rgb.x);
EXPECT_EQ(color.rgb().y, rgb.y);
EXPECT_EQ(color.rgb().z, rgb.z);
EXPECT_EQ(color.rgb().w, rgb.w);
}
TEST(SnesColorTest, SNESConstructor) {
uint16_t snes = 0x4210;
yaze::gfx::SnesColor color(snes);
EXPECT_EQ(color.snes(), snes);
}
TEST(SnesColorTest, ConvertRgbToSnes) {
snes_color color = {132, 132, 132};
uint16_t snes = ConvertRgbToSnes(color);
ASSERT_EQ(snes, 0x4210);
}
TEST(SnesColorTest, ConvertSnestoRGB) {
uint16_t snes = 0x4210;
snes_color color = ConvertSnesToRgb(snes);
ASSERT_EQ(color.red, 132);
ASSERT_EQ(color.green, 132);
ASSERT_EQ(color.blue, 132);
}
TEST(SnesColorTest, ConvertSnesToRGB_Binary) {
uint16_t red = 0b0000000000011111;
uint16_t blue = 0b0111110000000000;
uint16_t green = 0b0000001111100000;
uint16_t purple = 0b0111110000011111;
snes_color testcolor;
testcolor = ConvertSnesToRgb(red);
ASSERT_EQ(0xFF0000, test_convert(testcolor));
testcolor = ConvertSnesToRgb(green);
ASSERT_EQ(0x00FF00, test_convert(testcolor));
testcolor = ConvertSnesToRgb(blue);
ASSERT_EQ(0x0000FF, test_convert(testcolor));
testcolor = ConvertSnesToRgb(purple);
ASSERT_EQ(0xFF00FF, test_convert(testcolor));
}
TEST(SnesColorTest, Extraction) {
// red, blue, green, purple
char data[8] = {0x1F, 0x00, 0x00, 0x7C, static_cast<char>(0xE0),
0x03, 0x1F, 0x7C};
auto pal = Extract(data, 0, 4);
ASSERT_EQ(4, pal.size());
ASSERT_EQ(0xFF0000, test_convert(pal[0]));
ASSERT_EQ(0x0000FF, test_convert(pal[1]));
ASSERT_EQ(0x00FF00, test_convert(pal[2]));
ASSERT_EQ(0xFF00FF, test_convert(pal[3]));
}
TEST(SnesColorTest, Convert) {
// red, blue, green, purple white
char data[10] = {0x1F,
0x00,
0x00,
0x7C,
static_cast<char>(0xE0),
0x03,
0x1F,
0x7C,
static_cast<char>(0xFF),
0x1F};
auto pal = Extract(data, 0, 5);
auto snes_string = yaze::gfx::Convert(pal);
EXPECT_EQ(10, snes_string.size());
EXPECT_THAT(data, ElementsAreArray(snes_string.data(), 10));
}
// SnesPalette Tests
TEST(SnesPaletteTest, DefaultConstructor) {
yaze::gfx::SnesPalette palette;
EXPECT_TRUE(palette.empty());
EXPECT_EQ(palette.size(), 0);
}
TEST(SnesPaletteTest, AddColor) {
yaze::gfx::SnesPalette palette;
yaze::gfx::SnesColor color;
palette.AddColor(color);
ASSERT_EQ(palette.size(), 1);
}
TEST(SnesPaletteTest, AddMultipleColors) {
yaze::gfx::SnesPalette palette;
yaze::gfx::SnesColor color1(0x4210);
yaze::gfx::SnesColor color2(0x7FFF);
palette.AddColor(color1);
palette.AddColor(color2);
ASSERT_EQ(palette.size(), 2);
}
TEST(SnesPaletteTest, UpdateColor) {
yaze::gfx::SnesPalette palette;
yaze::gfx::SnesColor color1(0x4210);
yaze::gfx::SnesColor color2(0x7FFF);
palette.AddColor(color1);
palette.UpdateColor(0, color2);
auto result = palette[0];
ASSERT_EQ(result.snes(), 0x7FFF);
}
TEST(SnesPaletteTest, SubPalette) {
yaze::gfx::SnesPalette palette;
yaze::gfx::SnesColor color1(0x4210);
yaze::gfx::SnesColor color2(0x7FFF);
yaze::gfx::SnesColor color3(0x1F1F);
palette.AddColor(color1);
palette.AddColor(color2);
palette.AddColor(color3);
auto sub = palette.sub_palette(1, 3);
ASSERT_EQ(sub.size(), 2);
auto result = sub[0];
ASSERT_EQ(result.snes(), 0x7FFF);
}
TEST(SnesPaletteTest, VectorConstructor) {
std::vector<yaze::gfx::SnesColor> colors = {yaze::gfx::SnesColor(0x4210),
yaze::gfx::SnesColor(0x7FFF)};
yaze::gfx::SnesPalette palette(colors);
ASSERT_EQ(palette.size(), 2);
}
TEST(SnesPaletteTest, Clear) {
yaze::gfx::SnesPalette palette;
yaze::gfx::SnesColor color(0x4210);
palette.AddColor(color);
ASSERT_EQ(palette.size(), 1);
palette.clear();
ASSERT_TRUE(palette.empty());
}
TEST(SnesPaletteTest, Iterator) {
yaze::gfx::SnesPalette palette;
yaze::gfx::SnesColor color1(0x4210);
yaze::gfx::SnesColor color2(0x7FFF);
palette.AddColor(color1);
palette.AddColor(color2);
int count = 0;
for (const auto& color : palette) {
EXPECT_TRUE(color.snes() == 0x4210 || color.snes() == 0x7FFF);
count++;
}
EXPECT_EQ(count, 2);
}
TEST(SnesPaletteTest, OperatorAccess) {
yaze::gfx::SnesPalette palette;
yaze::gfx::SnesColor color(0x4210);
palette.AddColor(color);
EXPECT_EQ(palette[0].snes(), 0x4210);
}
} // namespace test
} // namespace yaze

209
test/gfx/snes_tile_test.cc Normal file
View File

@@ -0,0 +1,209 @@
#include "app/gfx/snes_tile.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "testing.h"
namespace yaze {
namespace test {
using ::testing::Eq;
TEST(SnesTileTest, UnpackBppTile) {
// Test 1bpp tile unpacking
std::vector<uint8_t> data1bpp = {0x80, 0x40, 0x20, 0x10,
0x08, 0x04, 0x02, 0x01};
auto tile1bpp = gfx::UnpackBppTile(data1bpp, 0, 1);
EXPECT_EQ(tile1bpp.data[0], 1); // First pixel
EXPECT_EQ(tile1bpp.data[7], 0); // Last pixel of first row
EXPECT_EQ(tile1bpp.data[56], 0); // First pixel of last row
EXPECT_EQ(tile1bpp.data[63], 1); // Last pixel
// Test 2bpp tile unpacking
// Create test data where we know the expected results
// For 2bpp: 16 bytes total (8 rows × 2 bytes per row)
// Each row has 2 bytes: plane 0 byte, plane 1 byte
// First pixel should be 3 (both bits set): plane0 bit7=1, plane1 bit7=1
// Last pixel of first row should be 1: plane0 bit0=1, plane1 bit0=0
std::vector<uint8_t> data2bpp = {
0x81, 0x80, // Row 0: plane0=10000001, plane1=10000000
0x00, 0x00, // Row 1: plane0=00000000, plane1=00000000
0x00, 0x00, // Row 2: plane0=00000000, plane1=00000000
0x00, 0x00, // Row 3: plane0=00000000, plane1=00000000
0x00, 0x00, // Row 4: plane0=00000000, plane1=00000000
0x00, 0x00, // Row 5: plane0=00000000, plane1=00000000
0x00, 0x00, // Row 6: plane0=00000000, plane1=00000000
0x01, 0x81 // Row 7: plane0=00000001, plane1=10000001
};
auto tile2bpp = gfx::UnpackBppTile(data2bpp, 0, 2);
EXPECT_EQ(tile2bpp.data[0], 3); // First pixel: 1|1<<1 = 3
EXPECT_EQ(tile2bpp.data[7], 1); // Last pixel of first row: 1|0<<1 = 1
EXPECT_EQ(tile2bpp.data[56], 2); // First pixel of last row: 0|1<<1 = 2
EXPECT_EQ(tile2bpp.data[63], 3); // Last pixel: 1|1<<1 = 3
// Test 4bpp tile unpacking
// According to SnesLab: First planes 1&2 intertwined, then planes 3&4 intertwined
// 32 bytes total: 16 bytes for planes 1&2, then 16 bytes for planes 3&4
std::vector<uint8_t> data4bpp = {
// Planes 1&2 intertwined (rows 0-7)
0x81, 0x80, // Row 0: bp1=10000001, bp2=10000000
0x00, 0x00, // Row 1: bp1=00000000, bp2=00000000
0x00, 0x00, // Row 2: bp1=00000000, bp2=00000000
0x00, 0x00, // Row 3: bp1=00000000, bp2=00000000
0x00, 0x00, // Row 4: bp1=00000000, bp2=00000000
0x00, 0x00, // Row 5: bp1=00000000, bp2=00000000
0x00, 0x00, // Row 6: bp1=00000000, bp2=00000000
0x01, 0x81, // Row 7: bp1=00000001, bp2=10000001
// Planes 3&4 intertwined (rows 0-7)
0x81, 0x80, // Row 0: bp3=10000001, bp4=10000000
0x00, 0x00, // Row 1: bp3=00000000, bp4=00000000
0x00, 0x00, // Row 2: bp3=00000000, bp4=00000000
0x00, 0x00, // Row 3: bp3=00000000, bp4=00000000
0x00, 0x00, // Row 4: bp3=00000000, bp4=00000000
0x00, 0x00, // Row 5: bp3=00000000, bp4=00000000
0x00, 0x00, // Row 6: bp3=00000000, bp4=00000000
0x01, 0x81 // Row 7: bp3=00000001, bp4=10000001
};
auto tile4bpp = gfx::UnpackBppTile(data4bpp, 0, 4);
EXPECT_EQ(tile4bpp.data[0], 0xF); // First pixel: 1|1<<1|1<<2|1<<3 = 15
EXPECT_EQ(tile4bpp.data[7], 0x5); // Last pixel of first row: 1|0<<1|1<<2|0<<3 = 5
EXPECT_EQ(tile4bpp.data[56], 0xA); // First pixel of last row: 0|1<<1|0<<2|1<<3 = 10
EXPECT_EQ(tile4bpp.data[63], 0xF); // Last pixel: 1|1<<1|1<<2|1<<3 = 15
}
TEST(SnesTileTest, PackBppTile) {
// Test 1bpp tile packing
snes_tile8 tile1bpp;
std::fill(tile1bpp.data, tile1bpp.data + 64, 0);
tile1bpp.data[0] = 1;
tile1bpp.data[63] = 1;
auto packed1bpp = gfx::PackBppTile(tile1bpp, 1);
EXPECT_EQ(packed1bpp[0], 0x80); // First byte
EXPECT_EQ(packed1bpp[7], 0x01); // Last byte
// Test 2bpp tile packing
snes_tile8 tile2bpp;
std::fill(tile2bpp.data, tile2bpp.data + 64, 0);
tile2bpp.data[0] = 3;
tile2bpp.data[7] = 1;
tile2bpp.data[56] = 2;
tile2bpp.data[63] = 3;
auto packed2bpp = gfx::PackBppTile(tile2bpp, 2);
EXPECT_EQ(packed2bpp[0], 0x81); // First byte of first plane: pixel0=3→0x80, pixel7=1→0x01
EXPECT_EQ(packed2bpp[1], 0x80); // First byte of second plane: pixel0=3→0x80, pixel7=1→0x00
EXPECT_EQ(packed2bpp[14], 0x01); // Last byte of first plane: pixel56=2→0x00, pixel63=3→0x01
EXPECT_EQ(packed2bpp[15], 0x81); // Last byte of second plane: pixel56=2→0x80, pixel63=3→0x01
}
TEST(SnesTileTest, ConvertBpp) {
// Test 2bpp to 4bpp conversion
std::vector<uint8_t> data2bpp = {0x80, 0x40, 0x20, 0x10, 0x08, 0x04,
0x02, 0x01, 0x01, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80};
auto converted4bpp = gfx::ConvertBpp(data2bpp, 2, 4);
EXPECT_EQ(converted4bpp.size(), 32); // 4bpp tile is 32 bytes
// Test 4bpp to 2bpp conversion (using only colors 0-3 for valid 2bpp)
std::vector<uint8_t> data4bpp = {
// Planes 1&2 (rows 0-7) - create colors 0-3 only
0x80, 0x80, 0x40, 0x00, 0x20, 0x40, 0x10, 0x80, // rows 0-3
0x08, 0x00, 0x04, 0x40, 0x02, 0x80, 0x01, 0x00, // rows 4-7
// Planes 3&4 (rows 0-7) - all zeros to ensure colors stay ≤ 3
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // rows 0-3
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 // rows 4-7
};
auto converted2bpp = gfx::ConvertBpp(data4bpp, 4, 2);
EXPECT_EQ(converted2bpp.size(), 16); // 2bpp tile is 16 bytes
}
TEST(SnesTileTest, TileInfo) {
// Test TileInfo construction and bit manipulation
gfx::TileInfo info(0x123, 3, true, true, true);
EXPECT_EQ(info.id_, 0x123);
EXPECT_EQ(info.palette_, 3);
EXPECT_TRUE(info.vertical_mirror_);
EXPECT_TRUE(info.horizontal_mirror_);
EXPECT_TRUE(info.over_);
// Test TileInfo from bytes
gfx::TileInfo infoFromBytes(0x23, 0xED); // v=1, h=1, o=1, p=3, id=0x123
EXPECT_EQ(infoFromBytes.id_, 0x123);
EXPECT_EQ(infoFromBytes.palette_, 3);
EXPECT_TRUE(infoFromBytes.vertical_mirror_);
EXPECT_TRUE(infoFromBytes.horizontal_mirror_);
EXPECT_TRUE(infoFromBytes.over_);
// Test TileInfo equality
EXPECT_TRUE(info == infoFromBytes);
}
TEST(SnesTileTest, TileInfoToWord) {
gfx::TileInfo info(0x123, 3, true, true, true);
uint16_t word = gfx::TileInfoToWord(info);
// Verify bit positions:
// vhopppcc cccccccc
EXPECT_EQ(word & 0x3FF, 0x123); // id (10 bits)
EXPECT_TRUE(word & 0x8000); // vertical mirror
EXPECT_TRUE(word & 0x4000); // horizontal mirror
EXPECT_TRUE(word & 0x2000); // over
EXPECT_EQ((word >> 10) & 0x07, 3); // palette (3 bits)
}
TEST(SnesTileTest, WordToTileInfo) {
uint16_t word = 0xED23; // v=1, h=1, o=1, p=3, id=0x123
gfx::TileInfo info = gfx::WordToTileInfo(word);
EXPECT_EQ(info.id_, 0x123);
EXPECT_EQ(info.palette_, 3);
EXPECT_TRUE(info.vertical_mirror_);
EXPECT_TRUE(info.horizontal_mirror_);
EXPECT_TRUE(info.over_);
}
TEST(SnesTileTest, Tile32) {
// Test Tile32 construction and operations
gfx::Tile32 tile32(0x1234, 0x5678, 0x9ABC, 0xDEF0);
EXPECT_EQ(tile32.tile0_, 0x1234);
EXPECT_EQ(tile32.tile1_, 0x5678);
EXPECT_EQ(tile32.tile2_, 0x9ABC);
EXPECT_EQ(tile32.tile3_, 0xDEF0);
// Test packed value
uint64_t packed = tile32.GetPackedValue();
EXPECT_EQ(packed, 0xDEF09ABC56781234);
// Test from packed value
gfx::Tile32 tile32FromPacked(packed);
EXPECT_EQ(tile32FromPacked.tile0_, 0x1234);
EXPECT_EQ(tile32FromPacked.tile1_, 0x5678);
EXPECT_EQ(tile32FromPacked.tile2_, 0x9ABC);
EXPECT_EQ(tile32FromPacked.tile3_, 0xDEF0);
// Test equality
EXPECT_TRUE(tile32 == tile32FromPacked);
}
TEST(SnesTileTest, Tile16) {
// Test Tile16 construction and operations
gfx::TileInfo info0(0x123, 3, true, true, true);
gfx::TileInfo info1(0x456, 2, false, true, false);
gfx::TileInfo info2(0x789, 1, true, false, true);
gfx::TileInfo info3(0xABC, 0, false, false, false);
gfx::Tile16 tile16(info0, info1, info2, info3);
EXPECT_TRUE(tile16.tile0_ == info0);
EXPECT_TRUE(tile16.tile1_ == info1);
EXPECT_TRUE(tile16.tile2_ == info2);
EXPECT_TRUE(tile16.tile3_ == info3);
// Test array access
EXPECT_TRUE(tile16.tiles_info[0] == info0);
EXPECT_TRUE(tile16.tiles_info[1] == info1);
EXPECT_TRUE(tile16.tiles_info[2] == info2);
EXPECT_TRUE(tile16.tiles_info[3] == info3);
}
} // namespace test
} // namespace yaze