17 KiB
AI Development Tools - Technical Reference
This document provides technical details on the tools available to AI agents for development assistance and ROM debugging. It covers the tool architecture, API reference, and patterns for extending the system.
Architecture Overview
┌─────────────────────────────────────────────────┐
│ z3ed Agent Service │
│ ┌──────────────────────────────────────────┐ │
│ │ Conversation Handler │ │
│ │ (Prompt Builder + AI Service) │ │
│ └──────────────────────────────────────────┘ │
│ │ │
│ ┌───────────┴───────────┐ │
│ ▼ ▼ │
│ ┌────────────────────┐ ┌────────────────┐ │
│ │ Tool Dispatcher │ │ Device Manager │ │
│ └────────────────────┘ └────────────────┘ │
│ │ │
│ ┌────┼────┬──────┬──────┬─────┐ │
│ ▼ ▼ ▼ ▼ ▼ ▼ │
│ ┌──────────────────────────────────────────┐ │
│ │ Tool Implementations │ │
│ │ │ │
│ │ • FileSystemTool • BuildTool │ │
│ │ • EmulatorTool • TestRunner │ │
│ │ • MemoryInspector • DisassemblyTool │ │
│ │ • ResourceTool • SymbolProvider │ │
│ └──────────────────────────────────────────┘ │
└─────────────────────────────────────────────────┘
ToolDispatcher System
The ToolDispatcher class in src/cli/service/agent/tool_dispatcher.h is the central hub for tool management.
Core Concept
Tools are extensible modules that perform specific operations. The dispatcher:
- Receives tool calls from the AI model
- Validates arguments
- Executes the tool
- Returns results to the AI model
Tool Types
enum class ToolCallType {
// FileSystem Tools
kFilesystemList,
kFilesystemRead,
kFilesystemExists,
kFilesystemInfo,
// Build Tools
kBuildConfigure,
kBuildCompile,
kBuildTest,
kBuildStatus,
// Test Tools
kTestRun,
kTestList,
kTestCoverage,
// ROM Operations
kRomInfo,
kRomLoadGraphics,
kRomExportData,
// Emulator Tools
kEmulatorConnect,
kEmulatorReadMemory,
kEmulatorWriteMemory,
kEmulatorSetBreakpoint,
kEmulatorStep,
kEmulatorRun,
kEmulatorPause,
// Disassembly Tools
kDisassemble,
kDisassembleRange,
kTraceExecution,
// Symbol/Debug Info
kLookupSymbol,
kGetStackTrace,
};
Tool Implementations
1. FileSystemTool
Read-only filesystem access for agents. Fully documented in filesystem-tool.md.
Tools:
filesystem-list: List directory contentsfilesystem-read: Read text filesfilesystem-exists: Check path existencefilesystem-info: Get file metadata
Example Usage:
ToolDispatcher dispatcher(rom, ai_service);
auto result = dispatcher.DispatchTool({
.tool_type = ToolCallType::kFilesystemRead,
.args = {
{"path", "src/app/gfx/arena.h"},
{"lines", "50"}
}
});
2. BuildTool (Phase 1)
CMake/Ninja integration for build management.
Tools:
kBuildConfigure: Run CMake configurationkBuildCompile: Compile specific targetskBuildTest: Build test targetskBuildStatus: Check build status
API:
struct BuildRequest {
std::string preset; // cmake preset (mac-dbg, lin-ai, etc)
std::string target; // target to build (yaze, z3ed, etc)
std::vector<std::string> flags; // additional cmake/ninja flags
bool verbose = false;
};
struct BuildResult {
bool success;
std::string output;
std::vector<CompileError> errors;
std::vector<std::string> warnings;
int exit_code;
};
Example:
BuildResult result = tool_dispatcher.Build({
.preset = "mac-dbg",
.target = "yaze",
.verbose = true
});
for (const auto& error : result.errors) {
LOG_ERROR("Build", "{}:{}: {}",
error.file, error.line, error.message);
}
Implementation Notes:
- Parses CMake/Ninja output for error extraction
- Detects common error patterns (missing includes, undefined symbols, etc.)
- Maps error positions to source files for FileSystemTool integration
- Supports incremental builds (only rebuild changed targets)
3. TestRunner (Phase 1)
CTest integration for test automation.
Tools:
kTestRun: Execute specific testskTestList: List available testskTestCoverage: Analyze coverage
API:
struct TestRequest {
std::string preset; // cmake preset
std::vector<std::string> filters; // test name patterns
std::string label; // ctest label (stable, unit, etc)
bool verbose = false;
};
struct TestResult {
bool all_passed;
int passed_count;
int failed_count;
std::vector<TestFailure> failures;
std::string summary;
};
Example:
TestResult result = tool_dispatcher.RunTests({
.preset = "mac-dbg",
.label = "stable",
.filters = {"OverworldTest*"}
});
for (const auto& failure : result.failures) {
LOG_ERROR("Test", "{}: {}",
failure.test_name, failure.error_message);
}
Implementation Notes:
- Integrates with ctest for test execution
- Parses Google Test output format
- Detects assertion types (EXPECT_EQ, EXPECT_TRUE, etc.)
- Provides failure context (actual vs expected values)
- Supports test filtering by name or label
4. MemoryInspector (Phase 2)
Emulator memory access and analysis.
Tools:
kEmulatorReadMemory: Read memory regionskEmulatorWriteMemory: Write memory (for debugging)kEmulatorSetBreakpoint: Set conditional breakpointskEmulatorReadWatchpoint: Monitor memory locations
API:
struct MemoryReadRequest {
uint32_t address; // SNES address (e.g., $7E:0000)
uint32_t length; // bytes to read
bool interpret = false; // try to decode as data structure
};
struct MemoryReadResult {
std::vector<uint8_t> data;
std::string hex_dump;
std::string interpretation; // e.g., "Sprite data: entity=3, x=120"
};
Example:
MemoryReadResult result = tool_dispatcher.ReadMemory({
.address = 0x7E0000,
.length = 256,
.interpret = true
});
// Result includes:
// hex_dump: "00 01 02 03 04 05 06 07..."
// interpretation: "WRAM header region"
Implementation Notes:
- Integrates with emulator's gRPC service
- Detects common data structures (sprite tables, tile data, etc.)
- Supports structured memory reads (tagged as "player RAM", "sprite data")
- Provides memory corruption detection
5. DisassemblyTool (Phase 2)
65816 instruction decoding and execution analysis.
Tools:
kDisassemble: Disassemble single instructionkDisassembleRange: Disassemble code regionkTraceExecution: Step through code with trace
API:
struct DisassemblyRequest {
uint32_t address; // ROM/RAM address
uint32_t length; // bytes to disassemble
bool with_trace = false; // include CPU state at each step
};
struct DisassemblyResult {
std::vector<Instruction> instructions;
std::string assembly_text;
std::vector<CpuState> trace_states; // if with_trace=true
};
struct Instruction {
uint32_t address;
std::string opcode;
std::string operand;
std::string mnemonic;
std::vector<std::string> explanation;
};
Example:
DisassemblyResult result = tool_dispatcher.Disassemble({
.address = 0x0A8000,
.length = 32,
.with_trace = true
});
for (const auto& insn : result.instructions) {
LOG_INFO("Disasm", "{:06X} {} {}",
insn.address, insn.mnemonic, insn.operand);
}
Implementation Notes:
- Uses
Disassembler65816for instruction decoding - Explains each instruction's effect in plain English
- Tracks register/flag changes in execution trace
- Detects jump targets and resolves addresses
- Identifies likely subroutine boundaries
6. ResourceTool (Phase 2)
ROM resource access and interpretation.
Tools:
- Query ROM data structures (sprites, tiles, palettes)
- Cross-reference memory addresses to ROM resources
- Export resource data
API:
struct ResourceQuery {
std::string resource_type; // "sprite", "tile", "palette", etc
uint32_t resource_id;
bool with_metadata = true;
};
struct ResourceResult {
std::string type;
std::string description;
std::vector<uint8_t> data;
std::map<std::string, std::string> metadata;
};
Example:
ResourceResult result = tool_dispatcher.QueryResource({
.resource_type = "sprite",
.resource_id = 0x13,
.with_metadata = true
});
// Returns sprite data, graphics, palette info
Tool Integration Patterns
Pattern 1: Error-Driven Tool Chaining
When a tool produces an error, chain to informational tools:
// 1. Attempt to compile
auto build_result = tool_dispatcher.Build({...});
// 2. If failed, analyze error
if (!build_result.success) {
for (const auto& error : build_result.errors) {
// 3. Read the source file at error location
auto file_result = tool_dispatcher.ReadFile({
.path = error.file,
.offset = error.line - 5,
.lines = 15
});
// 4. AI analyzes context and suggests fix
// "You're missing #include 'app/gfx/arena.h'"
}
}
Pattern 2: Memory Analysis Workflow
Debug memory corruption by reading and interpreting:
// 1. Read suspect memory region
auto mem_result = tool_dispatcher.ReadMemory({
.address = 0x7E7000,
.length = 256,
.interpret = true
});
// 2. Set watchpoint if available
if (needs_monitoring) {
tool_dispatcher.SetWatchpoint({
.address = 0x7E7000,
.on_write = true
});
}
// 3. Continue execution and capture who writes
// AI analyzes the execution trace to find the culprit
Pattern 3: Instruction-by-Instruction Analysis
Understand complex routines:
// 1. Disassemble the routine
auto disasm = tool_dispatcher.Disassemble({
.address = 0x0A8000,
.length = 128,
.with_trace = true
});
// 2. Analyze each instruction
for (const auto& insn : disasm.instructions) {
// - What registers are affected?
// - What memory locations accessed?
// - Is this a jump/call?
}
// 3. Build understanding of routine's purpose
// AI synthesizes into "This routine initializes sprite table"
Adding New Tools
Step 1: Define Tool Type
Add to enum class ToolCallType in tool_dispatcher.h:
enum class ToolCallType {
// ... existing ...
kMyCustomTool,
};
Step 2: Define Tool Interface
Create base class in tool_dispatcher.h:
class MyCustomTool : public ToolBase {
public:
std::string GetName() const override {
return "my-custom-tool";
}
std::string GetDescription() const override {
return "Does something useful";
}
absl::StatusOr<ToolResult> Execute(
const ToolArgs& args) override;
bool RequiresLabels() const override {
return false;
}
};
Step 3: Implement Tool
In tool_dispatcher.cc:
absl::StatusOr<ToolResult> MyCustomTool::Execute(
const ToolArgs& args) {
// Validate arguments
if (!args.count("required_arg")) {
return absl::InvalidArgumentError(
"Missing required_arg parameter");
}
std::string required_arg = args.at("required_arg");
// Perform operation
auto result = DoSomethingUseful(required_arg);
// Return structured result
return ToolResult{
.success = true,
.output = result.ToString(),
.data = result.AsJson()
};
}
Step 4: Register Tool
In ToolDispatcher::DispatchTool():
case ToolCallType::kMyCustomTool: {
MyCustomTool tool;
return tool.Execute(args);
}
Step 5: Add to AI Prompt
Update the prompt builder to inform AI about the new tool:
// In prompt_builder.cc
tools_description += R"(
- my-custom-tool: Does something useful
Args: required_arg (string)
Example: {"tool_name": "my-custom-tool",
"args": {"required_arg": "value"}}
)";
Error Handling Patterns
Pattern 1: Graceful Degradation
When a tool fails, provide fallback behavior:
// Try to use emulator tool
auto mem_result = tool_dispatcher.ReadMemory({...});
if (!mem_result.ok()) {
// Fallback: Use ROM data instead
auto rom_result = tool_dispatcher.QueryResource({...});
return rom_result;
}
Pattern 2: Error Context
Always include context in errors:
if (!file_exists(path)) {
return absl::NotFoundError(
absl::StrFormat(
"File not found: %s (checked in project dir: %s)",
path, project_root));
}
Pattern 3: Timeout Handling
Long operations should timeout gracefully:
// In BuildTool
const auto timeout = std::chrono::minutes(5);
auto result = RunBuildWithTimeout(preset, target, timeout);
if (result.timed_out) {
return absl::DeadlineExceededError(
"Build took too long (> 5 minutes). "
"Try building specific target instead of all.");
}
Tool State Management
Session State
Tools operate within a session context:
struct ToolSession {
std::string session_id;
std::string rom_path;
std::string build_preset;
std::string workspace_dir;
std::map<std::string, std::string> environment;
};
Tool Preferences
Users can configure tool behavior:
struct ToolPreferences {
bool filesystem = true; // Enable filesystem tools
bool build = true; // Enable build tools
bool test = true; // Enable test tools
bool emulator = true; // Enable emulator tools
bool experimental = false; // Enable experimental tools
int timeout_seconds = 300; // Default timeout
bool verbose = false; // Verbose output
};
Performance Considerations
Caching
Cache expensive operations:
// Cache file reads
std::unordered_map<std::string, FileContent> file_cache;
// Cache test results
std::unordered_map<std::string, TestResult> test_cache;
Async Execution
Long operations should be async:
// In BuildTool
auto future = std::async(std::launch::async,
[this] { return RunBuild(); });
auto result = future.get(); // Wait for completion
Resource Limits
Enforce limits on resource usage:
// Limit memory reads
constexpr size_t MAX_MEMORY_READ = 64 * 1024; // 64KB
// Limit disassembly length
constexpr size_t MAX_DISASM_BYTES = 16 * 1024; // 16KB
// Limit files listed
constexpr size_t MAX_FILES_LISTED = 1000;
Debugging Tools
Tool Logging
Enable verbose logging for tool execution:
export Z3ED_TOOL_DEBUG=1
z3ed agent chat --debug --log-file tools.log
Tool Testing
Unit tests for each tool in test/unit/:
TEST(FileSystemToolTest, ListsDirectoryRecursively) {
FileSystemTool tool;
auto result = tool.Execute({
{"path", "src"},
{"recursive", "true"}
});
EXPECT_TRUE(result.ok());
}
Tool Profiling
Profile tool execution:
z3ed agent chat --profile-tools
# Output: Tool timings and performance metrics
Security Considerations
Input Validation
All tool inputs must be validated:
// FileSystemTool validates paths against project root
if (!IsPathInProject(path)) {
return absl::PermissionDeniedError(
"Path outside project directory");
}
// BuildTool validates preset names
if (!IsValidPreset(preset)) {
return absl::InvalidArgumentError(
"Unknown preset: " + preset);
}
Sandboxing
Operations should be sandboxed:
// BuildTool uses dedicated build directories
const auto build_dir = workspace / "build_ai";
// FileSystemTool restricts to project directory
// EmulatorTool only connects to local ports
Access Control
Sensitive operations may require approval:
// Emulator write operations log for audit
LOG_WARNING("Emulator",
"Writing to memory at {:06X} (value: {:02X})",
address, value);
// ROM modifications require confirmation
// Not implemented in agent, but planned for future
Related Documentation
- FileSystemTool:
filesystem-tool.md - AI Infrastructure:
ai-infrastructure-initiative.md - Agent Architecture:
agent-architecture.md - Development Plan:
../plans/ai-assisted-development-plan.md