Files
yaze/scripts/README.md

634 lines
20 KiB
Markdown

# YAZE Build Scripts
This directory contains build automation and maintenance scripts for the YAZE project.
## fetch_usdasm.sh
Fetch the usdasm disassembly on demand (not vendored in the repo).
```bash
scripts/fetch_usdasm.sh
# or: USDASM_DIR=/path/to/usdasm scripts/fetch_usdasm.sh
```
## install-nightly.sh
Builds and installs an isolated nightly build in a separate clone (no dev build overlap)
and creates wrapper commands (`yaze-nightly`, `yaze-nightly-grpc`, `z3ed-nightly`,
`yaze-mcp-nightly`) under `~/.local/bin`.
```bash
scripts/install-nightly.sh
YAZE_NIGHTLY_REPO="$HOME/Code/yaze-nightly" YAZE_NIGHTLY_BUILD_TYPE=RelWithDebInfo scripts/install-nightly.sh
```
### What it does
- Clones `origin` into `$YAZE_NIGHTLY_REPO` (default `~/Code/yaze-nightly`) and keeps it clean.
- Builds into `$YAZE_NIGHTLY_BUILD_DIR` (default `~/Code/yaze-nightly/build-nightly`).
- Installs into `$YAZE_NIGHTLY_PREFIX/releases/<timestamp>` and updates `.../current`.
- Writes wrapper scripts to `$YAZE_NIGHTLY_BIN_DIR` (default `~/.local/bin`).
### Environment Overrides
- `YAZE_NIGHTLY_REPO` (default `~/Code/yaze-nightly`)
- `YAZE_NIGHTLY_BRANCH` (default `master`)
- `YAZE_NIGHTLY_BUILD_DIR` (default `$YAZE_NIGHTLY_REPO/build-nightly`)
- `YAZE_NIGHTLY_BUILD_TYPE` (default `RelWithDebInfo`)
- `YAZE_NIGHTLY_PREFIX` (default `~/.local/yaze/nightly`)
- `YAZE_NIGHTLY_BIN_DIR` (default `~/.local/bin`)
- `YAZE_GRPC_HOST`/`YAZE_GRPC_PORT` (for `yaze-mcp-nightly`, defaults `localhost:50051`)
- `YAZE_MCP_REPO` (default `~/Code/yaze-mcp`)
### Typical usage
```bash
yaze-nightly-grpc # start GUI with gRPC on 50051
yaze-mcp-nightly # start MCP server against the same port
z3ed-nightly # run CLI without touching dev build
```
### Removal
```bash
rm -rf ~/.local/yaze/nightly ~/.local/bin/yaze-nightly* ~/.local/bin/z3ed-nightly ~/.local/bin/yaze-mcp-nightly
```
See `docs/public/build/quick-reference.md` for environment overrides and runtime notes.
## build-ios.sh
Builds iOS static libraries via CMake and generates a thin Xcode project via XcodeGen.
```bash
scripts/build-ios.sh # defaults to ios-debug
scripts/build-ios.sh ios-release
```
Requirements:
- Xcode (iOS SDK installed)
- XcodeGen (`brew install xcodegen`)
Outputs:
- `build-ios/ios/libyaze_ios_bundle.a`
- `src/ios/yaze_ios.xcodeproj`
## build_cleaner.py
Automates CMake source list maintenance and header include management with IWYU-style analysis.
### Features
1. **CMake Source List Maintenance**: Automatically updates source file lists in CMake files
2. **Self-Header Includes**: Ensures source files include their corresponding headers
3. **IWYU-Style Analysis**: Suggests missing headers based on symbol usage
4. **.gitignore Support**: Respects .gitignore patterns when scanning files
5. **Auto-Discovery**: Can discover CMake libraries that opt-in to auto-maintenance
### Usage
```bash
# Dry-run to see what would change (recommended first step)
python3 scripts/build_cleaner.py --dry-run
# Update CMake source lists and header includes
python3 scripts/build_cleaner.py
# Run IWYU-style header analysis
python3 scripts/build_cleaner.py --iwyu
# Auto-discover CMake libraries marked for auto-maintenance
python3 scripts/build_cleaner.py --auto-discover
# Update only CMake source lists
python3 scripts/build_cleaner.py --cmake-only
# Update only header includes
python3 scripts/build_cleaner.py --includes-only
```
### Opting-In to Auto-Maintenance
By default, the script only auto-maintains source lists that are explicitly marked. To mark a CMake variable for auto-maintenance, add a comment above the `set()` statement:
```cmake
# This list is auto-maintained by scripts/build_cleaner.py
set(
YAZE_APP_EMU_SRC
app/emu/audio/apu.cc
app/emu/cpu/cpu.cc
# ... more files
)
```
The script looks for comments containing "auto-maintain" (case-insensitive) within 3 lines above the `set()` statement.
### Excluding Files from Processing
To exclude a specific file from all processing (CMake lists, header includes, IWYU), add this token near the top of the file:
```cpp
// build_cleaner:ignore
```
### .gitignore Support
The script automatically respects `.gitignore` patterns. To enable this feature, install the `pathspec` dependency:
```bash
pip3 install -r scripts/requirements.txt
# or
pip3 install pathspec
```
### IWYU Configuration
The script includes basic IWYU-style analysis that suggests headers based on symbol prefixes. To customize which headers are suggested, edit the `COMMON_HEADERS` dictionary in the script:
```python
COMMON_HEADERS = {
'std::': ['<memory>', '<string>', '<vector>', ...],
'absl::': ['<absl/status/status.h>', ...],
'ImGui::': ['<imgui.h>'],
'SDL_': ['<SDL.h>'],
}
```
**Note**: The IWYU analysis is conservative and may suggest headers that are already transitively included. Use with care and review suggestions before applying.
### Integration with CMake
The script is integrated into the CMake build system:
```bash
# Run as a CMake target
cmake --build build --target build_cleaner
```
### Dependencies
- Python 3.7+
- `pathspec` (optional, for .gitignore support): `pip3 install pathspec`
### How It Works
1. **CMake Maintenance**: Scans directories specified in the configuration and updates `set(VAR_NAME ...)` blocks with the current list of source files
2. **Self-Headers**: For each `.cc`/`.cpp` file, ensures it includes its corresponding `.h` file
3. **IWYU Analysis**: Scans source files for symbols and suggests appropriate headers based on prefix matching
### Current Auto-Maintained Variables
**All 20 library source lists are now auto-maintained by default:**
- Core: `YAZE_APP_EMU_SRC`, `YAZE_APP_CORE_SRC`, `YAZE_APP_EDITOR_SRC`, `YAZE_APP_ZELDA3_SRC`, `YAZE_NET_SRC`, `YAZE_UTIL_SRC`
- GFX: `GFX_TYPES_SRC`, `GFX_BACKEND_SRC`, `GFX_RESOURCE_SRC`, `GFX_CORE_SRC`, `GFX_UTIL_SRC`, `GFX_RENDER_SRC`, `GFX_DEBUG_SRC`
- GUI: `GUI_CORE_SRC`, `CANVAS_SRC`, `GUI_WIDGETS_SRC`, `GUI_AUTOMATION_SRC`, `GUI_APP_SRC`
- Other: `YAZE_AGENT_SOURCES`, `YAZE_TEST_SOURCES`
The script intelligently preserves conditional blocks (if/endif) and excludes conditional files from the main source list.
## verify-build-environment.\*
`verify-build-environment.ps1` (Windows) and `verify-build-environment.sh` (macOS/Linux) are the primary diagnostics for contributors. They now:
- Check for `clang-cl`, Ninja, NASM, Visual Studio workloads, and VS Code (optional).
- Validate vcpkg bootstrap status plus `vcpkg/installed` cache contents.
- Warn about missing ROM assets (`roms/alttp_vanilla.sfc`, etc.).
- Offer `-FixIssues` and `-CleanCache` switches to repair Git config, resync submodules, and wipe stale build directories.
Run the script once per machine (and rerun after major toolchain updates) to ensure presets such as `win-dbg`, `win-ai`, `mac-ai`, and `ci-windows-ai` have everything they need.
## setup-vcpkg-windows.ps1
Automates the vcpkg bootstrap flow on Windows:
1. Clones and bootstraps vcpkg (if not already present).
2. Verifies that `git`, `clang-cl`, and Ninja are available, printing friendly instructions when they are missing.
3. Installs the default triplet (`x64-windows` or `arm64-windows` when detected) and confirms that `vcpkg/installed/<triplet>` is populated.
4. Reminds you to rerun `.\scripts\verify-build-environment.ps1 -FixIssues` to double-check the environment.
Use it immediately after cloning the repository or whenever you need to refresh your local dependency cache before running `win-ai` or `ci-windows-ai` presets.
## CMake Validation Tools
A comprehensive toolkit for validating CMake configuration and catching dependency issues early. These tools help prevent build failures by detecting configuration problems before compilation.
### validate-cmake-config.cmake
Validates CMake configuration by checking targets, flags, and platform-specific settings.
```bash
# Validate default build directory
cmake -P scripts/validate-cmake-config.cmake
# Validate specific build directory
cmake -P scripts/validate-cmake-config.cmake build
```
**What it checks:**
- Required targets exist
- Feature flag consistency (AI requires gRPC, etc.)
- Compiler settings (C++23, MSVC runtime on Windows)
- Abseil configuration on Windows (prevents missing include issues)
- Output directories
- Common configuration mistakes
### check-include-paths.sh
Validates include paths in compile_commands.json to catch missing includes before build.
```bash
# Check default build directory
./scripts/check-include-paths.sh
# Check specific build
./scripts/check-include-paths.sh build
# Verbose mode (show all include dirs)
VERBOSE=1 ./scripts/check-include-paths.sh build
```
**Requires:** `jq` for better parsing (optional but recommended): `brew install jq`
**What it checks:**
- Common dependencies (SDL2, ImGui, yaml-cpp)
- Platform-specific includes
- Abseil includes from gRPC build (critical on Windows)
- Suspicious configurations (missing -I flags, relative paths)
### visualize-deps.py
Generates dependency graphs and detects circular dependencies.
```bash
# Generate GraphViz diagram
python3 scripts/visualize-deps.py build --format graphviz -o deps.dot
dot -Tpng deps.dot -o deps.png
# Generate Mermaid diagram
python3 scripts/visualize-deps.py build --format mermaid -o deps.mmd
# Show statistics
python3 scripts/visualize-deps.py build --stats
```
**Formats:**
- **graphviz**: DOT format for rendering with `dot` command
- **mermaid**: For embedding in Markdown/documentation
- **text**: Simple text tree for quick overview
**Features:**
- Detects circular dependencies (highlighted in red)
- Shows dependency statistics
- Color-coded targets (executables, libraries, etc.)
### test-cmake-presets.sh
Tests that all CMake presets can configure successfully.
```bash
# Test all presets for current platform
./scripts/test-cmake-presets.sh
# Test specific preset
./scripts/test-cmake-presets.sh --preset mac-ai
# Test in parallel (faster)
./scripts/test-cmake-presets.sh --platform mac --parallel 4
# Quick mode (don't clean between tests)
./scripts/test-cmake-presets.sh --quick
```
**Options:**
- `--parallel N`: Test N presets in parallel (default: 4)
- `--preset NAME`: Test only specific preset
- `--platform PLATFORM`: Test only mac/win/lin presets
- `--quick`: Skip cleaning between tests
- `--verbose`: Show full CMake output
### Usage in Development Workflow
**After configuring CMake:**
```bash
cmake --preset mac-ai
cmake -P scripts/validate-cmake-config.cmake build
./scripts/check-include-paths.sh build
```
**Before committing:**
```bash
# Test all platform presets configure successfully
./scripts/test-cmake-presets.sh --platform mac
```
**When adding new targets:**
```bash
# Check for circular dependencies
python3 scripts/visualize-deps.py build --stats
```
**For full details**, see [docs/internal/testing/cmake-validation.md](../docs/internal/testing/cmake-validation.md)
## Symbol Conflict Detection
Tools to detect One Definition Rule (ODR) violations and duplicate symbol definitions **before linking fails**.
### Quick Start
```bash
# Extract symbols from object files
./scripts/extract-symbols.sh
# Check for conflicts
./scripts/check-duplicate-symbols.sh
# Run tests
./scripts/test-symbol-detection.sh
```
### Scripts
#### extract-symbols.sh
Scans compiled object files and creates a JSON database of all symbols and their locations.
**Features:**
- Cross-platform: macOS/Linux (nm), Windows (dumpbin)
- Fast: ~2-3 seconds for typical builds
- Identifies duplicate definitions across object files
- Tracks symbol type (text, data, read-only, etc.)
**Usage:**
```bash
# Extract from build directory
./scripts/extract-symbols.sh build
# Custom output file
./scripts/extract-symbols.sh build symbols.json
```
**Output:** `build/symbol_database.json` - JSON with symbol conflicts listed
#### check-duplicate-symbols.sh
Analyzes symbol database and reports conflicts in developer-friendly format.
**Usage:**
```bash
# Check default database
./scripts/check-duplicate-symbols.sh
# Verbose output
./scripts/check-duplicate-symbols.sh --verbose
# Include fix suggestions
./scripts/check-duplicate-symbols.sh --fix-suggestions
```
**Exit codes:**
- `0` = No conflicts found
- `1` = Conflicts detected (fails in CI/pre-commit)
#### test-symbol-detection.sh
Integration test suite for symbol detection system.
**Usage:**
```bash
./scripts/test-symbol-detection.sh
```
**Validates:**
- Scripts are executable
- Build directory and object files exist
- Symbol extraction works correctly
- JSON database is valid
- Duplicate checker runs successfully
- Pre-commit hook is configured
### Git Hook Integration
**First-time setup:**
```bash
git config core.hooksPath .githooks
chmod +x .githooks/pre-commit
```
The pre-commit hook automatically runs symbol checks on changed files:
- Fast: ~1-2 seconds
- Only checks affected objects
- Warns about conflicts
- Can skip with `--no-verify` if needed
### CI/CD Integration
The `symbol-detection.yml` GitHub Actions workflow runs on:
- All pushes to `master` and `develop`
- All pull requests affecting C++ files
- Workflows can be triggered manually
**What it does:**
1. Builds project
2. Extracts symbols from all object files
3. Checks for conflicts
4. Uploads symbol database as artifact
5. Fails job if conflicts found
### Common Fixes
**Duplicate global variable:**
```cpp
// Bad - defined in both files
ABSL_FLAG(std::string, rom, "", "ROM path");
// Fix 1: Use static (internal linkage)
static ABSL_FLAG(std::string, rom, "", "ROM path");
// Fix 2: Use anonymous namespace
namespace {
ABSL_FLAG(std::string, rom, "", "ROM path");
}
```
**Duplicate function:**
```cpp
// Bad - defined in both files
void ProcessData() { /* ... */ }
// Fix: Make inline or use static
inline void ProcessData() { /* ... */ }
```
### Performance
| Operation | Time |
|-----------|------|
| Extract (4000 objects, macOS) | ~3s |
| Extract (4000 objects, Windows) | ~5-7s |
| Check duplicates | <100ms |
| Pre-commit hook | ~1-2s |
### Documentation
Full documentation available in:
- [docs/internal/testing/symbol-conflict-detection.md](../docs/internal/testing/symbol-conflict-detection.md)
- [docs/internal/testing/sample-symbol-database.json](../docs/internal/testing/sample-symbol-database.json)
## AI Model Evaluation Suite
Tools for evaluating and comparing AI models used with the z3ed CLI agent system. Located in `scripts/ai/`.
### Quick Start
```bash
# Run a quick smoke test
./scripts/ai/run-model-eval.sh --quick
# Evaluate specific models
./scripts/ai/run-model-eval.sh --models llama3.2,qwen2.5-coder
# Evaluate all available models
./scripts/ai/run-model-eval.sh --all
# Evaluate with comparison report
./scripts/ai/run-model-eval.sh --default --compare
```
### Components
#### run-model-eval.sh
Main entry point script. Handles prerequisites checking, model pulling, and orchestrates the evaluation.
**Options:**
- `--models, -m LIST` - Comma-separated list of models to evaluate
- `--all` - Evaluate all available Ollama models
- `--default` - Evaluate default models from config (llama3.2, qwen2.5-coder, etc.)
- `--tasks, -t LIST` - Task categories: rom_inspection, code_analysis, tool_calling, conversation
- `--timeout SEC` - Timeout per task (default: 120)
- `--quick` - Quick smoke test (single model, fewer tasks)
- `--compare` - Generate comparison report after evaluation
- `--dry-run` - Show what would run without executing
#### eval-runner.py
Python evaluation engine that runs tasks against models and scores responses.
**Features:**
- Multi-model evaluation
- Pattern-based accuracy scoring
- Response completeness analysis
- Tool usage detection
- Response time measurement
- JSON output for analysis
**Direct usage:**
```bash
python scripts/ai/eval-runner.py \
--models llama3.2,qwen2.5-coder \
--tasks all \
--output results/eval-$(date +%Y%m%d).json
```
#### compare-models.py
Generates comparison reports from evaluation results.
**Formats:**
- `--format table` - ASCII table (default)
- `--format markdown` - Markdown with analysis
- `--format json` - Machine-readable JSON
**Usage:**
```bash
# Compare all recent evaluations
python scripts/ai/compare-models.py results/eval-*.json
# Generate markdown report
python scripts/ai/compare-models.py --format markdown --output report.md results/*.json
# Get best model name (for scripting)
BEST_MODEL=$(python scripts/ai/compare-models.py --best results/eval-*.json)
```
#### eval-tasks.yaml
Task definitions and scoring configuration. Categories:
| Category | Description | Example Tasks |
|----------|-------------|---------------|
| rom_inspection | ROM data structure queries | List dungeons, describe maps |
| code_analysis | Code understanding tasks | Explain functions, find bugs |
| tool_calling | Tool usage evaluation | File operations, build commands |
| conversation | Multi-turn dialog | Follow-ups, clarifications |
**Scoring dimensions:**
- **Accuracy** (40%): Pattern matching against expected responses
- **Completeness** (30%): Response depth and structure
- **Tool Usage** (20%): Appropriate tool selection
- **Response Time** (10%): Speed (normalized to 0-10)
### Output
Results are saved to `scripts/ai/results/`:
- `eval-YYYYMMDD-HHMMSS.json` - Individual evaluation results
- `comparison-YYYYMMDD-HHMMSS.md` - Comparison reports
**Sample output:**
```
┌──────────────────────────────────────────────────────────────────────┐
│ YAZE AI Model Evaluation Report │
├──────────────────────────────────────────────────────────────────────┤
│ Model │ Accuracy │ Tool Use │ Speed │ Runs │
├──────────────────────────────────────────────────────────────────────┤
│ qwen2.5-coder:7b │ 8.8/10 │ 9.2/10 │ 2.1s │ 3 │
│ llama3.2:latest │ 7.9/10 │ 7.5/10 │ 2.3s │ 3 │
│ codellama:7b │ 7.2/10 │ 8.1/10 │ 2.8s │ 3 │
├──────────────────────────────────────────────────────────────────────┤
│ Recommended: qwen2.5-coder:7b (score: 8.7/10) │
└──────────────────────────────────────────────────────────────────────┘
```
### Prerequisites
- **Ollama**: Install from https://ollama.ai
- **Python 3.10+** with `requests` and `pyyaml`:
```bash
pip install requests pyyaml
```
- **At least one model pulled**:
```bash
ollama pull llama3.2
```
### Adding Custom Tasks
Edit `scripts/ai/eval-tasks.yaml` to add new evaluation tasks:
```yaml
categories:
custom_category:
description: "My custom tasks"
tasks:
- id: "my_task"
name: "My Task Name"
prompt: "What is the purpose of..."
expected_patterns:
- "expected|keyword|pattern"
required_tool: null
scoring:
accuracy_criteria: "Must mention X, Y, Z"
completeness_criteria: "Should include examples"
```
### Integration with CI
The evaluation suite can be integrated into CI pipelines:
```yaml
# .github/workflows/ai-eval.yml
- name: Run AI Evaluation
run: |
ollama serve &
sleep 5
ollama pull llama3.2
./scripts/ai/run-model-eval.sh --models llama3.2 --tasks tool_calling
```