Files
yaze/docs/analysis/dungeon_parallel_optimization_summary.md
scawful 91a6a49d1a Add comprehensive analysis of ZScream vs YAZE overworld implementations
- Introduced a detailed comparison document highlighting the functional equivalence between ZScream (C#) and YAZE (C++) overworld loading logic.
- Verified key areas such as tile loading, expansion detection, map decompression, and coordinate calculations, confirming consistent behavior across both implementations.
- Documented differences and improvements in YAZE, including enhanced error handling and memory management.
- Provided validation results from integration tests ensuring data integrity and compatibility with existing ROMs.
2025-09-28 22:49:29 -04:00

138 lines
4.5 KiB
Markdown

# DungeonEditor Parallel Optimization Implementation
## 🚀 **Parallelization Strategy Implemented**
### **Problem Identified**
- **DungeonEditor::LoadAllRooms**: **17,966ms (17.97 seconds)** - 99.9% of loading time
- Loading **296 rooms** sequentially, each involving complex operations
- Perfect candidate for parallelization due to independent room processing
### **Solution: Multi-Threaded Room Loading**
#### **Key Optimizations**
1. **Parallel Room Processing**
```cpp
// Load 296 rooms using up to 8 threads
const int max_concurrency = std::min(8, std::thread::hardware_concurrency());
const int rooms_per_thread = (296 + max_concurrency - 1) / max_concurrency;
```
2. **Thread-Safe Result Collection**
```cpp
std::mutex results_mutex;
std::vector<std::pair<int, zelda3::RoomSize>> room_size_results;
std::vector<std::pair<int, ImVec4>> room_palette_results;
```
3. **Optimized Thread Distribution**
- **8 threads maximum** (reasonable limit for room loading)
- **~37 rooms per thread** (296 ÷ 8 = 37 rooms per thread)
- **Hardware concurrency aware** (adapts to available CPU cores)
#### **Parallel Processing Flow**
```cpp
// Each thread processes a batch of rooms
for (int i = start_room; i < end_room; ++i) {
// 1. Load room data (expensive operation)
rooms[i] = zelda3::LoadRoomFromRom(rom_, i);
// 2. Calculate room size
auto room_size = zelda3::CalculateRoomSize(rom_, i);
// 3. Load room objects
rooms[i].LoadObjects();
// 4. Process palette (thread-safe collection)
// ... palette processing ...
}
```
#### **Thread Safety Features**
1. **Mutex Protection**: `std::mutex results_mutex` protects shared data structures
2. **Lock Guards**: `std::lock_guard<std::mutex>` ensures thread-safe result collection
3. **Independent Processing**: Each thread works on different room ranges
4. **Synchronized Results**: Results collected and sorted on main thread
### **Expected Performance Impact**
#### **Theoretical Speedup**
- **8x faster** with 8 threads (ideal case)
- **Realistic expectation**: **4-6x speedup** due to:
- Thread creation overhead
- Mutex contention
- Memory bandwidth limitations
- Cache coherency issues
#### **Expected Results**
- **Before**: 17,966ms (17.97 seconds)
- **After**: **2,000-4,500ms (2-4.5 seconds)**
- **Total Loading Time**: **2.5-5 seconds** (down from 18.6 seconds)
- **Overall Improvement**: **70-85% reduction** in loading time
### **Technical Implementation Details**
#### **Thread Management**
```cpp
std::vector<std::future<absl::Status>> futures;
for (int thread_id = 0; thread_id < max_concurrency; ++thread_id) {
auto task = [this, &rooms, thread_id, rooms_per_thread, ...]() -> absl::Status {
// Process room batch
return absl::OkStatus();
};
futures.emplace_back(std::async(std::launch::async, task));
}
// Wait for all threads to complete
for (auto& future : futures) {
RETURN_IF_ERROR(future.get());
}
```
#### **Result Processing**
```cpp
// Sort results by room ID for consistent ordering
std::sort(room_size_results.begin(), room_size_results.end(),
[](const auto& a, const auto& b) { return a.first < b.first; });
// Process collected results on main thread
for (const auto& [room_id, room_size] : room_size_results) {
room_size_pointers_.push_back(room_size.room_size_pointer);
// ... process results ...
}
```
### **Monitoring and Validation**
#### **Performance Timing Added**
- **DungeonRoomLoader::PostProcessResults**: Measures result processing time
- **Thread creation overhead**: Minimal compared to room loading time
- **Result collection time**: Expected to be <100ms
#### **Logging and Debugging**
```cpp
util::logf("Loading %d dungeon rooms using %d threads (%d rooms per thread)",
kTotalRooms, max_concurrency, rooms_per_thread);
```
### **Benefits of This Approach**
1. **Massive Performance Gain**: 70-85% reduction in loading time
2. **Scalable**: Automatically adapts to available CPU cores
3. **Thread-Safe**: Proper synchronization prevents data corruption
4. **Maintainable**: Clean separation of parallel processing and result collection
5. **Robust**: Error handling per thread with proper status propagation
### **Next Steps**
1. **Test Performance**: Run application and measure actual speedup
2. **Validate Results**: Ensure room data integrity is maintained
3. **Fine-tune**: Adjust thread count if needed based on results
4. **Monitor**: Watch for any threading issues or performance regressions
This parallel optimization should transform YAZE from a slow-loading application to a lightning-fast ROM editor!