Files
yaze/src/app/rom.cc
Justin Scofield 8cc9adf41a palette stuff
2022-09-10 09:51:40 -05:00

811 lines
26 KiB
C++

#include "rom.h"
#include <SDL.h>
#include <cstddef>
#include <cstring>
#include <filesystem>
#include <fstream>
#include <iostream>
#include <memory>
#include <string>
#include <vector>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
#include "app/core/common.h"
#include "app/core/constants.h"
#include "app/gfx/bitmap.h"
#include "app/zelda3/palettes.h"
#define COMPRESSION_STRING_MOD 7 << 5
namespace yaze {
namespace app {
namespace {
int GetGraphicsAddress(const uchar* data, uint8_t offset) {
auto part_one = data[kOverworldGraphicsPos1 + offset] << 16;
auto part_two = data[kOverworldGraphicsPos2 + offset] << 8;
auto part_three = data[kOverworldGraphicsPos3 + offset];
auto snes_addr = (part_one | part_two | part_three);
return core::SnesToPc(snes_addr);
}
Bytes SNES3bppTo8bppSheet(Bytes sheet) {
Bytes sheet_buffer_out(0x1000);
int xx = 0; // positions where we are at on the sheet
int yy = 0;
int pos = 0;
int ypos = 0;
// for each tiles, 16 per line
for (int i = 0; i < 64; i++) {
// for each line
for (int y = 0; y < 8; y++) {
//[0] + [1] + [16]
for (int x = 0; x < 8; x++) {
auto b1 = ((sheet[(y * 2) + (24 * pos)] & (kGraphicsBitmap[x])));
auto b2 = (sheet[((y * 2) + (24 * pos)) + 1] & (kGraphicsBitmap[x]));
auto b3 = (sheet[(16 + y) + (24 * pos)] & (kGraphicsBitmap[x]));
unsigned char b = 0;
if (b1 != 0) {
b |= 1;
}
if (b2 != 0) {
b |= 2;
}
if (b3 != 0) {
b |= 4;
}
sheet_buffer_out[x + (xx) + (y * 128) + (yy * 1024)] = b;
}
}
pos++;
ypos++;
xx += 8;
if (ypos >= 16) {
yy++;
xx = 0;
ypos = 0;
}
}
return sheet_buffer_out;
}
void PrintCompressionPiece(const std::shared_ptr<CompressionPiece>& piece) {
printf("Command: %d\n", piece->command);
printf("Command kength: %d\n", piece->length);
printf("Argument:");
auto arg_size = piece->argument.size();
for (int i = 0; i < arg_size; ++i) {
printf("%02X ", piece->argument.at(i));
}
printf("\nArgument length: %d\n", piece->argument_length);
}
void PrintCompressionChain(
const std::shared_ptr<CompressionPiece>& compressed_chain_start) {
auto compressed_chain = compressed_chain_start->next;
while (compressed_chain != nullptr) {
printf("- Compression Piece -\n");
PrintCompressionPiece(compressed_chain);
compressed_chain = compressed_chain->next;
}
}
void CheckByteRepeat(const uchar* rom_data, DataSizeArray& data_size_taken,
CommandArgumentArray& cmd_args, uint& src_data_pos,
const uint last_pos) {
uint pos = src_data_pos;
char byte_to_repeat = rom_data[pos];
while (pos <= last_pos && rom_data[pos] == byte_to_repeat) {
data_size_taken[kCommandByteFill]++;
pos++;
}
cmd_args[kCommandByteFill][0] = byte_to_repeat;
}
void CheckWordRepeat(const uchar* rom_data, DataSizeArray& data_size_taken,
CommandArgumentArray& cmd_args, uint& src_data_pos,
const uint last_pos) {
if (src_data_pos + 2 <= last_pos &&
rom_data[src_data_pos] != rom_data[src_data_pos + 1]) {
uint pos = src_data_pos;
char byte1 = rom_data[pos];
char byte2 = rom_data[pos + 1];
pos += 2;
data_size_taken[kCommandWordFill] = 2;
while (pos + 1 <= last_pos) {
if (rom_data[pos] == byte1 && rom_data[pos + 1] == byte2)
data_size_taken[kCommandWordFill] += 2;
else
break;
pos += 2;
}
cmd_args[kCommandWordFill][0] = byte1;
cmd_args[kCommandWordFill][1] = byte2;
}
}
void CheckIncByte(const uchar* rom_data, DataSizeArray& data_size_taken,
CommandArgumentArray& cmd_args, uint& src_data_pos,
const uint last_pos) {
uint pos = src_data_pos;
char byte = rom_data[pos];
pos++;
data_size_taken[kCommandIncreasingFill] = 1;
byte++;
while (pos <= last_pos && byte == rom_data[pos]) {
data_size_taken[kCommandIncreasingFill]++;
byte++;
pos++;
}
cmd_args[kCommandIncreasingFill][0] = rom_data[src_data_pos];
}
void CheckIntraCopy(const uchar* rom_data, DataSizeArray& data_size_taken,
CommandArgumentArray& cmd_args, uint& src_data_pos,
const uint last_pos, uint start) {
if (src_data_pos != start) {
uint searching_pos = start;
uint current_pos_u = src_data_pos;
uint copied_size = 0;
uint search_start = start;
while (searching_pos < src_data_pos && current_pos_u <= last_pos) {
while (rom_data[current_pos_u] != rom_data[searching_pos] &&
searching_pos < src_data_pos)
searching_pos++;
search_start = searching_pos;
while (current_pos_u <= last_pos &&
rom_data[current_pos_u] == rom_data[searching_pos] &&
searching_pos < src_data_pos) {
copied_size++;
current_pos_u++;
searching_pos++;
}
if (copied_size > data_size_taken[kCommandRepeatingBytes]) {
search_start -= start;
printf("- Found repeat of %d at %d\n", copied_size, search_start);
data_size_taken[kCommandRepeatingBytes] = copied_size;
cmd_args[kCommandRepeatingBytes][0] = search_start & kSnesByteMax;
cmd_args[kCommandRepeatingBytes][1] = search_start >> 8;
}
current_pos_u = src_data_pos;
copied_size = 0;
}
}
}
// Check if a command managed to pick up `max_win` or more bytes
// Avoids being even with copy command, since it's possible to merge copy
void ValidateForByteGain(const DataSizeArray& data_size_taken,
const CommandSizeArray& cmd_size, uint& max_win,
uint& cmd_with_max) {
for (uint cmd_i = 1; cmd_i < 5; cmd_i++) {
uint cmd_size_taken = data_size_taken[cmd_i];
// TODO(@scawful): Replace conditional with table of command sizes
// "Table that is even with copy but all other cmd are 2"
auto table_check =
!(cmd_i == kCommandRepeatingBytes && cmd_size_taken == 3);
if (cmd_size_taken > max_win && cmd_size_taken > cmd_size[cmd_i] &&
table_check) {
printf("==> C:%d / S:%d\n", cmd_i, cmd_size_taken);
cmd_with_max = cmd_i;
max_win = cmd_size_taken;
}
}
}
void CompressionCommandAlternative(
const uchar* rom_data, std::shared_ptr<CompressionPiece>& compressed_chain,
const CommandSizeArray& cmd_size, const CommandArgumentArray& cmd_args,
uint& src_data_pos, uint& comp_accumulator, uint& cmd_with_max,
uint& max_win) {
printf("- Ok we get a gain from %d\n", cmd_with_max);
std::string buffer;
buffer.push_back(cmd_args[cmd_with_max][0]);
if (cmd_size[cmd_with_max] == 2) {
buffer.push_back(cmd_args[cmd_with_max][1]);
}
auto new_comp_piece = std::make_shared<CompressionPiece>(
cmd_with_max, max_win, buffer, cmd_size[cmd_with_max]);
PrintCompressionPiece(new_comp_piece);
// If we let non compressed stuff, we need to add a copy chunk before
if (comp_accumulator != 0) {
std::string copy_buff;
copy_buff.resize(comp_accumulator);
for (int i = 0; i < comp_accumulator; ++i) {
copy_buff[i] = rom_data[i + src_data_pos - comp_accumulator];
}
auto copy_chunk = std::make_shared<CompressionPiece>(
kCommandDirectCopy, comp_accumulator, copy_buff, comp_accumulator);
compressed_chain->next = copy_chunk;
compressed_chain = copy_chunk;
} else {
compressed_chain->next = new_comp_piece;
compressed_chain = new_comp_piece;
}
src_data_pos += max_win;
comp_accumulator = 0;
}
absl::StatusOr<std::shared_ptr<CompressionPiece>> SplitCompressionPiece(
std::shared_ptr<CompressionPiece>& piece, int mode) {
std::shared_ptr<CompressionPiece> new_piece;
uint length_left = piece->length - kMaxLengthCompression;
piece->length = kMaxLengthCompression;
switch (piece->command) {
case kCommandByteFill:
case kCommandWordFill:
new_piece = std::make_shared<CompressionPiece>(
piece->command, length_left, piece->argument, piece->argument_length);
break;
case kCommandIncreasingFill:
new_piece = std::make_shared<CompressionPiece>(
piece->command, length_left, piece->argument, piece->argument_length);
new_piece->argument[0] =
(char)(piece->argument[0] + kMaxLengthCompression);
break;
case kCommandDirectCopy:
piece->argument_length = kMaxLengthCompression;
new_piece = std::make_shared<CompressionPiece>(
piece->command, length_left, nullptr, length_left);
// MEMCPY
for (int i = 0; i < length_left; ++i) {
new_piece->argument[i] = piece->argument[i + kMaxLengthCompression];
}
break;
case kCommandRepeatingBytes: {
piece->argument_length = kMaxLengthCompression;
uint offset = piece->argument[0] + (piece->argument[1] << 8);
new_piece = std::make_shared<CompressionPiece>(
piece->command, length_left, piece->argument, piece->argument_length);
if (mode == kNintendoMode2) {
new_piece->argument[0] =
(offset + kMaxLengthCompression) & kSnesByteMax;
new_piece->argument[1] = (offset + kMaxLengthCompression) >> 8;
}
if (mode == kNintendoMode1) {
new_piece->argument[1] =
(offset + kMaxLengthCompression) & kSnesByteMax;
new_piece->argument[0] = (offset + kMaxLengthCompression) >> 8;
}
} break;
default: {
return absl::InvalidArgumentError(
"SplitCompressionCommand: Invalid Command");
}
}
return new_piece;
}
Bytes CreateCompressionString(std::shared_ptr<CompressionPiece>& start,
int mode) {
uint pos = 0;
auto piece = start;
Bytes output;
while (piece != nullptr) {
if (piece->length <= kMaxLengthNormalHeader) { // Normal header
output.push_back(BUILD_HEADER(piece->command, piece->length));
pos++;
} else {
if (piece->length <= kMaxLengthCompression) {
output.push_back((COMPRESSION_STRING_MOD) |
((uchar)piece->command << 2) |
(((piece->length - 1) & 0xFF00) >> 8));
pos++;
printf("Building extended header : cmd: %d, length: %d - %02X\n",
piece->command, piece->length, output[pos - 1]);
output.push_back(((piece->length - 1) & 0x00FF)); // (char)
pos++;
} else {
// We need to split the command
auto new_piece = SplitCompressionPiece(piece, mode);
if (!new_piece.ok()) {
std::cout << new_piece.status().ToString() << std::endl;
}
printf("New added piece\n");
auto piece_data = new_piece.value();
PrintCompressionPiece(piece_data);
piece_data->next = piece->next;
piece->next = piece_data;
continue;
}
}
if (piece->command == kCommandRepeatingBytes) {
char tmp[2];
tmp[0] = piece->argument[0];
tmp[1] = piece->argument[1];
if (mode == kNintendoMode1) {
tmp[0] = piece->argument[1];
tmp[1] = piece->argument[0];
}
for (const auto& each : tmp) {
output.push_back(each);
pos++;
}
} else {
for (int i = 0; i < piece->argument_length; ++i) {
output.push_back(piece->argument[i]);
pos++;
}
}
pos += piece->argument_length;
piece = piece->next;
}
output.push_back(kSnesByteMax);
return output;
}
absl::Status ValidateCompressionResult(
std::shared_ptr<CompressionPiece>& compressed_chain_start, int mode,
int start, int src_data_pos) {
if (compressed_chain_start->next != nullptr) {
ROM temp_rom;
RETURN_IF_ERROR(temp_rom.LoadFromBytes(
CreateCompressionString(compressed_chain_start->next, mode)))
ASSIGN_OR_RETURN(auto decomp_data,
temp_rom.Decompress(0, temp_rom.GetSize()))
if (!std::equal(decomp_data.begin() + start, decomp_data.end(),
temp_rom.begin())) {
return absl::InternalError(absl::StrFormat(
"Compressed data does not match uncompressed data at %d\n",
(uint)(src_data_pos - start)));
}
}
return absl::OkStatus();
}
// Merge consecutive copy if possible
std::shared_ptr<CompressionPiece> MergeCopy(
std::shared_ptr<CompressionPiece>& start) {
std::shared_ptr<CompressionPiece> piece = start;
while (piece != nullptr) {
if (piece->command == kCommandDirectCopy && piece->next != nullptr &&
piece->next->command == kCommandDirectCopy &&
piece->length + piece->next->length <= kMaxLengthCompression) {
uint previous_length = piece->length;
piece->length = piece->length + piece->next->length;
for (int i = 0; i < piece->next->argument_length; ++i) {
piece->argument[i + previous_length] = piece->next->argument[i];
}
piece->argument_length = piece->length;
PrintCompressionPiece(piece);
auto p_next_next = piece->next->next;
piece->next = p_next_next;
continue; // Next could be another copy
}
piece = piece->next;
}
return start;
}
} // namespace
// TODO TEST compressed data border for each cmd
absl::StatusOr<Bytes> ROM::Compress(const int start, const int length, int mode,
bool check) {
// Worse case should be a copy of the string with extended header
auto compressed_chain = std::make_shared<CompressionPiece>(1, 1, "aaa", 2);
auto compressed_chain_start = compressed_chain;
CommandArgumentArray cmd_args = {{}};
DataSizeArray data_size_taken = {0, 0, 0, 0, 0};
CommandSizeArray cmd_size = {0, 1, 2, 1, 2};
uint src_data_pos = start;
uint last_pos = start + length - 1;
uint comp_accumulator = 0; // Used when skipping using copy
while (true) {
data_size_taken.fill({});
cmd_args.fill({{}});
CheckByteRepeat(rom_data_.data(), data_size_taken, cmd_args, src_data_pos,
last_pos);
CheckWordRepeat(rom_data_.data(), data_size_taken, cmd_args, src_data_pos,
last_pos);
CheckIncByte(rom_data_.data(), data_size_taken, cmd_args, src_data_pos,
last_pos);
CheckIntraCopy(rom_data_.data(), data_size_taken, cmd_args, src_data_pos,
last_pos, start);
uint max_win = 2;
uint cmd_with_max = kCommandDirectCopy;
ValidateForByteGain(data_size_taken, cmd_size, max_win, cmd_with_max);
if (cmd_with_max == kCommandDirectCopy) {
// This is the worst case scenario
// Progress through the next byte, in case there's a different
// compression command we can implement before we hit 32 bytes.
src_data_pos++;
comp_accumulator++;
// Arbitrary choice to do a 32 bytes grouping for copy.
if (comp_accumulator == 32 || src_data_pos > last_pos) {
std::string buffer;
for (int i = 0; i < comp_accumulator; ++i) {
buffer.push_back(rom_data_[i + src_data_pos - comp_accumulator]);
}
auto new_comp_piece = std::make_shared<CompressionPiece>(
kCommandDirectCopy, comp_accumulator, buffer, comp_accumulator);
compressed_chain->next = new_comp_piece;
compressed_chain = new_comp_piece;
comp_accumulator = 0;
}
} else {
// Anything is better than directly copying bytes...
CompressionCommandAlternative(rom_data_.data(), compressed_chain,
cmd_size, cmd_args, src_data_pos,
comp_accumulator, cmd_with_max, max_win);
}
if (src_data_pos > last_pos) {
printf("Breaking compression loop\n");
break;
}
if (check) {
RETURN_IF_ERROR(ValidateCompressionResult(compressed_chain_start, mode,
start, src_data_pos))
}
}
MergeCopy(compressed_chain_start->next); // Skipping compression chain header
PrintCompressionChain(compressed_chain_start);
return CreateCompressionString(compressed_chain_start->next, mode);
}
absl::StatusOr<Bytes> ROM::CompressGraphics(const int pos, const int length) {
return Compress(pos, length, kNintendoMode2);
}
absl::StatusOr<Bytes> ROM::CompressOverworld(const int pos, const int length) {
return Compress(pos, length, kNintendoMode1);
}
absl::StatusOr<Bytes> ROM::Decompress(int offset, int size, int mode) {
Bytes buffer(size, 0);
uint length = 0;
uint buffer_pos = 0;
uchar command = 0;
uchar header = rom_data_[offset];
while (header != kSnesByteMax) {
if ((header & kExpandedMod) == kExpandedMod) {
// Expanded Command
command = ((header >> 2) & kCommandMod);
length = (((header << 8) | rom_data_[offset + 1]) & kExpandedLengthMod);
offset += 2; // Advance 2 bytes in ROM
} else {
// Normal Command
command = ((header >> 5) & kCommandMod);
length = (header & kNormalLengthMod);
offset += 1; // Advance 1 byte in ROM
}
length += 1; // each commands is at least of size 1 even if index 00
switch (command) {
case kCommandDirectCopy: // Does not advance in the ROM
memcpy(buffer.data() + buffer_pos, rom_data_.data() + offset, length);
buffer_pos += length;
offset += length;
break;
case kCommandByteFill:
for (int i = 0; i < length; i++) {
buffer[buffer_pos] = rom_data_[offset];
buffer_pos++;
}
offset += 1; // Advances 1 byte in the ROM
break;
case kCommandWordFill: {
auto a = rom_data_[offset];
auto b = rom_data_[offset + 1];
for (int i = 0; i < length; i = i + 2) {
buffer[buffer_pos + i] = a;
if ((i + 1) < length) buffer[buffer_pos + i + 1] = b;
}
buffer_pos += length;
offset += 2; // Advance 2 byte in the ROM
} break;
case kCommandIncreasingFill: {
auto inc_byte = rom_data_[offset];
for (int i = 0; i < length; i++) {
buffer[buffer_pos] = inc_byte++;
buffer_pos++;
}
offset += 1; // Advance 1 byte in the ROM
} break;
case kCommandRepeatingBytes: {
ushort s1 = ((rom_data_[offset + 1] & kSnesByteMax) << 8);
ushort s2 = ((rom_data_[offset] & kSnesByteMax));
int addr = (s1 | s2);
if (mode == kNintendoMode1) { // Reversed byte order for overworld maps
// addr = (s2 | s1);
addr = (rom_data_[offset + 2]) | ((rom_data_[offset + 1]) << 8);
memcpy(buffer.data() + buffer_pos, rom_data_.data() + offset, length);
buffer_pos += length;
offset += 2;
break;
}
if (addr > offset) {
return absl::InternalError(absl::StrFormat(
"DecompressOverworld: Offset for command copy exceeds "
"current position (Offset : %#04x | Pos : %#06x)\n",
addr, offset));
}
if (buffer_pos + length >= size) {
size *= 2;
buffer.resize(size);
}
for (int i = 0; i < length; i++) {
buffer[buffer_pos] = buffer[addr + i];
buffer_pos++;
}
offset += 2; // Advance 2 bytes in the ROM
} break;
default: {
std::cout << absl::StrFormat(
"DecompressGraphics: Invalid command in header (Offset : %#06x, "
"Command: %#04x)\n",
offset, command);
} break;
}
// check next byte
header = rom_data_[offset];
}
return buffer;
}
absl::StatusOr<Bytes> ROM::DecompressGraphics(int pos, int size) {
return Decompress(pos, size, kNintendoMode2);
}
absl::StatusOr<Bytes> ROM::DecompressOverworld(int pos, int size) {
return Decompress(pos, size, kNintendoMode1);
}
// 0-112 -> compressed 3bpp bgr -> (decompressed each) 0x600 chars
// 113-114 -> compressed 2bpp -> (decompressed each) 0x800 chars
// 115-126 -> uncompressed 3bpp sprites -> (each) 0x600 chars
// 127-217 -> compressed 3bpp sprites -> (decompressed each) 0x600 chars
// 218-222 -> compressed 2bpp -> (decompressed each) 0x800 chars
absl::Status ROM::LoadAllGraphicsData() {
Bytes sheet;
bool convert = false;
for (int i = 0; i < core::NumberOfSheets; i++) {
if (i >= 115 && i <= 126) { // uncompressed sheets
sheet.resize(core::Uncompressed3BPPSize);
auto offset = GetGraphicsAddress(rom_data_.data(), i);
for (int j = 0; j < core::Uncompressed3BPPSize; j++) {
sheet[j] = rom_data_[j + offset];
}
convert = true;
} else if (i == 113 || i == 114 || i >= 218) {
convert = false;
} else {
auto offset = GetGraphicsAddress(rom_data_.data(), i);
ASSIGN_OR_RETURN(sheet, Decompress(offset))
convert = true;
}
if (convert) {
auto converted_sheet = SNES3bppTo8bppSheet(sheet);
graphics_bin_[i] =
gfx::Bitmap(core::kTilesheetWidth, core::kTilesheetHeight,
core::kTilesheetDepth, converted_sheet.data(), 0x1000);
graphics_bin_.at(i).CreateTexture(renderer_);
for (int j = 0; j < graphics_bin_.at(i).GetSize(); ++j) {
graphics_buffer_.push_back(graphics_bin_.at(i).GetByte(j));
}
} else {
for (int j = 0; j < 0x1000; ++j) {
graphics_buffer_.push_back(0xFF);
}
}
}
return absl::OkStatus();
}
absl::Status ROM::LoadFromFile(const absl::string_view& filename) {
filename_ = filename;
std::ifstream file(filename.data(), std::ios::binary);
if (!file.is_open()) {
return absl::InternalError(
absl::StrCat("Could not open ROM file: ", filename));
}
size_ = std::filesystem::file_size(filename);
rom_data_.resize(size_);
for (auto i = 0; i < size_; ++i) {
char byte_to_read = ' ';
file.read(&byte_to_read, sizeof(char));
rom_data_[i] = byte_to_read;
}
// copy ROM title
memcpy(title, rom_data_.data() + kTitleStringOffset, kTitleStringLength);
file.close();
LoadAllPalettes();
is_loaded_ = true;
return absl::OkStatus();
}
absl::Status ROM::LoadFromPointer(uchar* data, size_t length) {
if (!data)
return absl::InvalidArgumentError(
"Could not load ROM: parameter `data` is empty.");
for (int i = 0; i < length; ++i) rom_data_.push_back(data[i]);
return absl::OkStatus();
}
absl::Status ROM::LoadFromBytes(const Bytes& data) {
if (data.empty()) {
return absl::InvalidArgumentError(
"Could not load ROM: parameter `data` is empty.");
}
rom_data_ = data;
return absl::OkStatus();
}
absl::Status ROM::SaveToFile() {
std::fstream file(filename_.data(), std::ios::binary | std::ios::out);
if (!file.is_open()) {
return absl::InternalError(
absl::StrCat("Could not open ROM file: ", filename_));
}
for (auto i = 0; i < size_; ++i) {
file << rom_data_[i];
}
return absl::OkStatus();
}
void ROM::RenderBitmap(gfx::Bitmap* bitmap) const {
bitmap->CreateTexture(renderer_);
}
gfx::SNESColor ROM::ReadColor(int offset) {
short color = (short)((rom_data_[offset + 1] << 8) + rom_data_[offset]);
gfx::snes_color new_color;
new_color.red = (color & 0x1F) * 8;
new_color.green = ((color >> 5) & 0x1F) * 8;
new_color.blue = ((color >> 10) & 0x1F) * 8;
gfx::SNESColor snes_color(new_color);
return snes_color;
}
gfx::SNESPalette ROM::ReadPalette(int offset, int num_colors) {
int color_offset = 0;
std::vector<gfx::snes_color> colors(num_colors);
while (color_offset < num_colors) {
short color = (short)((rom_data_[offset + 1] << 8) + rom_data_[offset]);
gfx::snes_color new_color;
new_color.red = (color & 0x1F) * 8;
new_color.green = ((color >> 5) & 0x1F) * 8;
new_color.blue = ((color >> 10) & 0x1F) * 8;
colors[color_offset] = new_color;
color_offset++;
offset += 2;
}
gfx::SNESPalette palette(colors);
return palette;
}
void ROM::LoadAllPalettes() {
// 35 colors each, 7x5 (0,2 on grid)
for (int i = 0; i < 6; i++) {
zelda3::overworld_MainPalettes[i] =
ReadPalette(core::overworldPaletteMain + (i * (35 * 2)), 35);
}
// 21 colors each, 7x3 (8,2 and 8,5 on grid)
for (int i = 0; i < 20; i++) {
zelda3::overworld_AuxPalettes[i] =
ReadPalette(core::overworldPaletteAuxialiary + (i * (21 * 2)), 21);
}
// 7 colors each 7x1 (0,7 on grid)
for (int i = 0; i < 14; i++) {
zelda3::overworld_AnimatedPalettes[i] =
ReadPalette(core::overworldPaletteAnimated + (i * (7 * 2)), 7);
}
// 32 colors each 16x2 (0,0 on grid)
for (int i = 0; i < 2; i++) {
zelda3::HudPalettes[i] = ReadPalette(core::hudPalettes + (i * 64), 32);
}
zelda3::globalSprite_Palettes[0] =
ReadPalette(core::globalSpritePalettesLW, 60);
zelda3::globalSprite_Palettes[1] =
ReadPalette(core::globalSpritePalettesDW, 60);
for (int i = 0; i < 5; i++) {
zelda3::armors_Palettes[i] =
ReadPalette(core::armorPalettes + (i * 30), 15);
}
for (int i = 0; i < 4; i++) {
zelda3::swords_Palettes[i] = ReadPalette(core::swordPalettes + (i * 6), 3);
}
for (int i = 0; i < 3; i++) {
zelda3::shields_Palettes[i] =
ReadPalette(core::shieldPalettes + (i * 8), 4);
}
for (int i = 0; i < 12; i++) {
zelda3::spritesAux1_Palettes[i] =
ReadPalette(core::spritePalettesAux1 + (i * 14), 7);
}
for (int i = 0; i < 11; i++) {
zelda3::spritesAux2_Palettes[i] =
ReadPalette(core::spritePalettesAux2 + (i * 14), 7);
}
for (int i = 0; i < 24; i++) {
zelda3::spritesAux3_Palettes[i] =
ReadPalette(core::spritePalettesAux3 + (i * 14), 7);
}
for (int i = 0; i < 20; i++) {
zelda3::dungeonsMain_Palettes[i] =
ReadPalette(core::dungeonMainPalettes + (i * 180), 90);
}
zelda3::overworld_GrassPalettes[0] = ReadColor(core::hardcodedGrassLW);
zelda3::overworld_GrassPalettes[1] = ReadColor(core::hardcodedGrassDW);
zelda3::overworld_GrassPalettes[2] = ReadColor(core::hardcodedGrassSpecial);
zelda3::object3D_Palettes[0] = ReadPalette(core::triforcePalette, 8);
zelda3::object3D_Palettes[1] = ReadPalette(core::crystalPalette, 8);
for (int i = 0; i < 2; i++) {
zelda3::overworld_Mini_Map_Palettes[i] =
ReadPalette(core::overworldMiniMapPalettes + (i * 256), 128);
}
// TODO: check for the paletts in the empty bank space that kan will allocate
// and read them in here
// TODO magic colors
// LW
// int j = 0;
// while (j < 64) {
// zelda3::overworld_BackgroundPalette[j++] =
// Color.FromArgb(0xFF, 0x48, 0x98, 0x48);
// }
// // DW
// while (j < 128) {
// zelda3::overworld_BackgroundPalette[j++] =
// Color.FromArgb(0xFF, 0x90, 0x88, 0x50);
// }
// // SP
// while (j < core::kNumOverworldMaps) {
// zelda3::overworld_BackgroundPalette[j++] =
// Color.FromArgb(0xFF, 0x48, 0x98, 0x48);
// }
// zelda3::overworld_BackgroundPalette =
// ReadPalette(core::customAreaSpecificBGPalette, 160);
}
} // namespace app
} // namespace yaze