2 Commits

Author SHA1 Message Date
scawful
d94b7a3e81 backend-infra-engineer: Pre-0.2.2 snapshot (2023) 2023-12-29 22:43:40 -05:00
scawful
e7470bdfac backend-infra-engineer: Pre-0.2.2 snapshot (2022) 2023-01-01 17:52:09 -06:00
171 changed files with 40580 additions and 3 deletions

50
.github/workflows/cmake.yml vendored Normal file
View File

@@ -0,0 +1,50 @@
name: CMake
on:
push:
paths:
- 'src/**'
- 'test/**'
branches: [ "master" ]
pull_request:
paths:
- 'src/**'
- 'test/**'
branches: [ "master" ]
env:
# Customize the CMake build type here (Release, Debug, RelWithDebInfo, etc.)
BUILD_TYPE: Debug
jobs:
build:
# The CMake configure and build commands are platform agnostic and should work equally well on Windows or Mac.
# You can convert this to a matrix build if you need cross-platform coverage.
# See: https://docs.github.com/en/free-pro-team@latest/actions/learn-github-actions/managing-complex-workflows#using-a-build-matrix
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
with:
submodules: recursive
- name: Install Video Libs
run: sudo apt install libglew-dev
- name: Install Audio Libs
run: sudo apt install libwavpack-dev
- name: Configure CMake
# Configure CMake in a 'build' subdirectory. `CMAKE_BUILD_TYPE` is only required if you are using a single-configuration generator such as make.
# See https://cmake.org/cmake/help/latest/variable/CMAKE_BUILD_TYPE.html?highlight=cmake_build_type
run: cmake -B ${{github.workspace}}/build -DCMAKE_BUILD_TYPE=${{env.BUILD_TYPE}}
- name: Build
# Build your program with the given configuration
run: cmake --build ${{github.workspace}}/build --config ${{env.BUILD_TYPE}}
- name: Test
working-directory: ${{github.workspace}}/build
# Execute tests defined by the CMake configuration.
# See https://cmake.org/cmake/help/latest/manual/ctest.1.html for more detail
run: ${{github.workspace}}/build/bin/yaze_test

19
.gitignore vendored Normal file
View File

@@ -0,0 +1,19 @@
build/
.cache/
.vscode/
src/lib/SDL2
src/lib/cmake
src/lib/GL
src/lib/abseil-cpp
src/lib/libGLEW.2.2.0.dylib
src/lib/libGLEW.2.2.dylib
src/lib/libGLEW.a
src/lib/libGLEW.dylib
src/lib/libSDL2_test.a
src/lib/libSDL2-2.0.0.dylib
src/lib/libSDL2.a
src/lib/libSDL2.dylib
src/lib/libSDL2main.a
checks.json
assets/lib/libasar.dll
cmake/yaze.plist.in

31
.gitmodules vendored
View File

@@ -1,3 +1,30 @@
[submodule "src/Library/imgui"]
path = src/Library/imgui
[submodule "src/lib/imgui"]
path = src/lib/imgui
url = https://github.com/ocornut/imgui.git
[submodule "src/lib/ImGuiFileDialog"]
path = src/lib/ImGuiFileDialog
url = https://github.com/aiekick/ImGuiFileDialog.git
[submodule "src/lib/ImGuiColorTextEdit"]
path = src/lib/ImGuiColorTextEdit
url = https://github.com/BalazsJako/ImGuiColorTextEdit.git
[submodule "src/lib/sneshacking"]
path = src/lib/sneshacking
url = https://github.com/Skarsnik/sneshacking.git
[submodule "assets/asm/alttp-hacker-workspace"]
path = assets/asm/alttp-hacker-workspace
url = https://github.com/scawful/alttp-hacker-workspace.git
[submodule "src/lib/abseil-cpp"]
path = src/lib/abseil-cpp
url = https://github.com/abseil/abseil-cpp.git
[submodule "src/lib/SDL"]
path = src/lib/SDL
url = https://github.com/libsdl-org/SDL.git
[submodule "src/lib/asar"]
path = src/lib/asar
url = https://github.com/RPGHacker/asar.git
[submodule "src/lib/snes_spc"]
path = src/lib/snes_spc
url = https://github.com/blarggs-audio-libraries/snes_spc.git
[submodule "src/lib/SDL_mixer"]
path = src/lib/SDL_mixer
url = https://github.com/libsdl-org/SDL_mixer.git

57
CMakeLists.txt Normal file
View File

@@ -0,0 +1,57 @@
# CMake Specifications
cmake_minimum_required(VERSION 3.10)
# Yet Another Zelda3 Editor
# by scawful
project(yaze VERSION 0.01)
# C++ Standard Specifications
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS ON)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}")
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/lib)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/lib)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
set(CMAKE_MODULE_LINKER_FLAGS \"-Wl,--no-undefined -Wl,--no-undefined\")
set(CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake" ${CMAKE_MODULE_PATH})
set(BUILD_SHARED_LIBS ON)
# Abseil Standard Specifications
include(cmake/absl.cmake)
add_subdirectory(src/lib/abseil-cpp)
include(cmake/openssl.cmake)
# Video Libraries
find_package(PNG REQUIRED)
find_package(OpenGL REQUIRED)
include(cmake/sdl2.cmake)
# Asar
# add_subdirectory(src/lib/asar/src)
# include(cmake/asar.cmake)
# snes-spc
ADD_DEFINITIONS(-DSNES_SPC_EXPORTS)
set(SNES_SPC_SOURCES
"../src/lib/snes_spc/snes_spc/spc.cpp"
"../src/lib/snes_spc/snes_spc/SNES_SPC.cpp"
"../src/lib/snes_spc/snes_spc/SNES_SPC_misc.cpp"
"../src/lib/snes_spc/snes_spc/SNES_SPC_state.cpp"
"../src/lib/snes_spc/snes_spc/SPC_DSP.cpp"
"../src/lib/snes_spc/snes_spc/dsp.cpp"
"../src/lib/snes_spc/snes_spc/SPC_Filter.cpp"
"../src/lib/snes_spc/demo/wave_writer.c"
"../src/lib/snes_spc/demo/demo_util.c"
)
include_directories(src/lib/snes_spc/snes_spc)
ADD_LIBRARY(snes_spc STATIC ${SNES_SPC_SOURCES} src/app/zelda3/music/spc700.def)
# ImGui
include(cmake/imgui.cmake)
# Project Files
add_subdirectory(src)
add_subdirectory(test)

15
LICENSE Normal file
View File

@@ -0,0 +1,15 @@
Copyright (C) 2022 Justin Scofield
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.

52
README.md Normal file
View File

@@ -0,0 +1,52 @@
# Yet Another Zelda3 Editor
- Platform: Windows, macOS, GNU/Linux
- Dependencies: SDL2, ImGui
## Description
General purpose editor for The Legend of Zelda: A Link to the Past for the Super Nintendo.
Takes heavy inspiration from ALTTP community efforts such as [Hyrule Magic](https://www.romhacking.net/utilities/200/) and [ZScream](https://github.com/Zarby89/ZScreamDungeon)
Building and installation
-------------------------
[CMake](http://www.cmake.org "CMake") is required to build yaze
1. Clone the repository
```
git clone --recurse-submodules https://github.com/scawful/yaze.git
```
2. Create the build directory and configuration
```
cmake -S . -B build
```
3. Build and run.
```
cmake --build build
```
## Documentation
- For users, please refer to [getting_started.md](docs/getting-started.md) for instructions on how to use yaze.
- For developers, please refer to [infrastructure.md](docs/infrastructure.md) for information on the project's infrastructure.
License
--------
YAZE is distributed under the [GNU GPLv3](https://www.gnu.org/licenses/gpl-3.0.txt) license.
SDL2, ImGui and Abseil are subject to respective licenses.
Screenshots
--------
![image](https://user-images.githubusercontent.com/47263509/194669806-2b0da68d-9d38-4f52-bcce-c60ee861092c.png)
![image](https://github.com/scawful/yaze/assets/47263509/8913f7ff-6345-4295-ae05-782fd3949eb5)
![image](https://github.com/scawful/yaze/assets/47263509/e1cf3edb-a59e-4f0a-b4e0-d68925803e58)

View File

@@ -0,0 +1,32 @@
org <HOOK>
JML AreaCheck
org <EXPANDED_SPACE>
AreaCheck:
PHB : PHK : PLB
TAX
LDA .pool, X
BEQ .noMosaic1
PLB
JML $02AAE5
.noMosaic1
LDX $8A
LDA .pool, X
BEQ .noMosaic2
PLB
JML $02AAE5
.noMosaic2
PLB
JML $02AAF4
NOP
.pool

View File

@@ -0,0 +1,160 @@
;
; Credit to Zarby89
;
lorom
!End = $00
!Rest = $C9
!Tie = $C8
macro SetChannelVolume(v)
db $ED, <v>
endmacro
macro SetMasterVolume(v)
db $E5, <v>
endmacro
macro SetTempo(v)
db $E7, <v>
endmacro
macro SetInstrument(v)
db $E0, <v>
endmacro
macro CallSubroutine(addr, repeat)
db $EF
dw <addr>
db <repeat>
endmacro
;1/4 = $48
;1/4 double = $6C
;1/4 triplet = $30
;1/8 = $24
;1/8 double = $36
;1/8 triplet = $18
;1/16 = $12
;1/16 double = $1B
;1/32 = $09
; To make a whole note you tie 4 1/4 so something like
;%SetDuration(48)
;db !C4, !Tie, !Tie, !Tie ; will play a whole note (1/1)
;db !C4, !Tie ; will play a half note (1/2)
macro SetDuration(v)
db <v>, $7F
endmacro
!C1 = $80
!C1s = $81
!D1 = $82
!D1s = $83
!E1 = $84
!F1 = $85
!F1s = $86
!G1 = $87
!G1s = $88
!A1 = $89
!A1s = $8A
!B1 = $8B
!C2 = $8C
!C2s = $8D
!D2 = $8E
!D2s = $8F
!E2 = $90
!F2 = $91
!F2s = $92
!G2 = $93
!G2s = $94
!A2 = $95
!A2s = $96
!B2 = $97
!C3 = $98
!C3s = $99
!D3 = $9A
!D3s = $9B
!E3 = $9C
!F3 = $9D
!F3s = $9E
!G3 = $9F
!G3s = $A0
!A3 = $A1
!A3s = $A2
!B3 = $A3
!C4 = $A4
!C4s = $A5
!D4 = $A6
!D4s = $A7
!E4 = $A8
!F4 = $A9
!F4s = $AA
!G4 = $AB
!G4s = $AC
!A4 = $AD
!A4s = $AE
!B4 = $AF
!C5 = $B0
!C5s = $B1
!D5 = $B2
!D5s = $B3
!E5 = $B4
!F5 = $B5
!F5s = $B6
!G5 = $B7
!G5s = $B8
!A5 = $B9
!A5s = $BA
!B5 = $BB
!C6 = $BC
!C6s = $BD
!D6 = $BE
!D6s = $BF
!E6 = $C0
!F6 = $C1
!F6s = $C2
!G6 = $C3
!G6s = $C4
!A6 = $C5
!A6s = $C6
!B6 = $C7
org $1A9FF8 ; Hyrule Castle (Song Header information)
Sections:
!ARAMAddr = $D0FF
!StartingAddr = Sections
dw !ARAMAddr+$0A
dw !ARAMAddr+$0A
dw $00FF
dw !ARAMAddr
dw $0000
Channels:
!ARAMC = !ARAMAddr-Sections
dw Channel0+!ARAMC
dw $0000
dw $0000
dw $0000
dw $0000
dw $0000
dw $0000
dw $0000
Channel0:
SetMasterVolume($80)
SetTempo($40)
SetInstrument($17)
db !Rest, !Rest, !Rest
db !End

Binary file not shown.

BIN
assets/font/DroidSans.ttf Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
assets/font/NotoSansJP.ttf Normal file

Binary file not shown.

Binary file not shown.

19
cmake/absl.cmake Normal file
View File

@@ -0,0 +1,19 @@
set(ABSL_PROPAGATE_CXX_STD ON)
set(ABSL_CXX_STANDARD 17)
set(ABSL_USE_GOOGLETEST_HEAD ON)
set(ABSL_ENABLE_INSTALL ON)
set(
ABSL_TARGETS
absl::strings
absl::flags
absl::status
absl::statusor
absl::examine_stack
absl::stacktrace
absl::base
absl::config
absl::core_headers
absl::raw_logging_internal
absl::failure_signal_handler
absl::flat_hash_map
)

33
cmake/asar.cmake Normal file
View File

@@ -0,0 +1,33 @@
get_target_property(ASAR_INCLUDE_DIR asar-static INCLUDE_DIRECTORIES)
target_include_directories(asar-static PRIVATE ${ASAR_INCLUDE_DIR})
set(ASAR_GEN_EXE OFF)
set(ASAR_GEN_DLL ON)
set(ASAR_GEN_LIB ON)
set(ASAR_GEN_EXE_TEST OFF)
set(ASAR_GEN_DLL_TEST OFF)
set(ASAR_STATIC_SRC
"../src/lib/asar/src/asar/interface-lib.cpp"
"../src/lib/asar/src/asar/addr2line.cpp"
"../src/lib/asar/src/asar/arch-65816.cpp"
"../src/lib/asar/src/asar/arch-spc700.cpp"
"../src/lib/asar/src/asar/arch-superfx.cpp"
"../src/lib/asar/src/asar/assembleblock.cpp"
"../src/lib/asar/src/asar/crc32.cpp"
"../src/lib/asar/src/asar/libcon.cpp"
"../src/lib/asar/src/asar/libsmw.cpp"
"../src/lib/asar/src/asar/libstr.cpp"
"../src/lib/asar/src/asar/macro.cpp"
"../src/lib/asar/src/asar/main.cpp"
"../src/lib/asar/src/asar/asar_math.cpp"
"../src/lib/asar/src/asar/virtualfile.cpp"
"../src/lib/asar/src/asar/warnings.cpp"
"../src/lib/asar/src/asar/errors.cpp"
"../src/lib/asar/src/asar/platform/file-helpers.cpp"
)
if(WIN32 OR MINGW)
list(APPEND ASAR_STATIC_SRC "../src/lib/asar/src/asar/platform/windows/file-helpers-win32.cpp")
else()
list(APPEND ASAR_STATIC_SRC "../src/lib/asar/src/asar/platform/linux/file-helpers-linux.cpp")
endif()

35
cmake/imgui.cmake Normal file
View File

@@ -0,0 +1,35 @@
# gui libraries ---------------------------------------------------------------
set(IMGUI_PATH ${CMAKE_SOURCE_DIR}/src/lib/imgui)
file(GLOB IMGUI_SOURCES ${IMGUI_PATH}/*.cpp)
add_library("ImGui" STATIC ${IMGUI_SOURCES})
target_include_directories("ImGui" PUBLIC ${IMGUI_PATH})
target_include_directories(ImGui PUBLIC ${SDL2_INCLUDE_DIR})
target_compile_definitions(ImGui PUBLIC
IMGUI_IMPL_OPENGL_LOADER_CUSTOM=<SDL2/SDL_opengl.h> GL_GLEXT_PROTOTYPES=1)
set(IMGUI_FILE_DLG_PATH ${CMAKE_SOURCE_DIR}/src/lib/ImGuiFileDialog)
file(GLOB IMGUI_FILE_DLG_SOURCES ${IMGUI_FILE_DLG_PATH}/*.cpp)
add_library("ImGuiFileDialog" STATIC ${IMGUI_FILE_DLG_SOURCES})
target_include_directories(ImGuiFileDialog PUBLIC ${IMGUI_PATH})
target_compile_definitions(ImGuiFileDialog PUBLIC
IMGUI_IMPL_OPENGL_LOADER_CUSTOM=<SDL2/SDL_opengl.h> GL_GLEXT_PROTOTYPES=1)
set(IMGUI_COLOR_TEXT_EDIT_PATH ${CMAKE_SOURCE_DIR}/src/lib/ImGuiColorTextEdit)
file(GLOB IMGUI_COLOR_TEXT_EDIT_SOURCES ${IMGUI_COLOR_TEXT_EDIT_PATH}/*.cpp)
add_library("ImGuiColorTextEdit" STATIC ${IMGUI_COLOR_TEXT_EDIT_SOURCES})
target_include_directories(ImGuiColorTextEdit PUBLIC ${IMGUI_PATH})
target_compile_definitions(ImGuiColorTextEdit PUBLIC
IMGUI_IMPL_OPENGL_LOADER_CUSTOM=<SDL2/SDL_opengl.h> GL_GLEXT_PROTOTYPES=1)
set(
IMGUI_SRC
${IMGUI_PATH}/imgui.cpp
${IMGUI_PATH}/imgui_demo.cpp
${IMGUI_PATH}/imgui_draw.cpp
${IMGUI_PATH}/imgui_widgets.cpp
${IMGUI_PATH}/backends/imgui_impl_sdl2.cpp
${IMGUI_PATH}/backends/imgui_impl_sdlrenderer2.cpp
${IMGUI_PATH}/misc/cpp/imgui_stdlib.cpp
${IMGUI_FILE_DLG_PATH}/ImGuiFileDialog.cpp
${IMGUI_COLOR_TEXT_EDIT_PATH}/TextEditor.cpp
)

5
cmake/openssl.cmake Normal file
View File

@@ -0,0 +1,5 @@
if (UNIX)
set(OPENSSL_INCLUDE_DIR "/usr/local/Cellar/openssl@1.1/1.1.1q/include")
set(OPENSSL_CRYPTO_LIBRARY "/usr/local/Cellar/openssl@1.1/1.1.1q/lib/libcrypto.dylib")
set(OPENSSL_SSL_LIBRARY "/usr/local/Cellar/openssl@1.1/1.1.1q/lib/libssl.dylib")
endif()

19
cmake/sdl2.cmake Normal file
View File

@@ -0,0 +1,19 @@
# SDL2, SDL2_image and SDL2_mixer
if (UNIX)
add_subdirectory(src/lib/SDL)
else()
find_package(SDL2)
endif()
set(SDL2MIXER_OPUS OFF)
set(SDL2MIXER_FLAC OFF)
set(SDL2MIXER_MOD OFF)
set(SDL2MIXER_MIDI_FLUIDSYNTH OFF)
find_library(SDL_MIXER_LIBRARY
NAMES SDL_mixer
HINTS
ENV SDLMIXERDIR
ENV SDLDIR
PATH_SUFFIXES lib ${VC_LIB_PATH_SUFFIX}
)
add_subdirectory(src/lib/SDL_mixer)
find_package(SDL2_image)

67
docs/compression.md Normal file
View File

@@ -0,0 +1,67 @@
# LC_LZ2 Compression
The compression algorithm has multiple implementations with varying levels of quality, based primarily on the implementations made in skarsnik/sneshacking, Zarby89/ZScreamDungeon and ZCompress with optimizations made for C++.
## Key Definitions
### Constants and Macros:
- `BUILD_HEADER(command, length)`: Macro to build a header from a command and a length.
- Command Constants: Constants to represent different commands like `kCommandDirectCopy`, `kCommandByteFill`, etc.
- Length and Mode Constants: Such as `kMaxLengthNormalHeader`, `kNintendoMode1`, etc.
### Data Structures:
#### 1. CompressionCommand:
- **arguments**: 2D array representing the command arguments for each possible command.
- **cmd_size**: Array storing the size of each possible command.
- **data_size**: Array storing the size of the data processed by each possible command.
#### 2. CompressionPiece:
- **command**: Represents the compression command.
- **length**: Length of the compressed data piece.
- **argument_length**: Length of the argument.
- **argument**: Argument as a string.
- **next**: Pointer to the next compression piece.
#### 3. CompressionContext (for Compression V3):
- Contains vectors to store raw and compressed data, compression pieces, and compression string.
- Various counters and flags for compression control.
- Current compression command details.
## Compression Functions
### Version 1:
- **Byte Repeat**: `CheckByteRepeat`
- **Word Repeat**: `CheckWordRepeat`
- **Increasing Byte**: `CheckIncByte`
- **Intra Copy**: `CheckIntraCopy`
- **Validation and Alternatives**: `ValidateForByteGain` & `CompressionCommandAlternative`
### Version 2:
- **Byte Repeat**: `CheckByteRepeatV2`
- **Word Repeat**: `CheckWordRepeatV2`
- **Increasing Byte**: `CheckIncByteV2`
- **Intra Copy**: `CheckIntraCopyV2`
- **Validation and Alternatives**: `ValidateForByteGainV2` & `CompressionCommandAlternativeV2`
### Version 3:
Using `CompressionContext` to handle compression.
- **Initialization**: `InitializeCompression`
- **Command Checks**: Such as `CheckByteRepeatV3`
- **Determining Best Compression**: `DetermineBestCompression`
- **Handling Direct Copy**: `HandleDirectCopy`
- **Adding Compression to Chain**: `AddCompressionToChain`
## Decompression Functions:
- `SetBuffer`: Prepares a buffer from data.
- `memfill`: Fills memory.
- **Decompression**: Such as `DecompressV2`, `DecompressGraphics`, and `DecompressOverworld`.
## Utility Functions:
- **Printing**: Such as `PrintCompressionPiece` and `PrintCompressionChain`.
- **Compression String Creation**: `CreateCompressionString`
- **Compression Result Validation**: Such as `ValidateCompressionResult` and its V3 variant.
- **Compression Piece Manipulation**: Like `SplitCompressionPiece` and its V3 variant.
## Final Notes
The YAZE's LC_LZ2 compression scheme provides three versions of compression methodologies with comprehensive support for various commands and modes. It ensures versatility and adaptability for different compression needs.

32
docs/getting-started.md Normal file
View File

@@ -0,0 +1,32 @@
# Getting Started with YAZE
This software allows you to modify the classic SNES game "The Legend of Zelda: A Link to the Past" by editing its ROM file. With this editor, you can change various aspects of the game, such as the maps, sprites, items, and more.
Please note that this project is currently a work in progress, and some features may not be fully implemented or may be subject to change.
## Prerequisites
Before you start using YAZE, make sure you have the following:
- A copy of "The Legend of Zelda: A Link to the Past" ROM file (US or JP)
- Basic knowledge of hexadecimal and binary data
## Installation
To install YAZE, follow these steps based on your platform:
### Windows
### MacOS
### GNU/Linux
## Usage
To use the Link to the Past ROM Editor, follow these steps:
Open the "ALTTP.sfc" ROM file using the "File" menu.
...
Save your changes using the "File" menu.
Backup files are enabled by default. Each save will produce a timestamped copy of your ROM before you last saved.
That's it! With these instructions, you should be able to get started with using YAZE. Happy editing!

209
docs/infrastructure.md Normal file
View File

@@ -0,0 +1,209 @@
# YAZE Infrastructure Overview
For developers to reference.
## Directory Structure
- **.github/workflows**: Contains `yaze_test` workflow config.
- **assets**: Hosts assets like fonts.
- **cmake**: Contains CMake configurations.
- **docs**: Contains documentation for users and developers.
- [Getting Started](./getting-started.md)
- [LC_LZ2 Compression](./compression.md)
- **src**: Contains source files.
- **app**: Contains the GUI editor `yaze`
- **cli**: Contains the command line interface `z3ed`
- **lib**: Contains git submodule dependencies.
- Abseil-cpp
- Asar
- ImGui
- ImGuiFileDialog
- ImGuiColorTextEdit
- imgui_memory_editor
- SDL2
- **test**: Contains testing interface `yaze_test`
## App Organization
- **Core Namespace**:
- Contains fundamental functionalities.
- [Common](../src/app/core/common.h)
- [Constants](../src/app/core/constants.h)
- [Controller](../src/app/core/controller.h)
- [Editor](../src/app/core/editor.h)
- [Pipeline](../src/app/gui/pipeline.h)
- **Editor Namespace**:
- Editors are responsible for representing the GUI view and handling user input.
- These classes are all controlled by [MasterEditor](../src/app/editor/master_editor.h)
- [DungeonEditor](../src/app/editor/dungeon_editor.h)
- [GraphicsEditor](../src/app/editor/graphics_editor.h)
- [OverworldEditor](../src/app/editor/overworld_editor.h)
- [ScreenEditor](../src/app/editor/screen_editor.h)
- [SpriteEditor](../src/app/editor/sprite_editor.h)
- **Modules**
- [AssemblyEditor](../src/app/editor/modules/assembly_editor.h)
- [MusicEditor](../src/app/editor/modules/music_editor.h)
- [GfxGroupEditor](../src/app/editor/modules/gfx_group_editor.h)
- [Tile16Editor](../src/app/editor/modules/tile16_editor.h)
- **Emu Namespace**:
- Contains business logic for `core::emulator`
- [Audio](../src/app/emu/audio/)
- [Debug](../src/app/emu/debug/)
- [Memory](../src/app/emu/memory/)
- [Video](../src/app/emu/video/)
- [Emulator](../src/app/emu/emulator.h)
- **Gfx Namespace**:
- Handles graphics related tasks.
- [Bitmap](../src/app/gfx/bitmap.h)
- [Compression](../src/app/gfx/compression.h)
- [SCAD Format](../src/app/gfx/scad_format.h)
- [SNES Palette](../src/app/gfx/snes_palette.h)
- [SNES Tile](../src/app/gfx/snes_tile.h)
- **Gui Namespace**:
- Manages GUI elements.
- [Canvas](../src/app/gui/canvas.h)
- [Color](../src/app/gui/color.h)
- [Icons](../src/app/gui/icons.h)
- [Input](../src/app/gui/input.h)
- [Style](../src/app/gui/style.h)
- [Widgets](../src/app/gui/widgets.h)
- **Zelda3 Namespace**:
- Holds business logic specific to Zelda3.
- [Dungeon](../src/app/zelda3/dungeon/)
- [Music](../src/app/zelda3/music/)
- [Screen](../src/app/zelda3/screen/)
- [Sprite](../src/app/zelda3/sprite/)
- [OverworldMap](../src/app/zelda3/overworld_map.h)
- [Overworld](../src/app/zelda3/overworld.h)
### Flow of Control
- [app/yaze.cc](../src/app/yaze.cc)
- Initializes `absl::FailureSignalHandler` for stack tracing.
- Runs the `core::Controller` loop.
- [app/core/controller.cc](../src/app/core/controller.cc)
- Initializes SDLRenderer and SDLWindow
- Initializes ImGui, fonts, themes, and clipboard.
- Handles user input from keyboard and mouse.
- Updates `editor::MasterEditor`
- Renders the output to the screen.
- Handles the teardown of SDL and ImGui resources.
- [app/editor/master_editor.cc](../src/app/editor/master_editor.cc)
- Handles the main menu bar.
- File
- Open - [app::ROM::LoadFromFile](../src/app/rom.cc#l=90)
- Save - [app::ROM::SaveToFile](../src/app/rom.cc#l=301)
- Edit
- View
- Emulator
- HEX Editor
- ASM Editor
- Palette Editor
- Memory Viewer
- ImGui Demo
- GUI Tools
- Runtime Metrics
- Style Editor
- Help
- Handles `absl::Status` errors as popups delivered to the user.
- Update all the editors in a tab view.
- [app/editor/assembly_editor.cc](../src/app/editor/assembly_editor.cc)
- [app/editor/dungeon_editor.cc](../src/app/editor/dungeon_editor.cc)
- [app/editor/graphics_editor.cc](../src/app/editor/graphics_editor.cc)
- [app/editor/music_editor.cc](../src/app/editor/music_editor.cc)
- [app/editor/overworld_editor.cc](../src/app/editor/overworld_editor.cc)
- [app/editor/screen_editor.cc](../src/app/editor/screen_editor.cc)
- [app/editor/sprite_editor.cc](../src/app/editor/sprite_editor.cc)
## ROM
- [app/rom.cc](../src/app/rom.cc)
- [app/rom.h](../src/app/rom.h)
---
This `ROM` class provides methods to manipulate and access data from a ROM.
- **Key Methods**:
- `Load2BppGraphics()`: Loads 2BPP graphics data from specified sheets.
- `LoadAllGraphicsData()`: Loads all graphics data, both compressed and uncompressed, converting where necessary.
- `LoadFromFile(const absl::string_view& filename, bool z3_load)`: Loads ROM data from a file. It also handles headers and Zelda 3 specific data if requested.
- `LoadFromPointer(uchar* data, size_t length)`: Loads ROM data from a provided pointer.
- `LoadFromBytes(const Bytes& data)`: Loads ROM data from bytes.
- `LoadAllPalettes()`: Loads all color palettes used in the ROM. This includes palettes for various elements like sprites, shields, swords, etc.
- `UpdatePaletteColor(...)`: Updates a specific color within a named palette group.
- **Internal Data Structures**:
- `rom_data_`: A container that holds the ROM data.
- `graphics_bin_`: Holds the graphics data.
- `palette_groups_`: A map containing various palette groups, each having its own set of color palettes.
- **Special Notes**:
- The class interacts with various external functionalities, such as decompression algorithms (`gfx::DecompressV2`) and color conversion (`gfx::SnesTo8bppSheet`).
- Headers in the ROM data, if present, are identified and removed.
- Specific Zelda 3 data can be loaded if specified.
- Palettes are categorized into multiple groups (e.g., `ow_main`, `ow_aux`, `hud`, etc.) and loaded accordingly.
## Overworld
- [app/zelda3/overworld.cc](../src/app/zelda3/overworld.cc)
- [app/zelda3/overworld.h](../src/app/zelda3/overworld.h)
- [app/zelda3/overworld_map.cc](../src/app/zelda3/overworld_map.cc)
- [app/zelda3/overworld_map.h](../src/app/zelda3/overworld_map.h)
---
- **Construction of Tile16 and Tile32**
- **Save and Load Resources**
- Sprites
- Entrances
- Tilemaps
## Bitmap
- [app/gfx/bitmap.cc](../src/app/gfx/bitmap.cc)
- [app/gfx/bitmap.h](../src/app/gfx/bitmap.cc)
---
This class is responsible for creating, managing, and manipulating bitmap data, which can be displayed on the screen using the ImGui library.
### Key Attributes:
1. **Width, Height, Depth, and Data Size**: These represent the dimensions and data size of the bitmap.
2. **Pixel Data**: Points to the raw data of the bitmap.
3. **Texture and Surface**: Use SDL to manage the graphical representation of the bitmap data. Both these attributes have custom deleters, ensuring proper resource management.
### Main Functions:
1. **Constructors**: Multiple constructors allow for different ways to create a Bitmap instance, like specifying width, height, depth, and data.
2. **Create**: This set of overloaded functions provides ways to create a bitmap from different data sources.
3. **CreateFromSurface**: Allows for the creation of a bitmap from an SDL_Surface.
4. **Apply**: Changes the bitmap's data to a new set of Bytes.
5. **Texture Operations**:
- **CreateTexture**: Creates an SDL_Texture from the bitmap's data for rendering.
- **UpdateTexture**: Updates the SDL_Texture with the latest bitmap data.
6. **SaveSurfaceToFile**: Saves the SDL_Surface to a file.
7. **SetSurface**: Assigns a new SDL_Surface to the bitmap.
8. **Palette Functions**:
- **ApplyPalette (Overloaded)**: This allows for the application of a SNESPalette or a standard SDL_Color palette to the bitmap.
9. **WriteToPixel**: Directly writes a value to a specified position in the pixel data.
## Z3ED cli
| Command | Arg | Params | Status |
|---------|-----|--------|--------|
| Apply BPS Patch | -a | rom_file bps_file | In progress |
| Create BPS Patch | -c | bps_file src_file modified_file | Not started |
| Open ROM | -o | rom_file | Complete |
| Backup ROM | -b | rom_file [new_file] | In progress |
| Expand ROM | -x | rom_file file_size | Not started |
| Transfer Tile16 | -t | src_rom dest_rom tile32_id_list(csv) | Complete |
| Export Graphics | -e | rom_file bin_file | In progress |
| Import Graphics | -i | bin_file rom_file | Not started |
| SNES to PC Address | -s | address | Complete |
| PC to SNES Address | -p | address | Complete |
## Further Development Ideas
- Extend `zelda3` namespace with additional functionalities.
- Optimize program performance.
- Introduce new features in the GUI editor.

6
docs/macos-build.md Normal file
View File

@@ -0,0 +1,6 @@
# macOS Build Settings
- Clang 15.0.1 x86_64-apple-darrwin22.5.0
- SDL2 Source v2.26.5
- Removed snes_spc
- Removed asar_static

17
docs/windows-build.md Normal file
View File

@@ -0,0 +1,17 @@
For VSCode users, use the following CMake extensions with MinGW-w64
https://marketplace.visualstudio.com/items?itemName=twxs.cmake
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cmake-tools
https://www.msys2.org/
Add to environment variables `C:\msys64\mingw64\bin`
Install the following packages using `pacman -S <package-name>`
`mingw-w64-x86_64-gcc`
`mingw-w64-x86_64-gcc-libs`
`mingw-w64-x86_64-cmake`
`mingw-w64-x86_64-glew`
`mingw-w64-x86_64-lib-png`

133
src/CMakeLists.txt Normal file
View File

@@ -0,0 +1,133 @@
set(
YAZE_APP_CORE_SRC
app/core/common.cc
app/core/controller.cc
)
set(
YAZE_APP_EDITOR_SRC
app/editor/dungeon_editor.cc
app/editor/graphics_editor.cc
app/editor/master_editor.cc
app/editor/overworld_editor.cc
app/editor/screen_editor.cc
app/editor/sprite_editor.cc
app/editor/modules/music_editor.cc
app/editor/modules/palette_editor.cc
app/editor/modules/assembly_editor.cc
app/editor/modules/tile16_editor.cc
app/editor/modules/gfx_group_editor.cc
app/editor/context/gfx_context.cc
)
set(
YAZE_APP_GFX_SRC
app/gfx/bitmap.cc
app/gfx/compression.cc
app/gfx/scad_format.cc
app/gfx/snes_palette.cc
app/gfx/snes_tile.cc
)
set(
YAZE_APP_ZELDA3_SRC
app/zelda3/overworld_map.cc
app/zelda3/overworld.cc
app/zelda3/screen/inventory.cc
app/zelda3/screen/title_screen.cc
app/zelda3/sprite/sprite.cc
app/zelda3/music/tracker.cc
app/zelda3/dungeon/room.cc
app/zelda3/dungeon/room_object.cc
)
set(
YAZE_GUI_SRC
app/gui/canvas.cc
app/gui/input.cc
app/gui/style.cc
app/gui/widgets.cc
app/gui/color.cc
app/gui/pipeline.cc
)
set(
YAZE_APP_EMU_SRC
app/emu/emulator.cc
app/emu/audio/apu.cc
app/emu/audio/spc700.cc
app/emu/audio/dsp.cc
app/emu/audio/internal/addressing.cc
app/emu/audio/internal/instructions.cc
app/emu/cpu/internal/addressing.cc
app/emu/cpu/internal/instructions.cc
app/emu/cpu/cpu.cc
app/emu/video/ppu.cc
app/emu/memory/dma.cc
app/emu/memory/memory.cc
app/emu/snes.cc
)
set(SDL_TARGETS SDL2::SDL2)
if(WIN32 OR MINGW)
list(PREPEND SDL_TARGETS SDL2::SDL2main ws2_32)
add_definitions(-DSDL_MAIN_HANDLED)
endif()
if (WIN32 OR MINGW OR UNIX)
list(APPEND YAZE_APP_CORE_SRC
app/core/platform/font_loader.cc
)
endif()
if(APPLE)
list(APPEND YAZE_APP_CORE_SRC
app/core/platform/file_dialog.mm
app/core/platform/app_delegate.mm
app/core/platform/font_loader.mm
app/core/platform/clipboard.mm
)
find_library(COCOA_LIBRARY Cocoa)
if(NOT COCOA_LIBRARY)
message(FATAL_ERROR "Cocoa not found")
endif()
set(CMAKE_EXE_LINKER_FLAGS "-framework ServiceManagement -framework Foundation -framework Cocoa")
endif()
include(app/CMakeLists.txt)
include(cli/CMakeLists.txt)
if (UNIX)
target_compile_definitions(yaze PRIVATE "linux")
target_compile_definitions(yaze PRIVATE "stricmp=strcasecmp")
endif()
if(MACOS)
set(MACOSX_BUNDLE_ICON_FILE ${CMAKE_SOURCE_DIR}/yaze.ico)
set_target_properties(yaze
PROPERTIES
BUNDLE True
ARCHIVE_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/lib"
LIBRARY_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/lib"
RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin"
MACOSX_BUNDLE_INFO_PLIST ${CMAKE_SOURCE_DIR}/cmake/yaze.plist.in
)
elseif(UNIX)
set_target_properties(yaze
PROPERTIES
BUNDLE True
ARCHIVE_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/lib"
LIBRARY_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/lib"
RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin"
)
else()
set_target_properties(yaze
PROPERTIES
ARCHIVE_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/lib"
LIBRARY_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/lib"
RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin"
LINK_FLAGS "${CMAKE_CURRENT_SOURCE_DIR}/yaze.res"
)
endif()

36
src/app/CMakeLists.txt Normal file
View File

@@ -0,0 +1,36 @@
add_executable(
yaze
app/yaze.cc
app/rom.cc
${YAZE_APP_EMU_SRC}
${YAZE_APP_CORE_SRC}
${YAZE_APP_EDITOR_SRC}
${YAZE_APP_GFX_SRC}
${YAZE_APP_ZELDA3_SRC}
${YAZE_GUI_SRC}
${IMGUI_SRC}
)
target_include_directories(
yaze PUBLIC
lib/
app/
lib/SDL_mixer/include/
${CMAKE_SOURCE_DIR}/src/
${PNG_INCLUDE_DIRS}
${SDL2_INCLUDE_DIR}
)
target_link_libraries(
yaze PUBLIC
${ABSL_TARGETS}
${SDL_TARGETS}
${PNG_LIBRARIES}
${CMAKE_DL_LIBS}
SDL2_mixer
ImGui
)
if (APPLE)
target_link_libraries(yaze PUBLIC ${COCOA_LIBRARY})
endif()

153
src/app/core/common.cc Normal file
View File

@@ -0,0 +1,153 @@
#include "common.h"
#include <imgui/imgui.h>
#include <chrono>
#include <cstdint>
#include <functional>
#include <memory>
#include <stack>
#include <string>
namespace yaze {
namespace app {
namespace core {
std::shared_ptr<ExperimentFlags::Flags> ExperimentFlags::flags_;
uint32_t SnesToPc(uint32_t addr) {
if (addr >= 0x808000) {
addr -= 0x808000;
}
uint32_t temp = (addr & 0x7FFF) + ((addr / 2) & 0xFF8000);
return (temp + 0x0);
}
uint32_t PcToSnes(uint32_t addr) {
if (addr >= 0x400000) return -1;
addr = ((addr << 1) & 0x7F0000) | (addr & 0x7FFF) | 0x8000;
return addr;
}
uint32_t MapBankToWordAddress(uint8_t bank, uint16_t addr) {
uint32_t result = 0;
result = (bank << 16) | addr;
return result;
}
int AddressFromBytes(uint8_t addr1, uint8_t addr2, uint8_t addr3) {
return (addr1 << 16) | (addr2 << 8) | addr3;
}
// hextodec has been imported from SNESDisasm to parse hex numbers
int HexToDec(char *input, int length) {
int result = 0;
int value;
int ceiling = length - 1;
int power16 = 16;
int j = ceiling;
for (; j >= 0; j--) {
if (input[j] >= 'A' && input[j] <= 'F') {
value = input[j] - 'F';
value += 15;
} else {
value = input[j] - '9';
value += 9;
}
if (j == ceiling) {
result += value;
continue;
}
result += (value * power16);
power16 *= 16;
}
return result;
}
bool StringReplace(std::string &str, const std::string &from,
const std::string &to) {
size_t start = str.find(from);
if (start == std::string::npos) return false;
str.replace(start, from.length(), to);
return true;
}
void stle(uint8_t *const p_arr, size_t const p_index, unsigned const p_val) {
uint8_t v = (p_val >> (8 * p_index)) & 0xff;
p_arr[p_index] = v;
}
void stle0(uint8_t *const p_arr, unsigned const p_val) {
stle(p_arr, 0, p_val);
}
void stle1(uint8_t *const p_arr, unsigned const p_val) {
stle(p_arr, 1, p_val);
}
void stle2(uint8_t *const p_arr, unsigned const p_val) {
stle(p_arr, 2, p_val);
}
void stle3(uint8_t *const p_arr, unsigned const p_val) {
stle(p_arr, 3, p_val);
}
void stle16b(uint8_t *const p_arr, uint16_t const p_val) {
stle0(p_arr, p_val);
stle1(p_arr, p_val);
}
// "Store little endian 16-bit value using a byte pointer, offset by an
// index before dereferencing"
void stle16b_i(uint8_t *const p_arr, size_t const p_index,
uint16_t const p_val) {
stle16b(p_arr + (p_index * 2), p_val);
}
// "load little endian value at the given byte offset and shift to get its
// value relative to the base offset (powers of 256, essentially)"
unsigned ldle(uint8_t const *const p_arr, unsigned const p_index) {
uint32_t v = p_arr[p_index];
v <<= (8 * p_index);
return v;
}
// Helper function to get the first byte in a little endian number
uint32_t ldle0(uint8_t const *const p_arr) { return ldle(p_arr, 0); }
// Helper function to get the second byte in a little endian number
uint32_t ldle1(uint8_t const *const p_arr) { return ldle(p_arr, 1); }
// Helper function to get the third byte in a little endian number
uint32_t ldle2(uint8_t const *const p_arr) { return ldle(p_arr, 2); }
// Helper function to get the third byte in a little endian number
uint32_t ldle3(uint8_t const *const p_arr) { return ldle(p_arr, 3); }
// Load little endian halfword (16-bit) dereferenced from
uint16_t ldle16b(uint8_t const *const p_arr) {
uint16_t v = 0;
v |= (ldle0(p_arr) | ldle1(p_arr));
return v;
}
// Load little endian halfword (16-bit) dereferenced from an arrays of bytes.
// This version provides an index that will be multiplied by 2 and added to the
// base address.
uint16_t ldle16b_i(uint8_t const *const p_arr, size_t const p_index) {
return ldle16b(p_arr + (2 * p_index));
}
// Initialize the static member
std::stack<ImGuiID> ImGuiIdIssuer::idStack;
} // namespace core
} // namespace app
} // namespace yaze

237
src/app/core/common.h Normal file
View File

@@ -0,0 +1,237 @@
#ifndef YAZE_CORE_COMMON_H
#define YAZE_CORE_COMMON_H
#include <imgui/imgui.h>
#include <chrono>
#include <cstdint>
#include <functional>
#include <memory>
#include <stack>
#include <string>
namespace yaze {
namespace app {
namespace core {
class ExperimentFlags {
public:
struct Flags {
// Load and render overworld sprites to the screen. Unstable.
bool kDrawOverworldSprites = false;
// Bitmap manager abstraction to manage graphics bin of ROM.
bool kUseBitmapManager = true;
// Log instructions to the GUI debugger.
bool kLogInstructions = false;
// Flag to enable ImGui input config flags. Currently is
// handled manually by controller class but should be
// ported away from that eventually.
bool kUseNewImGuiInput = false;
// Flag to enable the saving of all palettes to the ROM.
bool kSaveAllPalettes = false;
// Flag to enable the change queue, which could have any anonymous
// save routine for the ROM. In practice, just the overworld tilemap
// and tile32 save.
bool kSaveWithChangeQueue = false;
// Attempt to run the dungeon room draw routine when opening a room.
bool kDrawDungeonRoomGraphics = true;
// Use the new platform specific file dialog wrappers.
bool kNewFileDialogWrapper = true;
// Platform specific loading of fonts from the system. Currently
// only supports macOS.
bool kLoadSystemFonts = true;
bool kLoadTexturesAsStreaming = false;
};
ExperimentFlags() = default;
virtual ~ExperimentFlags() = default;
auto flags() const {
if (!flags_) {
flags_ = std::make_shared<Flags>();
}
Flags *flags = flags_.get();
return flags;
}
Flags *mutable_flags() {
if (!flags_) {
flags_ = std::make_shared<Flags>();
}
return flags_.get();
}
private:
static std::shared_ptr<Flags> flags_;
};
template <typename T>
class NotifyValue {
public:
NotifyValue() : value_(), modified_(false), temp_value_() {}
NotifyValue(const T &value)
: value_(value), modified_(false), temp_value_() {}
void set(const T &value) {
value_ = value;
modified_ = true;
}
const T &get() {
modified_ = false;
return value_;
}
T &mutable_get() {
modified_ = false;
temp_value_ = value_;
return temp_value_;
}
void apply_changes() {
if (temp_value_ != value_) {
value_ = temp_value_;
modified_ = true;
}
}
void operator=(const T &value) { set(value); }
operator T() { return get(); }
bool modified() const { return modified_; }
private:
T value_;
bool modified_;
T temp_value_;
};
struct TaskCheckpoint {
int task_index = 0;
bool complete = false;
// You can add more internal data or state-related variables here as needed
};
class TaskTimer {
public:
// Starts the timer
void StartTimer() { start_time_ = std::chrono::steady_clock::now(); }
// Checks if the task should finish based on the given timeout in seconds
bool ShouldFinishTask(int timeout_seconds) {
auto current_time = std::chrono::steady_clock::now();
auto elapsed_time = std::chrono::duration_cast<std::chrono::seconds>(
current_time - start_time_);
return elapsed_time.count() >= timeout_seconds;
}
private:
std::chrono::steady_clock::time_point start_time_;
};
template <typename TFunc>
class TaskManager {
public:
TaskManager() = default;
~TaskManager() = default;
TaskManager(int totalTasks, int timeoutSeconds)
: total_tasks_(totalTasks),
timeout_seconds_(timeoutSeconds),
task_index_(0),
task_complete_(false) {}
void ExecuteTasks(const TFunc &taskFunc) {
if (task_complete_) {
return;
}
StartTimer();
for (; task_index_ < total_tasks_; ++task_index_) {
taskFunc(task_index_);
if (ShouldFinishTask()) {
break;
}
}
if (task_index_ == total_tasks_) {
task_complete_ = true;
}
}
bool IsTaskComplete() const { return task_complete_; }
void SetTimeout(int timeout) { timeout_seconds_ = timeout; }
private:
int total_tasks_;
int timeout_seconds_;
int task_index_;
bool task_complete_;
std::chrono::steady_clock::time_point start_time_;
void StartTimer() { start_time_ = std::chrono::steady_clock::now(); }
bool ShouldFinishTask() {
auto current_time = std::chrono::steady_clock::now();
auto elapsed_time = std::chrono::duration_cast<std::chrono::seconds>(
current_time - start_time_);
return elapsed_time.count() >= timeout_seconds_;
}
};
class ImGuiIdIssuer {
private:
static std::stack<ImGuiID> idStack;
public:
// Generate and push a new ID onto the stack
static ImGuiID GetNewID() {
static int counter = 1; // Start from 1 to ensure uniqueness
ImGuiID child_id = ImGui::GetID((void *)(intptr_t)counter++);
idStack.push(child_id);
return child_id;
}
// Pop all IDs from the stack (can be called explicitly or upon program exit)
static void Cleanup() {
while (!idStack.empty()) {
idStack.pop();
}
}
};
uint32_t SnesToPc(uint32_t addr);
uint32_t PcToSnes(uint32_t addr);
uint32_t MapBankToWordAddress(uint8_t bank, uint16_t addr);
int AddressFromBytes(uint8_t addr1, uint8_t addr2, uint8_t addr3);
int HexToDec(char *input, int length);
bool StringReplace(std::string &str, const std::string &from,
const std::string &to);
void stle16b_i(uint8_t *const p_arr, size_t const p_index,
uint16_t const p_val);
uint16_t ldle16b_i(uint8_t const *const p_arr, size_t const p_index);
void stle16b(uint8_t *const p_arr, uint16_t const p_val);
void stle32b(uint8_t *const p_arr, uint32_t const p_val);
void stle32b_i(uint8_t *const p_arr, size_t const p_index,
uint32_t const p_val);
} // namespace core
} // namespace app
} // namespace yaze
#endif

996
src/app/core/constants.h Normal file
View File

@@ -0,0 +1,996 @@
#ifndef YAZE_APP_CORE_CONSTANTS_H
#define YAZE_APP_CORE_CONSTANTS_H
#include <vector>
#include "absl/strings/string_view.h"
#define IMGUI_DEFINE_MATH_OPERATORS
#define BASIC_BUTTON(w) if (ImGui::Button(w))
#define TAB_BAR(w) if (ImGui::BeginTabBar(w)) {
#define END_TAB_BAR() \
ImGui::EndTabBar(); \
}
#define TAB_ITEM(w) if (ImGui::BeginTabItem(w)) {
#define END_TAB_ITEM() \
ImGui::EndTabItem(); \
}
#define MENU_BAR() if (ImGui::BeginMenuBar()) {
#define END_MENU_BAR() \
ImGui::EndMenuBar(); \
}
#define MENU_ITEM(w) if (ImGui::MenuItem(w))
#define MENU_ITEM2(w, v) if (ImGui::MenuItem(w, v))
#define BUTTON_COLUMN(w) \
ImGui::TableNextColumn(); \
ImGui::Button(w);
#define TEXT_COLUMN(w) \
ImGui::TableNextColumn(); \
ImGui::Text(w);
#define BEGIN_TABLE(l, n, f) if (ImGui::BeginTable(l, n, f, ImVec2(0, 0))) {
#define SETUP_COLUMN(l) ImGui::TableSetupColumn(l);
#define TABLE_HEADERS() \
ImGui::TableHeadersRow(); \
ImGui::TableNextRow();
#define NEXT_COLUMN() ImGui::TableNextColumn();
#define END_TABLE() \
ImGui::EndTable(); \
}
#define HOVER_HINT(string) \
if (ImGui::IsItemHovered()) ImGui::SetTooltip(string);
#define PRINT_IF_ERROR(expression) \
{ \
auto error = expression; \
if (!error.ok()) { \
std::cout << error.ToString() << std::endl; \
} \
}
#define EXIT_IF_ERROR(expression) \
{ \
auto error = expression; \
if (!error.ok()) { \
std::cout << error.ToString() << std::endl; \
return EXIT_FAILURE; \
} \
}
#define RETURN_IF_ERROR(expression) \
{ \
auto error = expression; \
if (!error.ok()) { \
return error; \
} \
}
#define ASSIGN_OR_RETURN(type_variable_name, expression) \
ASSIGN_OR_RETURN_IMPL(APPEND_NUMBER(error_or_value, __LINE__), \
type_variable_name, expression)
#define ASSIGN_OR_RETURN_IMPL(error_or_value, type_variable_name, expression) \
auto error_or_value = expression; \
if (!error_or_value.ok()) { \
return error_or_value.status(); \
} \
type_variable_name = std::move(*error_or_value);
#define ASSIGN_OR_LOG_ERROR(type_variable_name, expression) \
ASSIGN_OR_LOG_ERROR_IMPL(APPEND_NUMBER(error_or_value, __LINE__), \
type_variable_name, expression)
#define ASSIGN_OR_LOG_ERROR_IMPL(error_or_value, type_variable_name, \
expression) \
auto error_or_value = expression; \
if (!error_or_value.ok()) { \
std::cout << error_or_value.status().ToString() << std::endl; \
} \
type_variable_name = std::move(*error_or_value);
#define APPEND_NUMBER(expression, number) \
APPEND_NUMBER_INNER(expression, number)
#define APPEND_NUMBER_INNER(expression, number) expression##number
#define TEXT_WITH_SEPARATOR(text) \
ImGui::Text(text); \
ImGui::Separator();
#define TABLE_BORDERS_RESIZABLE \
ImGuiTableFlags_Borders | ImGuiTableFlags_Resizable
#define CLEAR_AND_RETURN_STATUS(status) \
if (!status.ok()) { \
auto temp = status; \
status = absl::OkStatus(); \
return temp; \
}
using ushort = unsigned short;
using uint = unsigned int;
using uchar = unsigned char;
using Bytes = std::vector<uchar>;
using OWBlockset = std::vector<std::vector<ushort>>;
struct OWMapTiles {
OWBlockset light_world; // 64 maps
OWBlockset dark_world; // 64 maps
OWBlockset special_world; // 32 maps
};
using OWMapTiles = struct OWMapTiles;
namespace yaze {
namespace app {
namespace core {
constexpr float kYazeVersion = 0.05;
// ============================================================================
// Magic numbers
// ============================================================================
/// Bit set for object priority
constexpr ushort TilePriorityBit = 0x2000;
/// Bit set for object hflip
constexpr ushort TileHFlipBit = 0x4000;
/// Bit set for object vflip
constexpr ushort TileVFlipBit = 0x8000;
/// Bits used for tile name
constexpr ushort TileNameMask = 0x03FF;
constexpr int Uncompressed3BPPSize = 0x0600;
constexpr int UncompressedSheetSize = 0x0800;
constexpr int NumberOfRooms = 296;
constexpr int NumberOfColors = 3143;
// ============================================================================
// Game Graphics
// ============================================================================
constexpr int tile_address = 0x1B52; // JP = Same
constexpr int tile_address_floor = 0x1B5A; // JP = Same
constexpr int subtype1_tiles = 0x8000; // JP = Same
constexpr int subtype2_tiles = 0x83F0; // JP = Same
constexpr int subtype3_tiles = 0x84F0; // JP = Same
constexpr int gfx_animated_pointer = 0x10275; // JP 0x10624 //long pointer
constexpr int hud_palettes = 0xDD660;
constexpr int maxGfx = 0xC3FB5;
constexpr int kTilesheetWidth = 128;
constexpr int kTilesheetHeight = 32;
constexpr int kTilesheetDepth = 8;
// TEXT EDITOR RELATED CONSTANTS
constexpr int gfx_font = 0x70000; // 2bpp format
constexpr int text_data = 0xE0000;
constexpr int text_data2 = 0x75F40;
constexpr int pointers_dictionaries = 0x74703;
constexpr int characters_width = 0x74ADF;
// ============================================================================
// Dungeon Entrances Related Variables
// ============================================================================
// 0x14577 word value for each room
constexpr int entrance_room = 0x14813;
// 8 bytes per room, HU, FU, HD, FD, HL, FL, HR, FR
constexpr int entrance_scrolledge = 0x1491D; // 0x14681
constexpr int entrance_yscroll = 0x14D45; // 0x14AA9 2 bytes each room
constexpr int entrance_xscroll = 0x14E4F; // 0x14BB3 2 bytes
constexpr int entrance_yposition = 0x14F59; // 0x14CBD 2bytes
constexpr int entrance_xposition = 0x15063; // 0x14DC7 2bytes
constexpr int entrance_camerayposition = 0x1516D; // 0x14ED1 2bytes
constexpr int entrance_cameraxposition = 0x15277; // 0x14FDB 2bytes
constexpr int entrance_gfx_group = 0x5D97;
constexpr int entrance_blockset = 0x15381; // 0x150E5 1byte
constexpr int entrance_floor = 0x15406; // 0x1516A 1byte
constexpr int entrance_dungeon = 0x1548B; // 0x151EF 1byte (dungeon id)
constexpr int entrance_door = 0x15510; // 0x15274 1byte
// 1 byte, ---b ---a b = bg2, a = need to check
constexpr int entrance_ladderbg = 0x15595; // 0x152F9
constexpr int entrance_scrolling = 0x1561A; // 0x1537E 1byte --h- --v-
constexpr int entrance_scrollquadrant = 0x1569F; // 0x15403 1byte
constexpr int entrance_exit = 0x15724; // 0x15488 2byte word
constexpr int entrance_music = 0x1582E; // 0x15592
// word value for each room
constexpr int startingentrance_room = 0x15B6E; // 0x158D2
// 8 bytes per room, HU, FU, HD, FD, HL, FL, HR, FR
constexpr int startingentrance_scrolledge = 0x15B7C; // 0x158E0
constexpr int startingentrance_yscroll = 0x15BB4; // 0x14AA9 //2bytes each room
constexpr int startingentrance_xscroll = 0x15BC2; // 0x14BB3 //2bytes
constexpr int startingentrance_yposition = 0x15BD0; // 0x14CBD 2bytes
constexpr int startingentrance_xposition = 0x15BDE; // 0x14DC7 2bytes
constexpr int startingentrance_camerayposition = 0x15BEC; // 0x14ED1 2bytes
constexpr int startingentrance_cameraxposition = 0x15BFA; // 0x14FDB 2bytes
constexpr int startingentrance_blockset = 0x15C08; // 0x150E5 1byte
constexpr int startingentrance_floor = 0x15C0F; // 0x1516A 1byte
constexpr int startingentrance_dungeon = 0x15C16; // 0x151EF 1byte (dungeon id)
constexpr int startingentrance_door = 0x15C2B; // 0x15274 1byte
// 1 byte, ---b ---a b = bg2, a = need to check
constexpr int startingentrance_ladderbg = 0x15C1D; // 0x152F9
// 1byte --h- --v-
constexpr int startingentrance_scrolling = 0x15C24; // 0x1537E
constexpr int startingentrance_scrollquadrant = 0x15C2B; // 0x15403 1byte
constexpr int startingentrance_exit = 0x15C32; // 0x15488 //2byte word
constexpr int startingentrance_music = 0x15C4E; // 0x15592
constexpr int startingentrance_entrance = 0x15C40;
constexpr int items_data_start = 0xDDE9; // save purpose
constexpr int items_data_end = 0xE6B2; // save purpose
constexpr int initial_equipement = 0x271A6;
constexpr int messages_id_dungeon = 0x3F61D;
// item id you get instead if you already have that item
constexpr int chests_backupitems = 0x3B528;
constexpr int chests_yoffset = 0x4836C;
constexpr int chests_xoffset = 0x4836C + (76 * 1);
constexpr int chests_itemsgfx = 0x4836C + (76 * 2);
constexpr int chests_itemswide = 0x4836C + (76 * 3);
constexpr int chests_itemsproperties = 0x4836C + (76 * 4);
constexpr int chests_sramaddress = 0x4836C + (76 * 5);
constexpr int chests_sramvalue = 0x4836C + (76 * 7);
constexpr int chests_msgid = 0x442DD;
constexpr int dungeons_startrooms = 0x7939;
constexpr int dungeons_endrooms = 0x792D;
constexpr int dungeons_bossrooms = 0x10954; // short value
// Bed Related Values (Starting location)
constexpr int bedPositionX = 0x039A37; // short value
constexpr int bedPositionY = 0x039A32; // short value
// short value (on 2 different bytes)
constexpr int bedPositionResetXLow = 0x02DE53;
constexpr int bedPositionResetXHigh = 0x02DE58;
// short value (on 2 different bytes)
constexpr int bedPositionResetYLow = 0x02DE5D;
constexpr int bedPositionResetYHigh = 0x02DE62;
constexpr int bedSheetPositionX = 0x0480BD; // short value
constexpr int bedSheetPositionY = 0x0480B8; // short value
// ============================================================================
// Gravestones related variables
// ============================================================================
constexpr int GravesYTilePos = 0x49968; // short (0x0F entries)
constexpr int GravesXTilePos = 0x49986; // short (0x0F entries)
constexpr int GravesTilemapPos = 0x499A4; // short (0x0F entries)
constexpr int GravesGFX = 0x499C2; // short (0x0F entries)
constexpr int GravesXPos = 0x4994A; // short (0x0F entries)
constexpr int GravesYLine = 0x4993A; // short (0x08 entries)
constexpr int GravesCountOnY = 0x499E0; // Byte 0x09 entries
constexpr int GraveLinkSpecialHole = 0x46DD9; // short
constexpr int GraveLinkSpecialStairs = 0x46DE0; // short
// ============================================================================
// Palettes Related Variables - This contain all the palettes of the game
// ============================================================================
constexpr int overworldPaletteMain = 0xDE6C8;
constexpr int overworldPaletteAuxialiary = 0xDE86C;
constexpr int overworldPaletteAnimated = 0xDE604;
constexpr int globalSpritePalettesLW = 0xDD218;
constexpr int globalSpritePalettesDW = 0xDD290;
// Green, Blue, Red, Bunny, Electrocuted (15 colors each)
constexpr int armorPalettes = 0xDD308;
constexpr int spritePalettesAux1 = 0xDD39E; // 7 colors each
constexpr int spritePalettesAux2 = 0xDD446; // 7 colors each
constexpr int spritePalettesAux3 = 0xDD4E0; // 7 colors each
constexpr int swordPalettes = 0xDD630; // 3 colors each - 4 entries
constexpr int shieldPalettes = 0xDD648; // 4 colors each - 3 entries
constexpr int hudPalettes = 0xDD660;
constexpr int dungeonMapPalettes = 0xDD70A; // 21 colors
constexpr int dungeonMainPalettes = 0xDD734; //(15*6) colors each - 20 entries
constexpr int dungeonMapBgPalettes = 0xDE544; // 16*6
// Mirrored Value at 0x75645 : 0x75625
constexpr int hardcodedGrassLW = 0x5FEA9;
constexpr int hardcodedGrassDW = 0x05FEB3; // 0x7564F
constexpr int hardcodedGrassSpecial = 0x75640;
constexpr int overworldMiniMapPalettes = 0x55B27;
constexpr int triforcePalette = 0x64425;
constexpr int crystalPalette = 0xF4CD3;
constexpr int customAreaSpecificBGPalette =
0x140000; // 2 bytes for each overworld area (320)
constexpr int customAreaSpecificBGASM = 0x140150;
constexpr int customAreaSpecificBGEnabled =
0x140140; // 1 byte, not 0 if enabled
// ============================================================================
// Dungeon Map Related Variables
// ============================================================================
constexpr int dungeonMap_rooms_ptr = 0x57605; // 14 pointers of map data
constexpr int dungeonMap_floors = 0x575D9; // 14 words values
constexpr int dungeonMap_gfx_ptr = 0x57BE4; // 14 pointers of gfx data
// data start for floors/gfx MUST skip 575D9 to 57621 (pointers)
constexpr int dungeonMap_datastart = 0x57039;
// IF Byte = 0xB9 dungeon maps are not expanded
constexpr int dungeonMap_expCheck = 0x56652;
constexpr int dungeonMap_tile16 = 0x57009;
constexpr int dungeonMap_tile16Exp = 0x109010;
// 14 words values 0x000F = no boss
constexpr int dungeonMap_bossrooms = 0x56807;
constexpr int triforceVertices = 0x04FFD2; // group of 3, X, Y ,Z
constexpr int TriforceFaces = 0x04FFE4; // group of 5
constexpr int crystalVertices = 0x04FF98;
// ============================================================================
// Names
// ============================================================================
static const absl::string_view RoomEffect[] = {"Nothing",
"Nothing",
"Moving Floor",
"Moving Water",
"Trinexx Shell",
"Red Flashes",
"Light Torch to See Floor",
"Ganon's Darkness"};
static const absl::string_view RoomTag[] = {"Nothing",
"NW Kill Enemy to Open",
"NE Kill Enemy to Open",
"SW Kill Enemy to Open",
"SE Kill Enemy to Open",
"W Kill Enemy to Open",
"E Kill Enemy to Open",
"N Kill Enemy to Open",
"S Kill Enemy to Open",
"Clear Quadrant to Open",
"Clear Full Tile to Open",
"NW Push Block to Open",
"NE Push Block to Open",
"SW Push Block to Open",
"SE Push Block to Open",
"W Push Block to Open",
"E Push Block to Open",
"N Push Block to Open",
"S Push Block to Open",
"Push Block to Open",
"Pull Lever to Open",
"Collect Prize to Open",
"Hold Switch Open Door",
"Toggle Switch to Open Door",
"Turn off Water",
"Turn on Water",
"Water Gate",
"Water Twin",
"Moving Wall Right",
"Moving Wall Left",
"Crash",
"Crash",
"Push Switch Exploding Wall",
"Holes 0",
"Open Chest (Holes 0)",
"Holes 1",
"Holes 2",
"Defeat Boss for Dungeon Prize",
"SE Kill Enemy to Push Block",
"Trigger Switch Chest",
"Pull Lever Exploding Wall",
"NW Kill Enemy for Chest",
"NE Kill Enemy for Chest",
"SW Kill Enemy for Chest",
"SE Kill Enemy for Chest",
"W Kill Enemy for Chest",
"E Kill Enemy for Chest",
"N Kill Enemy for Chest",
"S Kill Enemy for Chest",
"Clear Quadrant for Chest",
"Clear Full Tile for Chest",
"Light Torches to Open",
"Holes 3",
"Holes 4",
"Holes 5",
"Holes 6",
"Agahnim Room",
"Holes 7",
"Holes 8",
"Open Chest for Holes 8",
"Push Block for Chest",
"Clear Room for Triforce Door",
"Light Torches for Chest",
"Kill Boss Again"};
static const absl::string_view SecretItemNames[] = {
"Nothing", "Green Rupee", "Rock hoarder", "Bee", "Health pack",
"Bomb", "Heart ", "Blue Rupee",
"Key", "Arrow", "Bomb", "Heart", "Magic",
"Full Magic", "Cucco", "Green Soldier", "Bush Stal", "Blue Soldier",
"Landmine", "Heart", "Fairy", "Heart",
"Nothing ", // 22
"Hole", "Warp", "Staircase", "Bombable", "Switch"};
static const absl::string_view TileTypeNames[] = {
"$00 Nothing (standard floor)",
"$01 Collision",
"$02 Collision",
"$03 Collision",
"$04 Collision",
"$05 Nothing (unused?)",
"$06 Nothing (unused?)",
"$07 Nothing (unused?)",
"$08 Deep water",
"$09 Shallow water",
"$0A Unknown? Possibly unused",
"$0B Collision (different in Overworld and unknown)",
"$0C Overlay mask",
"$0D Spike floor",
"$0E GT ice",
"$0F Ice palace ice",
"$10 Slope ◤",
"$11 Slope ◥",
"$12 Slope ◣",
"$13 Slope ◢",
"$14 Nothing (unused?)",
"$15 Nothing (unused?)",
"$16 Nothing (unused?)",
"$17 Nothing (unused?)",
"$18 Slope ◤",
"$19 Slope ◥",
"$1A Slope ◣",
"$1B Slope ◢",
"$1C Layer 2 overlay",
"$1D North single-layer auto stairs",
"$1E North layer-swap auto stairs",
"$1F North layer-swap auto stairs",
"$20 Pit",
"$21 Nothing (unused?)",
"$22 Manual stairs",
"$23 Pot switch",
"$24 Pressure switch",
"$25 Nothing (unused but referenced by somaria blocks)",
"$26 Collision (near stairs?)",
"$27 Brazier/Fence/Statue/Block/General hookable things",
"$28 North ledge",
"$29 South ledge",
"$2A East ledge",
"$2B West ledge",
"$2C ◤ ledge",
"$2D ◣ ledge",
"$2E ◥ ledge",
"$2F ◢ ledge",
"$30 Straight inter-room stairs south/up 0",
"$31 Straight inter-room stairs south/up 1",
"$32 Straight inter-room stairs south/up 2",
"$33 Straight inter-room stairs south/up 3",
"$34 Straight inter-room stairs north/down 0",
"$35 Straight inter-room stairs north/down 1",
"$36 Straight inter-room stairs north/down 2",
"$37 Straight inter-room stairs north/down 3",
"$38 Straight inter-room stairs north/down edge",
"$39 Straight inter-room stairs south/up edge",
"$3A Star tile (inactive on load)",
"$3B Star tile (active on load)",
"$3C Nothing (unused?)",
"$3D South single-layer auto stairs",
"$3E South layer-swap auto stairs",
"$3F South layer-swap auto stairs",
"$40 Thick grass",
"$41 Nothing (unused?)",
"$42 Gravestone / Tower of hera ledge shadows??",
"$43 Skull Woods entrance/Hera columns???",
"$44 Spike",
"$45 Nothing (unused?)",
"$46 Desert Tablet",
"$47 Nothing (unused?)",
"$48 Diggable ground",
"$49 Nothing (unused?)",
"$4A Diggable ground",
"$4B Warp tile",
"$4C Nothing (unused?) | Something unknown in overworld",
"$4D Nothing (unused?) | Something unknown in overworld",
"$4E Square corners in EP overworld",
"$4F Square corners in EP overworld",
"$50 Green bush",
"$51 Dark bush",
"$52 Gray rock",
"$53 Black rock",
"$54 Hint tile/Sign",
"$55 Big gray rock",
"$56 Big black rock",
"$57 Bonk rocks",
"$58 Chest 0",
"$59 Chest 1",
"$5A Chest 2",
"$5B Chest 3",
"$5C Chest 4",
"$5D Chest 5",
"$5E Spiral stairs",
"$5F Spiral stairs",
"$60 Rupee tile",
"$61 Nothing (unused?)",
"$62 Bombable floor",
"$63 Minigame chest",
"$64 Nothing (unused?)",
"$65 Nothing (unused?)",
"$66 Crystal peg down",
"$67 Crystal peg up",
"$68 Upwards conveyor",
"$69 Downwards conveyor",
"$6A Leftwards conveyor",
"$6B Rightwards conveyor",
"$6C North vines",
"$6D South vines",
"$6E West vines",
"$6F East vines",
"$70 Pot/Hammer peg/Push block 00",
"$71 Pot/Hammer peg/Push block 01",
"$72 Pot/Hammer peg/Push block 02",
"$73 Pot/Hammer peg/Push block 03",
"$74 Pot/Hammer peg/Push block 04",
"$75 Pot/Hammer peg/Push block 05",
"$76 Pot/Hammer peg/Push block 06",
"$77 Pot/Hammer peg/Push block 07",
"$78 Pot/Hammer peg/Push block 08",
"$79 Pot/Hammer peg/Push block 09",
"$7A Pot/Hammer peg/Push block 0A",
"$7B Pot/Hammer peg/Push block 0B",
"$7C Pot/Hammer peg/Push block 0C",
"$7D Pot/Hammer peg/Push block 0D",
"$7E Pot/Hammer peg/Push block 0E",
"$7F Pot/Hammer peg/Push block 0F",
"$80 North/South door",
"$81 East/West door",
"$82 North/South shutter door",
"$83 East/West shutter door",
"$84 North/South layer 2 door",
"$85 East/West layer 2 door",
"$86 North/South layer 2 shutter door",
"$87 East/West layer 2 shutter door",
"$88 Some type of door (?)",
"$89 East/West transport door",
"$8A Some type of door (?)",
"$8B Some type of door (?)",
"$8C Some type of door (?)",
"$8D Some type of door (?)",
"$8E Entrance door",
"$8F Entrance door",
"$90 Layer toggle shutter door (?)",
"$91 Layer toggle shutter door (?)",
"$92 Layer toggle shutter door (?)",
"$93 Layer toggle shutter door (?)",
"$94 Layer toggle shutter door (?)",
"$95 Layer toggle shutter door (?)",
"$96 Layer toggle shutter door (?)",
"$97 Layer toggle shutter door (?)",
"$98 Layer+Dungeon toggle shutter door (?)",
"$99 Layer+Dungeon toggle shutter door (?)",
"$9A Layer+Dungeon toggle shutter door (?)",
"$9B Layer+Dungeon toggle shutter door (?)",
"$9C Layer+Dungeon toggle shutter door (?)",
"$9D Layer+Dungeon toggle shutter door (?)",
"$9E Layer+Dungeon toggle shutter door (?)",
"$9F Layer+Dungeon toggle shutter door (?)",
"$A0 North/South Dungeon swap door",
"$A1 Dungeon toggle door (?)",
"$A2 Dungeon toggle door (?)",
"$A3 Dungeon toggle door (?)",
"$A4 Dungeon toggle door (?)",
"$A5 Dungeon toggle door (?)",
"$A6 Nothing (unused?)",
"$A7 Nothing (unused?)",
"$A8 Layer+Dungeon toggle shutter door (?)",
"$A9 Layer+Dungeon toggle shutter door (?)",
"$AA Layer+Dungeon toggle shutter door (?)",
"$AB Layer+Dungeon toggle shutter door (?)",
"$AC Layer+Dungeon toggle shutter door (?)",
"$AD Layer+Dungeon toggle shutter door (?)",
"$AE Layer+Dungeon toggle shutter door (?)",
"$AF Layer+Dungeon toggle shutter door (?)",
"$B0 Somaria ─",
"$B1 Somaria │",
"$B2 Somaria ┌",
"$B3 Somaria └",
"$B4 Somaria ┐",
"$B5 Somaria ┘",
"$B6 Somaria ⍰ 1 way",
"$B7 Somaria ┬",
"$B8 Somaria ┴",
"$B9 Somaria ├",
"$BA Somaria ┤",
"$BB Somaria ┼",
"$BC Somaria ⍰ 2 way",
"$BD Somaria ┼ crossover",
"$BE Pipe entrance",
"$BF Nothing (unused?)",
"$C0 Torch 00",
"$C1 Torch 01",
"$C2 Torch 02",
"$C3 Torch 03",
"$C4 Torch 04",
"$C5 Torch 05",
"$C6 Torch 06",
"$C7 Torch 07",
"$C8 Torch 08",
"$C9 Torch 09",
"$CA Torch 0A",
"$CB Torch 0B",
"$CC Torch 0C",
"$CD Torch 0D",
"$CE Torch 0E",
"$CF Torch 0F",
"$D0 Nothing (unused?)",
"$D1 Nothing (unused?)",
"$D2 Nothing (unused?)",
"$D3 Nothing (unused?)",
"$D4 Nothing (unused?)",
"$D5 Nothing (unused?)",
"$D6 Nothing (unused?)",
"$D7 Nothing (unused?)",
"$D8 Nothing (unused?)",
"$D9 Nothing (unused?)",
"$DA Nothing (unused?)",
"$DB Nothing (unused?)",
"$DC Nothing (unused?)",
"$DD Nothing (unused?)",
"$DE Nothing (unused?)",
"$DF Nothing (unused?)",
"$E0 Nothing (unused?)",
"$E1 Nothing (unused?)",
"$E2 Nothing (unused?)",
"$E3 Nothing (unused?)",
"$E4 Nothing (unused?)",
"$E5 Nothing (unused?)",
"$E6 Nothing (unused?)",
"$E7 Nothing (unused?)",
"$E8 Nothing (unused?)",
"$E9 Nothing (unused?)",
"$EA Nothing (unused?)",
"$EB Nothing (unused?)",
"$EC Nothing (unused?)",
"$ED Nothing (unused?)",
"$EE Nothing (unused?)",
"$EF Nothing (unused?)",
"$F0 Door 0 bottom",
"$F1 Door 1 bottom",
"$F2 Door 2 bottom",
"$F3 Door 3 bottom",
"$F4 Door X bottom? (unused?)",
"$F5 Door X bottom? (unused?)",
"$F6 Door X bottom? (unused?)",
"$F7 Door X bottom? (unused?)",
"$F8 Door 0 top",
"$F9 Door 1 top",
"$FA Door 2 top",
"$FB Door 3 top",
"$FC Door X top? (unused?)",
"$FD Door X top? (unused?)",
"$FE Door X top? (unused?)",
"$FF Door X top? (unused?)"};
static const absl::string_view kSpriteDefaultNames[]{
"00 Raven",
"01 Vulture",
"02 Flying Stalfos Head",
"03 No Pointer (Empty",
"04 Pull Switch (good",
"05 Pull Switch (unused",
"06 Pull Switch (bad",
"07 Pull Switch (unused",
"08 Octorock (one way",
"09 Moldorm (Boss",
"0A Octorock (four way",
"0B Chicken",
"0C Octorock (?",
"0D Buzzblock",
"0E Snapdragon",
"0F Octoballoon",
"10 Octoballon Hatchlings",
"11 Hinox",
"12 Moblin",
"13 Mini Helmasaure",
"14 Gargoyle's Domain Gate",
"15 Antifairy",
"16 Sahasrahla / Aginah",
"17 Bush Hoarder",
"18 Mini Moldorm",
"19 Poe",
"1A Dwarves",
"1B Arrow in wall",
"1C Statue",
"1D Weathervane",
"1E Crystal Switch",
"1F Bug-Catching Kid",
"20 Sluggula",
"21 Push Switch",
"22 Ropa",
"23 Red Bari",
"24 Blue Bari",
"25 Talking Tree",
"26 Hardhat Beetle",
"27 Deadrock",
"28 Storytellers",
"29 Blind Hideout attendant",
"2A Sweeping Lady",
"2B Storytellers",
"2C Lumberjacks",
"2D Telepathic Stones",
"2E Multipurpose Sprite",
"2F Race Npc",
"30 Person?",
"31 Fortune Teller",
"32 Angry Brothers",
"33 Pull for items",
"34 Scared Girl",
"35 Innkeeper",
"36 Witch",
"37 Waterfall",
"38 Arrow Target",
"39 Average Middle",
"3A Half Magic Bat",
"3B Dash Item",
"3C Village Kid",
"3D Signs? Chicken lady also showed up / Scared ladies outside houses.",
"3E Rock Hoarder",
"3F Tutorial Soldier",
"40 Lightning Lock",
"41 Blue Sword Soldier / Used by guards to detect player",
"42 Green Sword Soldier",
"43 Red Spear Soldier",
"44 Assault Sword Soldier",
"45 Green Spear Soldier",
"46 Blue Archer",
"47 Green Archer",
"48 Red Javelin Soldier",
"49 Red Javelin Soldier 2",
"4A Red Bomb Soldiers",
"4B Green Soldier Recruits",
"4C Geldman",
"4D Rabbit",
"4E Popo",
"4F Popo 2",
"50 Cannon Balls",
"51 Armos",
"52 Giant Zora",
"53 Armos Knights (Boss",
"54 Lanmolas (Boss",
"55 Fireball Zora",
"56 Walking Zora",
"57 Desert Palace Barriers",
"58 Crab",
"59 Bird",
"5A Squirrel",
"5B Spark (Left to Right",
"5C Spark (Right to Left",
"5D Roller (vertical moving",
"5E Roller (vertical moving",
"5F Roller",
"60 Roller (horizontal moving",
"61 Beamos",
"62 Master Sword",
"63 Devalant (Non",
"64 Devalant (Shooter",
"65 Shooting Gallery Proprietor",
"66 Moving Cannon Ball Shooters (Right",
"67 Moving Cannon Ball Shooters (Left",
"68 Moving Cannon Ball Shooters (Down",
"69 Moving Cannon Ball Shooters (Up",
"6A Ball N' Chain Trooper",
"6B Cannon Soldier",
"6C Mirror Portal",
"6D Rat",
"6E Rope",
"6F Keese",
"70 Helmasaur King Fireball",
"71 Leever",
"72 Activator for the ponds (where you throw in items",
"73 Uncle / Priest",
"74 Running Man",
"75 Bottle Salesman",
"76 Princess Zelda",
"77 Antifairy (Alternate",
"78 Village Elder",
"79 Bee",
"7A Agahnim",
"7B Agahnim Energy Ball",
"7C Hyu",
"7D Big Spike Trap",
"7E Guruguru Bar (Clockwise",
"7F Guruguru Bar (Counter Clockwise",
"80 Winder",
"81 Water Tektite",
"82 Antifairy Circle",
"83 Green Eyegore",
"84 Red Eyegore",
"85 Yellow Stalfos",
"86 Kodongos",
"87 Flames",
"88 Mothula (Boss",
"89 Mothula's Beam",
"8A Spike Trap",
"8B Gibdo",
"8C Arrghus (Boss",
"8D Arrghus spawn",
"8E Terrorpin",
"8F Slime",
"90 Wallmaster",
"91 Stalfos Knight",
"92 Helmasaur King",
"93 Bumper",
"94 Swimmers",
"95 Eye Laser (Right",
"96 Eye Laser (Left",
"97 Eye Laser (Down",
"98 Eye Laser (Up",
"99 Pengator",
"9A Kyameron",
"9B Wizzrobe",
"9C Tadpoles",
"9D Tadpoles",
"9E Ostrich (Haunted Grove",
"9F Flute",
"A0 Birds (Haunted Grove",
"A1 Freezor",
"A2 Kholdstare (Boss",
"A3 Kholdstare's Shell",
"A4 Falling Ice",
"A5 Zazak Fireball",
"A6 Red Zazak",
"A7 Stalfos",
"A8 Bomber Flying Creatures from Darkworld",
"A9 Bomber Flying Creatures from Darkworld",
"AA Pikit",
"AB Maiden",
"AC Apple",
"AD Lost Old Man",
"AE Down Pipe",
"AF Up Pipe",
"B0 Right Pip",
"B1 Left Pipe",
"B2 Good bee again?",
"B3 Hylian Inscription",
"B4 Thief?s chest (not the one that follows you",
"B5 Bomb Salesman",
"B6 Kiki",
"B7 Maiden following you in Blind Dungeon",
"B8 Monologue Testing Sprite",
"B9 Feuding Friends on Death Mountain",
"BA Whirlpool",
"BB Salesman / chestgame guy / 300 rupee giver guy / Chest game thief",
"BC Drunk in the inn",
"BD Vitreous (Large Eyeball",
"BE Vitreous (Small Eyeball",
"BF Vitreous' Lightning",
"C0 Monster in Lake of Ill Omen / Quake Medallion",
"C1 Agahnim teleporting Zelda to dark world",
"C2 Boulders",
"C3 Gibo",
"C4 Thief",
"C5 Medusa",
"C6 Four Way Fireball Spitters (spit when you use your sword",
"C7 Hokku",
"C8 Big Fairy who heals you",
"C9 Tektite",
"CA Chain Chomp",
"CB Trinexx",
"CC Another part of trinexx",
"CD Yet another part of trinexx",
"CE Blind The Thief (Boss)",
"CF Swamola",
"D0 Lynel",
"D1 Bunny Beam",
"D2 Flopping fish",
"D3 Stal",
"D4 Landmine",
"D5 Digging Game Proprietor",
"D6 Ganon",
"D7 Copy of Ganon",
"D8 Heart",
"D9 Green Rupee",
"DA Blue Rupee",
"DB Red Rupee",
"DC Bomb Refill (1)",
"DD Bomb Refill (4)",
"DE Bomb Refill (8)",
"DF Small Magic Refill",
"E0 Full Magic Refill",
"E1 Arrow Refill (5)",
"E2 Arrow Refill (10)",
"E3 Fairy",
"E4 Key",
"E5 Big Key",
"E6 Shield",
"E7 Mushroom",
"E8 Fake Master Sword",
"E9 Magic Shop dude / His items",
"EA Heart Container",
"EB Heart Piece",
"EC Bushes",
"ED Cane Of Somaria Platform",
"EE Mantle",
"EF Cane of Somaria Platform (Unused)",
"F0 Cane of Somaria Platform (Unused)",
"F1 Cane of Somaria Platform (Unused)",
"F2 Medallion Tablet",
"F3",
"F4 Falling Rocks",
"F5",
"F6",
"F7",
"F8",
"F9",
"FA",
"FB",
"FC",
"FD",
"FE",
"FF",
};
static const absl::string_view overlordnames[] = {
"Overlord_SpritePositionTarget",
"Overlord_AllDirectionMetalBallFactory",
"Overlord_CascadeMetalBallFactory",
"Overlord_StalfosFactory",
"Overlord_StalfosTrap",
"Overlord_SnakeTrap",
"Overlord_MovingFloor",
"Overlord_ZolFactory",
"Overlord_WallMasterFactory",
"Overlord_CrumbleTilePath 1",
"Overlord_CrumbleTilePath 2",
"Overlord_CrumbleTilePath 3",
"Overlord_CrumbleTilePath 4",
"Overlord_CrumbleTilePath 5",
"Overlord_CrumbleTilePath 6",
"Overlord_PirogusuFactory 1",
"Overlord_PirogusuFactory 2",
"Overlord_PirogusuFactory 3",
"Overlord_PirogusuFactory 4",
"Overlord_FlyingTileFactory",
"Overlord_WizzrobeFactory",
"Overlord_ZoroFactory",
"Overlord_StalfosTrapTriggerWindow",
"Overlord_RedStalfosTrap",
"Overlord_ArmosCoordinator",
"Overlord_BombTrap",
};
} // namespace core
} // namespace app
} // namespace yaze
#endif

300
src/app/core/controller.cc Normal file
View File

@@ -0,0 +1,300 @@
#include "controller.h"
#include <SDL.h>
#include <SDL_mixer.h>
#include <imgui/backends/imgui_impl_sdl2.h>
#include <imgui/backends/imgui_impl_sdlrenderer2.h>
#include <imgui/imgui.h>
#include <imgui/imgui_internal.h>
#include <memory>
#include "absl/status/status.h"
#include "absl/strings/str_format.h"
#include "app/core/platform/font_loader.h"
#include "app/editor/master_editor.h"
#include "app/gui/icons.h"
#include "app/gui/style.h"
namespace yaze {
namespace app {
namespace core {
namespace {
void InitializeKeymap() {
ImGuiIO &io = ImGui::GetIO();
io.KeyMap[ImGuiKey_Backspace] = SDL_GetScancodeFromKey(SDLK_BACKSPACE);
io.KeyMap[ImGuiKey_LeftShift] = SDL_GetScancodeFromKey(SDLK_LSHIFT);
io.KeyMap[ImGuiKey_Enter] = SDL_GetScancodeFromKey(SDLK_RETURN);
io.KeyMap[ImGuiKey_UpArrow] = SDL_GetScancodeFromKey(SDLK_UP);
io.KeyMap[ImGuiKey_DownArrow] = SDL_GetScancodeFromKey(SDLK_DOWN);
io.KeyMap[ImGuiKey_Tab] = SDL_GetScancodeFromKey(SDLK_TAB);
io.KeyMap[ImGuiKey_LeftCtrl] = SDL_GetScancodeFromKey(SDLK_LCTRL);
}
void ImGui_ImplSDL2_SetClipboardText(void *user_data, const char *text) {
SDL_SetClipboardText(text);
}
const char *ImGui_ImplSDL2_GetClipboardText(void *user_data) {
return SDL_GetClipboardText();
}
void InitializeClipboard() {
ImGuiIO &io = ImGui::GetIO();
io.SetClipboardTextFn = ImGui_ImplSDL2_SetClipboardText;
io.GetClipboardTextFn = ImGui_ImplSDL2_GetClipboardText;
io.ClipboardUserData = nullptr;
}
void HandleKeyDown(SDL_Event &event) {
ImGuiIO &io = ImGui::GetIO();
switch (event.key.keysym.sym) {
case SDLK_UP:
case SDLK_DOWN:
case SDLK_RETURN:
case SDLK_BACKSPACE:
case SDLK_LSHIFT:
case SDLK_LCTRL:
case SDLK_TAB:
io.KeysDown[event.key.keysym.scancode] = (event.type == SDL_KEYDOWN);
break;
default:
break;
}
}
void HandleKeyUp(SDL_Event &event) {
ImGuiIO &io = ImGui::GetIO();
int key = event.key.keysym.scancode;
IM_ASSERT(key >= 0 && key < IM_ARRAYSIZE(io.KeysDown));
io.KeysDown[key] = (event.type == SDL_KEYDOWN);
io.KeyShift = ((SDL_GetModState() & KMOD_SHIFT) != 0);
io.KeyCtrl = ((SDL_GetModState() & KMOD_CTRL) != 0);
io.KeyAlt = ((SDL_GetModState() & KMOD_ALT) != 0);
io.KeySuper = ((SDL_GetModState() & KMOD_GUI) != 0);
}
void ChangeWindowSizeEvent(SDL_Event &event) {
ImGuiIO &io = ImGui::GetIO();
io.DisplaySize.x = static_cast<float>(event.window.data1);
io.DisplaySize.y = static_cast<float>(event.window.data2);
}
void HandleMouseMovement(int &wheel) {
ImGuiIO &io = ImGui::GetIO();
int mouseX;
int mouseY;
const int buttons = SDL_GetMouseState(&mouseX, &mouseY);
io.DeltaTime = 1.0f / 60.0f;
io.MousePos = ImVec2(static_cast<float>(mouseX), static_cast<float>(mouseY));
io.MouseDown[0] = buttons & SDL_BUTTON(SDL_BUTTON_LEFT);
io.MouseDown[1] = buttons & SDL_BUTTON(SDL_BUTTON_RIGHT);
io.MouseWheel = static_cast<float>(wheel);
}
} // namespace
absl::Status Controller::OnEntry() {
RETURN_IF_ERROR(CreateSDL_Window())
RETURN_IF_ERROR(CreateRenderer())
RETURN_IF_ERROR(CreateGuiContext())
InitializeKeymap();
master_editor_.SetupScreen(renderer_);
active_ = true;
return absl::OkStatus();
}
void Controller::OnInput() {
int wheel = 0;
SDL_Event event;
ImGuiIO &io = ImGui::GetIO();
while (SDL_PollEvent(&event)) {
switch (event.type) {
case SDL_KEYDOWN:
HandleKeyDown(event);
break;
case SDL_KEYUP:
HandleKeyUp(event);
break;
case SDL_TEXTINPUT:
io.AddInputCharactersUTF8(event.text.text);
break;
case SDL_MOUSEWHEEL:
wheel = event.wheel.y;
break;
case SDL_WINDOWEVENT:
switch (event.window.event) {
case SDL_WINDOWEVENT_CLOSE:
CloseWindow();
break;
case SDL_WINDOWEVENT_SIZE_CHANGED:
ChangeWindowSizeEvent(event);
break;
default:
break;
}
break;
default:
break;
}
}
HandleMouseMovement(wheel);
}
void Controller::OnLoad() { PRINT_IF_ERROR(master_editor_.Update()); }
void Controller::DoRender() const {
ImGui::Render();
SDL_RenderClear(renderer_.get());
ImGui_ImplSDLRenderer2_RenderDrawData(ImGui::GetDrawData());
SDL_RenderPresent(renderer_.get());
}
void Controller::OnExit() {
master_editor_.Shutdown();
Mix_CloseAudio();
ImGui_ImplSDLRenderer2_Shutdown();
ImGui_ImplSDL2_Shutdown();
ImGui::DestroyContext();
SDL_Quit();
}
absl::Status Controller::CreateSDL_Window() {
if (SDL_Init(SDL_INIT_EVERYTHING) != 0) {
return absl::InternalError(
absl::StrFormat("SDL_Init: %s\n", SDL_GetError()));
} else {
SDL_DisplayMode displayMode;
SDL_GetCurrentDisplayMode(0, &displayMode);
int screenWidth = displayMode.w * 0.8;
int screenHeight = displayMode.h * 0.8;
window_ = std::unique_ptr<SDL_Window, sdl_deleter>(
SDL_CreateWindow("Yet Another Zelda3 Editor", // window title
SDL_WINDOWPOS_UNDEFINED, // initial x position
SDL_WINDOWPOS_UNDEFINED, // initial y position
screenWidth, // width, in pixels
screenHeight, // height, in pixels
SDL_WINDOW_RESIZABLE),
sdl_deleter());
if (window_ == nullptr) {
return absl::InternalError(
absl::StrFormat("SDL_CreateWindow: %s\n", SDL_GetError()));
}
// Initialize SDL_mixer
if (Mix_OpenAudio(32000, MIX_DEFAULT_FORMAT, 2, 1024) < 0) {
printf("SDL_mixer could not initialize! SDL_mixer Error: %s\n",
Mix_GetError());
}
}
return absl::OkStatus();
}
absl::Status Controller::CreateRenderer() {
renderer_ = std::unique_ptr<SDL_Renderer, sdl_deleter>(
SDL_CreateRenderer(window_.get(), -1,
SDL_RENDERER_ACCELERATED | SDL_RENDERER_PRESENTVSYNC),
sdl_deleter());
if (renderer_ == nullptr) {
return absl::InternalError(
absl::StrFormat("SDL_CreateRenderer: %s\n", SDL_GetError()));
} else {
SDL_SetRenderDrawBlendMode(renderer_.get(), SDL_BLENDMODE_BLEND);
SDL_SetRenderDrawColor(renderer_.get(), 0x00, 0x00, 0x00, 0x00);
}
return absl::OkStatus();
}
absl::Status Controller::CreateGuiContext() {
IMGUI_CHECKVERSION();
ImGui::CreateContext();
ImGuiIO &io = ImGui::GetIO();
if (flags()->kUseNewImGuiInput) {
io.ConfigFlags |= ImGuiConfigFlags_NavEnableKeyboard;
io.ConfigFlags |= ImGuiConfigFlags_NavEnableGamepad;
}
// Initialize ImGui for SDL
ImGui_ImplSDL2_InitForSDLRenderer(window_.get(), renderer_.get());
ImGui_ImplSDLRenderer2_Init(renderer_.get());
if (flags()->kLoadSystemFonts) {
LoadSystemFonts();
} else {
RETURN_IF_ERROR(LoadFontFamilies());
}
// Set the default style
gui::ColorsYaze();
// Build a new ImGui frame
ImGui_ImplSDLRenderer2_NewFrame();
ImGui_ImplSDL2_NewFrame(window_.get());
return absl::OkStatus();
}
absl::Status Controller::LoadFontFamilies() const {
ImGuiIO &io = ImGui::GetIO();
// Define constants
static const char *KARLA_REGULAR = "assets/font/Karla-Regular.ttf";
static const char *ROBOTO_MEDIUM = "assets/font/Roboto-Medium.ttf";
static const char *COUSINE_REGULAR = "assets/font/Cousine-Regular.ttf";
static const char *DROID_SANS = "assets/font/DroidSans.ttf";
static const char *NOTO_SANS_JP = "assets/font/NotoSansJP.ttf";
static const char *IBM_PLEX_JP = "assets/font/IBMPlexSansJP-Bold.ttf";
static const float FONT_SIZE_DEFAULT = 14.0f;
static const float FONT_SIZE_DROID_SANS = 16.0f;
static const float ICON_FONT_SIZE = 18.0f;
// Icon configuration
static const ImWchar icons_ranges[] = {ICON_MIN_MD, 0xf900, 0};
ImFontConfig icons_config;
icons_config.MergeMode = true;
icons_config.GlyphOffset.y = 5.0f;
icons_config.GlyphMinAdvanceX = 13.0f;
icons_config.PixelSnapH = true;
// Japanese font configuration
ImFontConfig japanese_font_config;
japanese_font_config.MergeMode = true;
icons_config.GlyphOffset.y = 5.0f;
icons_config.GlyphMinAdvanceX = 13.0f;
icons_config.PixelSnapH = true;
// List of fonts to be loaded
std::vector<const char *> font_paths = {KARLA_REGULAR, ROBOTO_MEDIUM,
COUSINE_REGULAR, IBM_PLEX_JP};
// Load fonts with associated icon and Japanese merges
for (const auto &font_path : font_paths) {
float font_size =
(font_path == DROID_SANS) ? FONT_SIZE_DROID_SANS : FONT_SIZE_DEFAULT;
if (!io.Fonts->AddFontFromFileTTF(font_path, font_size)) {
return absl::InternalError(
absl::StrFormat("Failed to load font from %s", font_path));
}
// Merge icon set
io.Fonts->AddFontFromFileTTF(FONT_ICON_FILE_NAME_MD, ICON_FONT_SIZE,
&icons_config, icons_ranges);
// Merge Japanese font
io.Fonts->AddFontFromFileTTF(NOTO_SANS_JP, 18.0f, &japanese_font_config,
io.Fonts->GetGlyphRangesJapanese());
}
return absl::OkStatus();
}
} // namespace core
} // namespace app
} // namespace yaze

67
src/app/core/controller.h Normal file
View File

@@ -0,0 +1,67 @@
#ifndef YAZE_APP_CORE_CONTROLLER_H
#define YAZE_APP_CORE_CONTROLLER_H
#include <SDL.h>
#include <imgui/backends/imgui_impl_sdl2.h>
#include <imgui/backends/imgui_impl_sdlrenderer2.h>
#include <imgui/imgui.h>
#include <imgui/imgui_internal.h>
#include <memory>
#include "absl/status/status.h"
#include "app/core/common.h"
#include "app/core/editor.h"
#include "app/editor/master_editor.h"
#include "app/gui/icons.h"
#include "app/gui/style.h"
int main(int argc, char **argv);
namespace yaze {
namespace app {
namespace core {
class Controller : public ExperimentFlags {
public:
bool IsActive() const { return active_; }
absl::Status OnEntry();
void OnInput();
void OnLoad();
void DoRender() const;
void OnExit();
private:
struct sdl_deleter {
void operator()(SDL_Window *p) const {
if (p) {
SDL_DestroyWindow(p);
}
}
void operator()(SDL_Renderer *p) const {
if (p) {
SDL_DestroyRenderer(p);
}
}
void operator()(SDL_Texture *p) const { SDL_DestroyTexture(p); }
};
absl::Status CreateSDL_Window();
absl::Status CreateRenderer();
absl::Status CreateGuiContext();
absl::Status LoadFontFamilies() const;
void CloseWindow() { active_ = false; }
friend int ::main(int argc, char **argv);
bool active_;
editor::MasterEditor master_editor_;
std::shared_ptr<SDL_Window> window_;
std::shared_ptr<SDL_Renderer> renderer_;
};
} // namespace core
} // namespace app
} // namespace yaze
#endif // YAZE_APP_CORE_CONTROLLER_H

21
src/app/core/editor.h Normal file
View File

@@ -0,0 +1,21 @@
#ifndef YAZE_APP_CORE_EDITOR_H
#define YAZE_APP_CORE_EDITOR_H
#include "absl/status/status.h"
class Editor {
public:
Editor() = default;
virtual ~Editor() = default;
virtual absl::Status Cut() = 0;
virtual absl::Status Copy() = 0;
virtual absl::Status Paste() = 0;
virtual absl::Status Undo() = 0;
virtual absl::Status Redo() = 0;
virtual absl::Status Update() = 0;
};
#endif // YAZE_APP_CORE_EDITOR_H

View File

@@ -0,0 +1,14 @@
#ifndef YAZE_APP_CORE_PLATFORM_APP_DELEGATE_H
#define YAZE_APP_CORE_PLATFORM_APP_DELEGATE_H
#ifdef __cplusplus
extern "C" {
#endif
void InitializeCocoa();
#ifdef __cplusplus
} // extern "C"
#endif
#endif // YAZE_APP_CORE_PLATFORM_APP_DELEGATE_H

View File

@@ -0,0 +1,218 @@
// AppDelegate.mm
#import <Cocoa/Cocoa.h>
#import "app/core/controller.h"
#import "app/core/editor.h"
#import "app/core/platform/app_delegate.h"
#import "app/core/platform/file_dialog.h"
#import "app/rom.h"
@interface AppDelegate : NSObject <NSApplicationDelegate>
- (void)setupMenus;
// - (void)changeApplicationIcon;
@end
@implementation AppDelegate
// - (void)changeApplicationIcon {
// NSImage *newIcon = [NSImage imageNamed:@"newIcon"];
// [NSApp setApplicationIconImage:newIcon];
// }
- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
[self setupMenus];
}
- (void)setupMenus {
NSMenu *mainMenu = [NSApp mainMenu];
NSMenuItem *fileMenuItem = [mainMenu itemWithTitle:@"File"];
if (!fileMenuItem) {
NSMenu *fileMenu = [[NSMenu alloc] initWithTitle:@"File"];
fileMenuItem = [[NSMenuItem alloc] initWithTitle:@"File" action:nil keyEquivalent:@""];
[fileMenuItem setSubmenu:fileMenu];
NSMenuItem *openItem = [[NSMenuItem alloc] initWithTitle:@"Open"
action:@selector(openFileAction:)
keyEquivalent:@"o"];
[fileMenu addItem:openItem];
// Open Recent
NSMenu *openRecentMenu = [[NSMenu alloc] initWithTitle:@"Open Recent"];
NSMenuItem *openRecentMenuItem = [[NSMenuItem alloc] initWithTitle:@"Open Recent"
action:nil
keyEquivalent:@""];
[openRecentMenuItem setSubmenu:openRecentMenu];
[fileMenu addItem:openRecentMenuItem];
// Add a separator
[fileMenu addItem:[NSMenuItem separatorItem]];
// Save
NSMenuItem *saveItem = [[NSMenuItem alloc] initWithTitle:@"Save" action:nil keyEquivalent:@"s"];
[fileMenu addItem:saveItem];
// Separator
[fileMenu addItem:[NSMenuItem separatorItem]];
// Options submenu
NSMenu *optionsMenu = [[NSMenu alloc] initWithTitle:@"Options"];
NSMenuItem *optionsMenuItem = [[NSMenuItem alloc] initWithTitle:@"Options"
action:nil
keyEquivalent:@""];
[optionsMenuItem setSubmenu:optionsMenu];
// Flag checkmark field
NSMenuItem *flagItem = [[NSMenuItem alloc] initWithTitle:@"Flag"
action:@selector(toggleFlagAction:)
keyEquivalent:@""];
[flagItem setTarget:self];
[flagItem setState:NSControlStateValueOff];
[optionsMenu addItem:flagItem];
[fileMenu addItem:optionsMenuItem];
[mainMenu insertItem:fileMenuItem atIndex:1];
}
NSMenuItem *editMenuItem = [mainMenu itemWithTitle:@"Edit"];
if (!editMenuItem) {
NSMenu *editMenu = [[NSMenu alloc] initWithTitle:@"Edit"];
editMenuItem = [[NSMenuItem alloc] initWithTitle:@"Edit" action:nil keyEquivalent:@""];
[editMenuItem setSubmenu:editMenu];
NSMenuItem *undoItem = [[NSMenuItem alloc] initWithTitle:@"Undo" action:nil keyEquivalent:@"z"];
[editMenu addItem:undoItem];
NSMenuItem *redoItem = [[NSMenuItem alloc] initWithTitle:@"Redo" action:nil keyEquivalent:@"Z"];
[editMenu addItem:redoItem];
// Add a separator
[editMenu addItem:[NSMenuItem separatorItem]];
NSMenuItem *cutItem = [[NSMenuItem alloc] initWithTitle:@"Cut"
action:@selector(cutAction:)
keyEquivalent:@"x"];
[editMenu addItem:cutItem];
NSMenuItem *copyItem = [[NSMenuItem alloc] initWithTitle:@"Copy" action:nil keyEquivalent:@"c"];
[editMenu addItem:copyItem];
NSMenuItem *pasteItem = [[NSMenuItem alloc] initWithTitle:@"Paste"
action:nil
keyEquivalent:@"v"];
[editMenu addItem:pasteItem];
// Add a separator
[editMenu addItem:[NSMenuItem separatorItem]];
NSMenuItem *selectAllItem = [[NSMenuItem alloc] initWithTitle:@"Select All"
action:nil
keyEquivalent:@"a"];
[editMenu addItem:selectAllItem];
[mainMenu insertItem:editMenuItem atIndex:2];
}
NSMenuItem *viewMenuItem = [mainMenu itemWithTitle:@"View"];
if (!viewMenuItem) {
NSMenu *viewMenu = [[NSMenu alloc] initWithTitle:@"View"];
viewMenuItem = [[NSMenuItem alloc] initWithTitle:@"View" action:nil keyEquivalent:@""];
[viewMenuItem setSubmenu:viewMenu];
// Emulator view button
NSMenuItem *emulatorViewItem = [[NSMenuItem alloc] initWithTitle:@"Emulator View"
action:nil
keyEquivalent:@"1"];
[viewMenu addItem:emulatorViewItem];
// Hex Editor View
NSMenuItem *hexEditorViewItem = [[NSMenuItem alloc] initWithTitle:@"Hex Editor View"
action:nil
keyEquivalent:@"2"];
[viewMenu addItem:hexEditorViewItem];
// Disassembly view button
NSMenuItem *disassemblyViewItem = [[NSMenuItem alloc] initWithTitle:@"Disassembly View"
action:nil
keyEquivalent:@"3"];
[viewMenu addItem:disassemblyViewItem];
// Memory view button
NSMenuItem *memoryViewItem = [[NSMenuItem alloc] initWithTitle:@"Memory View"
action:nil
keyEquivalent:@"4"];
[viewMenu addItem:memoryViewItem];
// Add a separator
[viewMenu addItem:[NSMenuItem separatorItem]];
// Toggle fullscreen button
NSMenuItem *toggleFullscreenItem = [[NSMenuItem alloc] initWithTitle:@"Toggle Fullscreen"
action:nil
keyEquivalent:@"f"];
[viewMenu addItem:toggleFullscreenItem];
[mainMenu insertItem:viewMenuItem atIndex:3];
}
NSMenuItem *helpMenuItem = [mainMenu itemWithTitle:@"Help"];
if (!helpMenuItem) {
NSMenu *helpMenu = [[NSMenu alloc] initWithTitle:@"Help"];
helpMenuItem = [[NSMenuItem alloc] initWithTitle:@"Help" action:nil keyEquivalent:@""];
[helpMenuItem setSubmenu:helpMenu];
// URL to online documentation
NSMenuItem *documentationItem = [[NSMenuItem alloc] initWithTitle:@"Documentation"
action:nil
keyEquivalent:@"?"];
[helpMenu addItem:documentationItem];
[mainMenu insertItem:helpMenuItem atIndex:4];
}
}
// Action method for the New menu item
- (void)newFileAction:(id)sender {
NSLog(@"New File action triggered");
}
- (void)toggleFlagAction:(id)sender {
NSMenuItem *flagItem = (NSMenuItem *)sender;
if ([flagItem state] == NSControlStateValueOff) {
[flagItem setState:NSControlStateValueOn];
} else {
[flagItem setState:NSControlStateValueOff];
}
}
- (void)openFileAction:(id)sender {
yaze::app::SharedROM::shared_rom_->LoadFromFile(FileDialogWrapper::ShowOpenFileDialog());
}
- (void)cutAction:(id)sender {
// TODO: Implement
}
- (void)openRecentFileAction:(id)sender {
NSLog(@"Open Recent File action triggered");
}
extern "C" void InitializeCocoa() {
@autoreleasepool {
AppDelegate *delegate = [[AppDelegate alloc] init];
[NSApplication sharedApplication];
[NSApp setDelegate:delegate];
[NSApp finishLaunching];
}
}
@end

View File

@@ -0,0 +1,32 @@
#ifndef YAZE_APP_CORE_PLATFORM_CLIPBOARD_H
#define YAZE_APP_CORE_PLATFORM_CLIPBOARD_H
#ifdef _WIN32
void CopyImageToClipboard(const std::vector<uint8_t>& data);
void GetImageFromClipboard(std::vector<uint8_t>& data, int& width, int& height);
#elif defined(__APPLE__)
#include <vector>
void CopyImageToClipboard(const std::vector<uint8_t>& data);
void GetImageFromClipboard(std::vector<uint8_t>& data, int& width, int& height);
#elif defined(__linux__)
#include <vector>
void CopyImageToClipboard(const std::vector<uint8_t>& data) {
std::cout << "CopyImageToClipboard() is not implemented on Linux."
<< std::endl;
}
void GetImageFromClipboard(std::vector<uint8_t>& data, int& width,
int& height) {
std::cout << "GetImageFromClipboard() is not implemented on Linux."
<< std::endl;
}
#endif
#endif // YAZE_APP_CORE_PLATFORM_CLIPBOARD_H

View File

@@ -0,0 +1,42 @@
#include "clipboard.h"
#include <iostream>
#include <vector>
#import <Cocoa/Cocoa.h>
void CopyImageToClipboard(const std::vector<uint8_t>& pngData) {
NSData* data = [NSData dataWithBytes:pngData.data() length:pngData.size()];
NSImage* image = [[NSImage alloc] initWithData:data];
NSPasteboard* pasteboard = [NSPasteboard generalPasteboard];
[pasteboard clearContents];
[pasteboard writeObjects:@[ image ]];
}
void GetImageFromClipboard(std::vector<uint8_t>& pixel_data, int& width, int& height) {
NSPasteboard* pasteboard = [NSPasteboard generalPasteboard];
NSArray* classArray = [NSArray arrayWithObject:[NSImage class]];
NSDictionary* options = [NSDictionary dictionary];
NSImage* image = [pasteboard readObjectsForClasses:classArray options:options].firstObject;
if (!image) {
width = height = 0;
return;
}
// Assuming the image is in an RGBA format
CGImageRef cgImage = [image CGImageForProposedRect:nil context:nil hints:nil];
width = (int)CGImageGetWidth(cgImage);
height = (int)CGImageGetHeight(cgImage);
size_t bytesPerRow = 4 * width;
size_t totalBytes = bytesPerRow * height;
pixel_data.resize(totalBytes);
CGContextRef context = CGBitmapContextCreate(
pixel_data.data(), width, height, 8, bytesPerRow, CGColorSpaceCreateDeviceRGB(),
kCGImageAlphaPremultipliedLast | kCGBitmapByteOrder32Big);
CGContextDrawImage(context, CGRectMake(0, 0, width, height), cgImage);
CGContextRelease(context);
}

View File

@@ -0,0 +1,65 @@
#include <string>
#ifdef _WIN32
// Include Windows-specific headers
#include <shobjidl.h>
#include <windows.h>
class FileDialogWrapper {
public:
static std::string ShowOpenFileDialog() {
CoInitializeEx(NULL, COINIT_APARTMENTTHREADED | COINIT_DISABLE_OLE1DDE);
IFileDialog *pfd = NULL;
HRESULT hr =
CoCreateInstance(CLSID_FileOpenDialog, NULL, CLSCTX_ALL,
IID_IFileDialog, reinterpret_cast<void **>(&pfd));
std::string file_path_windows;
if (SUCCEEDED(hr)) {
// Show the dialog
hr = pfd->Show(NULL);
if (SUCCEEDED(hr)) {
IShellItem *psiResult;
hr = pfd->GetResult(&psiResult);
if (SUCCEEDED(hr)) {
// Get the file path
PWSTR pszFilePath;
psiResult->GetDisplayName(SIGDN_FILESYSPATH, &pszFilePath);
char str[128];
wcstombs(str, pszFilePath, 128);
file_path_windows = str;
psiResult->Release();
CoTaskMemFree(pszFilePath);
}
}
pfd->Release();
}
CoUninitialize();
return file_path_windows;
}
};
#elif defined(__APPLE__)
#include <string>
class FileDialogWrapper {
public:
static std::string ShowOpenFileDialog();
};
#elif defined(__linux__)
class FileDialogWrapper {
public:
static std::string ShowOpenFileDialog() {
// Linux-specific file dialog implementation using GTK
// ...
return "file_path_linux";
}
};
#else
#error "Unsupported platform."
#endif

View File

@@ -0,0 +1,17 @@
#import <Cocoa/Cocoa.h>
#include "app/core/platform/file_dialog.h"
std::string FileDialogWrapper::ShowOpenFileDialog() {
NSOpenPanel* openPanel = [NSOpenPanel openPanel];
[openPanel setCanChooseFiles:YES];
[openPanel setCanChooseDirectories:NO];
[openPanel setAllowsMultipleSelection:NO];
if ([openPanel runModal] == NSModalResponseOK) {
NSURL* url = [[openPanel URLs] objectAtIndex:0];
NSString* path = [url path];
return std::string([path UTF8String]);
}
return "";
}

View File

@@ -0,0 +1,81 @@
#include "app/core/platform/font_loader.h"
#include <imgui/imgui.h>
#include <string>
#include <vector>
#ifdef _WIN32
#include <Windows.h>
int CALLBACK EnumFontFamExProc(const LOGFONT* lpelfe, const TEXTMETRIC* lpntme,
DWORD FontType, LPARAM lParam) {
// Step 3: Load the font into ImGui
ImGuiIO& io = ImGui::GetIO();
io.Fonts->AddFontFromFileTTF(lpelfe->lfFaceName, 16.0f);
return 1;
}
void LoadSystemFonts() {
HKEY hKey;
std::vector<std::string> fontPaths;
// Open the registry key where fonts are listed
if (RegOpenKeyEx(
HKEY_LOCAL_MACHINE,
TEXT("SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Fonts"), 0,
KEY_READ, &hKey) == ERROR_SUCCESS) {
DWORD valueCount;
DWORD maxValueNameSize;
DWORD maxValueDataSize;
// Query the number of entries and the maximum size of the names and values
RegQueryInfoKey(hKey, NULL, NULL, NULL, NULL, NULL, NULL, &valueCount,
&maxValueNameSize, &maxValueDataSize, NULL, NULL);
char* valueName = new char[maxValueNameSize + 1]; // +1 for null terminator
BYTE* valueData = new BYTE[maxValueDataSize + 1]; // +1 for null terminator
// Enumerate all font entries
for (DWORD i = 0; i < valueCount; i++) {
DWORD valueNameSize = maxValueNameSize + 1; // +1 for null terminator
DWORD valueDataSize = maxValueDataSize + 1; // +1 for null terminator
DWORD valueType;
// Clear buffers
memset(valueName, 0, valueNameSize);
memset(valueData, 0, valueDataSize);
// Get the font name and file path
if (RegEnumValue(hKey, i, valueName, &valueNameSize, NULL, &valueType,
valueData, &valueDataSize) == ERROR_SUCCESS) {
if (valueType == REG_SZ) {
// Add the font file path to the vector
std::string fontPath((char*)valueData);
fontPaths.push_back(fontPath);
}
}
}
delete[] valueName;
delete[] valueData;
RegCloseKey(hKey);
}
ImGuiIO& io = ImGui::GetIO();
for (const auto& fontPath : fontPaths) {
io.Fonts->AddFontFromFileTTF(fontPath.c_str(), 16.0f);
}
}
#elif defined(__linux__)
void LoadSystemFonts() {
// Load Linux System Fonts into ImGui
// ...
}
#endif

View File

@@ -0,0 +1,15 @@
// FontLoader.h
#ifndef FONTLOADER_H
#define FONTLOADER_H
// Function declaration for loading system fonts into ImGui
void LoadSystemFonts();
#ifdef _WIN32
#include <Windows.h>
// Windows specific function declaration for loading system fonts into ImGui
int CALLBACK EnumFontFamExProc(const LOGFONT* lpelfe, const TEXTMETRIC* lpntme,
DWORD FontType, LPARAM lParam);
#endif
#endif // FONTLOADER_H

View File

@@ -0,0 +1,50 @@
// FontLoader.mm
#include "app/core/platform/font_loader.h"
#import <Cocoa/Cocoa.h>
#import <CoreText/CoreText.h>
#include <imgui/imgui.h>
#include "app/gui/icons.h"
void LoadSystemFonts() {
// List of common macOS system fonts
NSArray *fontNames = @[ @"Helvetica", @"Times New Roman", @"Courier", @"Arial", @"Verdana" ];
for (NSString *fontName in fontNames) {
NSFont *font = [NSFont fontWithName:fontName size:14.0];
if (!font) {
NSLog(@"Font not found: %@", fontName);
continue;
}
CTFontDescriptorRef fontDescriptor =
CTFontDescriptorCreateWithNameAndSize((CFStringRef)font.fontName, font.pointSize);
CFURLRef fontURL = (CFURLRef)CTFontDescriptorCopyAttribute(fontDescriptor, kCTFontURLAttribute);
NSString *fontPath = [(NSURL *)fontURL path];
CFRelease(fontDescriptor);
if (fontPath != nil && [[NSFileManager defaultManager] isReadableFileAtPath:fontPath]) {
// Load the font into ImGui
ImGuiIO &io = ImGui::GetIO();
ImFontConfig icons_config;
icons_config.MergeMode = true;
icons_config.GlyphOffset.y = 5.0f;
icons_config.GlyphMinAdvanceX = 13.0f;
icons_config.PixelSnapH = true;
static const ImWchar icons_ranges[] = {ICON_MIN_MD, 0xf900, 0};
static const float ICON_FONT_SIZE = 18.0f;
ImFont *imFont = io.Fonts->AddFontFromFileTTF([fontPath UTF8String], 14.0f);
if (!imFont) {
NSLog(@"Failed to load font: %@", fontPath);
}
io.Fonts->AddFontFromFileTTF(FONT_ICON_FILE_NAME_MD, ICON_FONT_SIZE, &icons_config,
icons_ranges);
} else {
NSLog(@"Font file not accessible: %@", fontPath);
}
if (fontURL) {
CFRelease(fontURL);
}
}
}

View File

@@ -0,0 +1,35 @@
#include "app/editor/context/gfx_context.h"
#include <imgui/imgui.h>
#include <cmath>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "app/core/editor.h"
#include "app/gui/pipeline.h"
#include "app/editor/modules/palette_editor.h"
#include "app/gfx/bitmap.h"
#include "app/gfx/snes_palette.h"
#include "app/gfx/snes_tile.h"
#include "app/gui/canvas.h"
#include "app/gui/icons.h"
#include "app/rom.h"
#include "app/zelda3/overworld.h"
namespace yaze {
namespace app {
namespace editor {
absl::Status GfxContext::Update() { return absl::OkStatus(); }
gfx::Bitmap GfxContext::current_ow_gfx_bmp_;
gfx::SNESPalette GfxContext::current_ow_palette_;
gfx::Bitmap GfxContext::tile16_blockset_bmp_;
gfx::Bitmap GfxContext::tile8_blockset_bmp_;
std::vector<gfx::Bitmap> GfxContext::tile16_individual_bmp_;
std::vector<gfx::Bitmap> GfxContext::tile8_individual_bmp_;
} // namespace editor
} // namespace app
} // namespace yaze

View File

@@ -0,0 +1,56 @@
#ifndef YAZE_APP_EDITOR_VRAM_CONTEXT_H
#define YAZE_APP_EDITOR_VRAM_CONTEXT_H
#include <imgui/imgui.h>
#include <cmath>
#include <vector>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "app/core/editor.h"
#include "app/gui/pipeline.h"
#include "app/editor/modules/palette_editor.h"
#include "app/gfx/bitmap.h"
#include "app/gfx/snes_palette.h"
#include "app/gfx/snes_tile.h"
#include "app/gui/canvas.h"
#include "app/gui/icons.h"
#include "app/rom.h"
#include "app/zelda3/overworld.h"
// Create a class which manages the current VRAM state of Link to the Past,
// including static members for the Bitmaps and Palettes as well as the current
// blockset as to update all of the overworld maps with the new blockset when it
// is changed. This class will also manage the current tile16 and tile8
// selection, as well as the current palette selection.
namespace yaze {
namespace app {
namespace editor {
class GfxContext {
public:
absl::Status Update();
protected:
static gfx::Bitmap current_ow_gfx_bmp_;
static gfx::SNESPalette current_ow_palette_;
static gfx::Bitmap tile16_blockset_bmp_;
static gfx::Bitmap tile8_blockset_bmp_;
// Bitmaps for the tile16 individual tiles
static std::vector<gfx::Bitmap> tile16_individual_bmp_;
// Bitmaps for the tile8 individual tiles
static std::vector<gfx::Bitmap> tile8_individual_bmp_;
};
} // namespace editor
} // namespace app
} // namespace yaze
#endif // YAZE_APP_EDITOR_VRAM_CONTEXT_H

View File

@@ -0,0 +1,380 @@
#include "dungeon_editor.h"
#include <imgui/imgui.h>
#include "app/core/common.h"
#include "app/gfx/snes_palette.h"
#include "app/gui/canvas.h"
#include "app/gui/icons.h"
#include "app/gui/input.h"
#include "app/gui/pipeline.h"
#include "app/rom.h"
#include "app/zelda3/dungeon/object_names.h"
#include "app/zelda3/dungeon/room_names.h"
#include "zelda3/dungeon/room.h"
namespace yaze {
namespace app {
namespace editor {
constexpr ImGuiTableFlags kDungeonObjectTableFlags =
ImGuiTableFlags_Resizable | ImGuiTableFlags_Reorderable |
ImGuiTableFlags_Hideable | ImGuiTableFlags_BordersOuter |
ImGuiTableFlags_BordersV;
using ImGui::TableHeadersRow;
using ImGui::TableNextColumn;
using ImGui::TableNextRow;
using ImGui::TableSetupColumn;
absl::Status DungeonEditor::Update() {
if (!is_loaded_ && rom()->isLoaded()) {
for (int i = 0; i < 0x100; i++) {
rooms_.emplace_back(zelda3::dungeon::Room(i));
rooms_[i].LoadHeader();
rooms_[i].LoadRoomFromROM();
if (flags()->kDrawDungeonRoomGraphics) {
rooms_[i].LoadRoomGraphics();
}
}
graphics_bin_ = rom()->graphics_bin();
full_palette_ =
rom()->palette_group("dungeon_main")[current_palette_group_id_];
current_palette_group_ =
gfx::CreatePaletteGroupFromLargePalette(full_palette_);
// Create a vector of pointers to the current block bitmaps
for (int block : rooms_[current_room_id_].blocks()) {
room_gfx_sheets_.emplace_back(&graphics_bin_[block]);
}
is_loaded_ = true;
}
if (refresh_graphics_) {
for (int block : rooms_[current_room_id_].blocks()) {
graphics_bin_[block].ApplyPalette(
current_palette_group_[current_palette_id_]);
rom()->UpdateBitmap(&graphics_bin_[block]);
}
refresh_graphics_ = false;
}
DrawToolset();
if (palette_showing_) {
ImGui::Begin("Palette Editor", &palette_showing_, 0);
current_palette_ =
rom()->palette_group("dungeon_main")[current_palette_group_id_];
gui::SelectablePalettePipeline(current_palette_id_, refresh_graphics_,
current_palette_);
ImGui::End();
}
if (ImGui::BeginTable("#DungeonEditTable", 3, kDungeonTableFlags,
ImVec2(0, 0))) {
TableSetupColumn("Room Selector");
TableSetupColumn("Canvas", ImGuiTableColumnFlags_WidthStretch,
ImGui::GetContentRegionAvail().x);
TableSetupColumn("Object Selector");
TableHeadersRow();
TableNextRow();
TableNextColumn();
DrawRoomSelector();
TableNextColumn();
DrawDungeonTabView();
TableNextColumn();
DrawTileSelector();
ImGui::EndTable();
}
return absl::OkStatus();
}
void DungeonEditor::DrawToolset() {
if (ImGui::BeginTable("DWToolset", 13, ImGuiTableFlags_SizingFixedFit,
ImVec2(0, 0))) {
TableSetupColumn("#undoTool");
TableSetupColumn("#redoTool");
TableSetupColumn("#separator");
TableSetupColumn("#anyTool");
TableSetupColumn("#bg1Tool");
TableSetupColumn("#bg2Tool");
TableSetupColumn("#bg3Tool");
TableSetupColumn("#separator");
TableSetupColumn("#spriteTool");
TableSetupColumn("#itemTool");
TableSetupColumn("#doorTool");
TableSetupColumn("#blockTool");
ImGui::TableNextColumn();
if (ImGui::Button(ICON_MD_UNDO)) {
PRINT_IF_ERROR(Undo());
}
ImGui::TableNextColumn();
if (ImGui::Button(ICON_MD_REDO)) {
PRINT_IF_ERROR(Redo());
}
ImGui::TableNextColumn();
ImGui::Text(ICON_MD_MORE_VERT);
ImGui::TableNextColumn();
if (ImGui::RadioButton(ICON_MD_FILTER_NONE,
background_type_ == kBackgroundAny)) {
background_type_ = kBackgroundAny;
}
ImGui::TableNextColumn();
if (ImGui::RadioButton(ICON_MD_FILTER_1,
background_type_ == kBackground1)) {
background_type_ = kBackground1;
}
ImGui::TableNextColumn();
if (ImGui::RadioButton(ICON_MD_FILTER_2,
background_type_ == kBackground2)) {
background_type_ = kBackground2;
}
ImGui::TableNextColumn();
if (ImGui::RadioButton(ICON_MD_FILTER_3,
background_type_ == kBackground3)) {
background_type_ = kBackground3;
}
ImGui::TableNextColumn();
ImGui::Text(ICON_MD_MORE_VERT);
ImGui::TableNextColumn();
if (ImGui::RadioButton(ICON_MD_PEST_CONTROL, placement_type_ == kSprite)) {
placement_type_ = kSprite;
}
if (ImGui::IsItemHovered()) {
ImGui::SetTooltip("Sprites");
}
ImGui::TableNextColumn();
if (ImGui::RadioButton(ICON_MD_GRASS, placement_type_ == kItem)) {
placement_type_ = kItem;
}
if (ImGui::IsItemHovered()) {
ImGui::SetTooltip("Items");
}
ImGui::TableNextColumn();
if (ImGui::RadioButton(ICON_MD_SENSOR_DOOR, placement_type_ == kDoor)) {
placement_type_ = kDoor;
}
if (ImGui::IsItemHovered()) {
ImGui::SetTooltip("Doors");
}
ImGui::TableNextColumn();
if (ImGui::RadioButton(ICON_MD_SQUARE, placement_type_ == kBlock)) {
placement_type_ = kBlock;
}
if (ImGui::IsItemHovered()) {
ImGui::SetTooltip("Blocks");
}
ImGui::TableNextColumn();
if (ImGui::Button(ICON_MD_PALETTE)) {
palette_showing_ = !palette_showing_;
}
ImGui::EndTable();
}
}
void DungeonEditor::DrawRoomSelector() {
if (rom()->isLoaded()) {
gui::InputHexWord("Room ID", &current_room_id_);
gui::InputHex("Palette ID", &current_palette_id_);
if (ImGuiID child_id = ImGui::GetID((void*)(intptr_t)9);
ImGui::BeginChild(child_id, ImGui::GetContentRegionAvail(), true,
ImGuiWindowFlags_AlwaysVerticalScrollbar)) {
int i = 0;
for (const auto each_room_name : zelda3::dungeon::kRoomNames) {
ImGui::Selectable(each_room_name.data(), current_room_id_ == i,
ImGuiSelectableFlags_AllowDoubleClick);
if (ImGui::IsItemClicked()) {
active_rooms_.push_back(i);
}
i += 1;
}
}
ImGui::EndChild();
}
}
void DungeonEditor::DrawDungeonTabView() {
static int next_tab_id = 0;
if (ImGui::BeginTabBar("MyTabBar", kDungeonTabBarFlags)) {
// TODO: Manage the room that is being added to the tab bar.
if (ImGui::TabItemButton("+", kDungeonTabFlags)) {
active_rooms_.push_back(next_tab_id++); // Add new tab
}
// Submit our regular tabs
for (int n = 0; n < active_rooms_.Size;) {
bool open = true;
if (ImGui::BeginTabItem(
zelda3::dungeon::kRoomNames[active_rooms_[n]].data(), &open,
ImGuiTabItemFlags_None)) {
DrawDungeonCanvas(active_rooms_[n]);
ImGui::EndTabItem();
}
if (!open)
active_rooms_.erase(active_rooms_.Data + n);
else
n++;
}
ImGui::EndTabBar();
}
ImGui::Separator();
}
void DungeonEditor::DrawDungeonCanvas(int room_id) {
ImGui::BeginGroup();
gui::InputHexByte("Layout", &rooms_[room_id].layout);
ImGui::SameLine();
gui::InputHexByte("Blockset", &rooms_[room_id].blockset);
ImGui::SameLine();
gui::InputHexByte("Spriteset", &rooms_[room_id].spriteset);
ImGui::SameLine();
gui::InputHexByte("Palette", &rooms_[room_id].palette);
gui::InputHexByte("Floor1", &rooms_[room_id].floor1);
ImGui::SameLine();
gui::InputHexByte("Floor2", &rooms_[room_id].floor2);
ImGui::SameLine();
gui::InputHexWord("Message ID", &rooms_[room_id].message_id_);
ImGui::SameLine();
ImGui::EndGroup();
canvas_.DrawBackground();
canvas_.DrawContextMenu();
canvas_.DrawGrid();
canvas_.DrawOverlay();
}
void DungeonEditor::DrawRoomGraphics() {
const auto height = 0x40;
room_gfx_canvas_.DrawBackground(ImVec2(256 + 1, 0x10 * 0x40 + 1));
room_gfx_canvas_.DrawContextMenu();
room_gfx_canvas_.DrawTileSelector(32);
if (is_loaded_) {
auto blocks = rooms_[current_room_id_].blocks();
int current_block = 0;
for (int block : blocks) {
int offset = height * (current_block + 1);
int top_left_y = room_gfx_canvas_.zero_point().y + 2;
if (current_block >= 1) {
top_left_y = room_gfx_canvas_.zero_point().y + height * current_block;
}
room_gfx_canvas_.GetDrawList()->AddImage(
(void*)graphics_bin_[block].texture(),
ImVec2(room_gfx_canvas_.zero_point().x + 2, top_left_y),
ImVec2(room_gfx_canvas_.zero_point().x + 0x100,
room_gfx_canvas_.zero_point().y + offset));
current_block += 1;
}
}
room_gfx_canvas_.DrawGrid(32.0f);
room_gfx_canvas_.DrawOverlay();
}
void DungeonEditor::DrawTileSelector() {
if (ImGui::BeginTabBar("##TabBar", ImGuiTabBarFlags_FittingPolicyScroll)) {
if (ImGui::BeginTabItem("Room Graphics")) {
if (ImGuiID child_id = ImGui::GetID((void*)(intptr_t)3);
ImGui::BeginChild(child_id, ImGui::GetContentRegionAvail(), true,
ImGuiWindowFlags_AlwaysVerticalScrollbar)) {
DrawRoomGraphics();
}
ImGui::EndChild();
ImGui::EndTabItem();
}
if (ImGui::BeginTabItem("Object Renderer")) {
DrawObjectRenderer();
ImGui::EndTabItem();
}
ImGui::EndTabBar();
}
}
void DungeonEditor::DrawObjectRenderer() {
if (ImGui::BeginTable("DungeonObjectEditorTable", 2, kDungeonObjectTableFlags,
ImVec2(0, 0))) {
TableSetupColumn("Dungeon Objects", ImGuiTableColumnFlags_WidthStretch,
ImGui::GetContentRegionAvail().x);
TableSetupColumn("Canvas");
ImGui::TableNextColumn();
ImGui::BeginChild("DungeonObjectButtons", ImVec2(250, 0), true);
int selected_object = 0;
int i = 0;
for (const auto object_name : zelda3::dungeon::Type1RoomObjectNames) {
if (ImGui::Selectable(object_name.data(), selected_object == i)) {
selected_object = i;
current_object_ = i;
object_renderer_.LoadObject(i,
rooms_[current_room_id_].mutable_blocks());
rom()->RenderBitmap(object_renderer_.bitmap());
object_loaded_ = true;
}
i += 1;
}
ImGui::EndChild();
// Right side of the table - Canvas
ImGui::TableNextColumn();
ImGui::BeginChild("DungeonObjectCanvas", ImVec2(276, 0x10 * 0x40 + 1),
true);
object_canvas_.DrawBackground(ImVec2(256 + 1, 0x10 * 0x40 + 1));
object_canvas_.DrawContextMenu();
object_canvas_.DrawTileSelector(32);
if (object_loaded_) {
object_canvas_.DrawBitmap(*object_renderer_.bitmap(), 0, 0);
}
object_canvas_.DrawGrid(32.0f);
object_canvas_.DrawOverlay();
ImGui::EndChild();
ImGui::EndTable();
}
// if (object_loaded_) {
// ImGui::Begin("Memory Viewer", &object_loaded_, 0);
// auto memory = object_renderer_.memory();
// static MemoryEditor mem_edit;
// mem_edit.DrawContents((void*)object_renderer_.memory_ptr(),
// memory.size());
// ImGui::End();
// }
}
} // namespace editor
} // namespace app
} // namespace yaze

View File

@@ -0,0 +1,101 @@
#ifndef YAZE_APP_EDITOR_DUNGEONEDITOR_H
#define YAZE_APP_EDITOR_DUNGEONEDITOR_H
#include <imgui/imgui.h>
#include "app/core/common.h"
#include "app/core/editor.h"
#include "app/editor/modules/palette_editor.h"
#include "app/gui/canvas.h"
#include "app/gui/icons.h"
#include "app/rom.h"
#include "zelda3/dungeon/room.h"
#include "zelda3/dungeon/room_object.h"
namespace yaze {
namespace app {
namespace editor {
constexpr ImGuiTabItemFlags kDungeonTabFlags =
ImGuiTabItemFlags_Trailing | ImGuiTabItemFlags_NoTooltip;
constexpr ImGuiTabBarFlags kDungeonTabBarFlags =
ImGuiTabBarFlags_AutoSelectNewTabs | ImGuiTabBarFlags_Reorderable |
ImGuiTabBarFlags_FittingPolicyResizeDown |
ImGuiTabBarFlags_TabListPopupButton;
constexpr ImGuiTableFlags kDungeonTableFlags =
ImGuiTableFlags_Resizable | ImGuiTableFlags_Reorderable |
ImGuiTableFlags_Hideable | ImGuiTableFlags_BordersOuter |
ImGuiTableFlags_BordersV;
class DungeonEditor : public Editor,
public SharedROM,
public core::ExperimentFlags {
public:
absl::Status Update() override;
absl::Status Cut() override { return absl::OkStatus(); }
absl::Status Copy() override { return absl::OkStatus(); }
absl::Status Paste() override { return absl::OkStatus(); }
absl::Status Undo() override { return absl::OkStatus(); }
absl::Status Redo() override { return absl::OkStatus(); }
private:
void DrawToolset();
void DrawRoomSelector();
void DrawDungeonTabView();
void DrawDungeonCanvas(int room_id);
void DrawRoomGraphics();
void DrawTileSelector();
void DrawObjectRenderer();
enum BackgroundType {
kNoBackground,
kBackground1,
kBackground2,
kBackground3,
kBackgroundAny,
};
enum PlacementType { kNoType, kSprite, kItem, kDoor, kBlock };
int background_type_ = kNoBackground;
int placement_type_ = kNoType;
int current_object_ = 0;
bool is_loaded_ = false;
bool object_loaded_ = false;
bool palette_showing_ = false;
bool refresh_graphics_ = false;
bool show_object_render_ = false;
uint16_t current_room_id_ = 0;
uint64_t current_palette_id_ = 0;
uint64_t current_palette_group_id_ = 0;
ImVector<int> active_rooms_;
PaletteEditor palette_editor_;
gfx::SNESPalette current_palette_;
gfx::SNESPalette full_palette_;
gfx::PaletteGroup current_palette_group_;
gui::Canvas canvas_;
gui::Canvas room_gfx_canvas_;
gui::Canvas object_canvas_;
gfx::Bitmap room_gfx_bmp_;
gfx::BitmapTable graphics_bin_;
std::vector<gfx::Bitmap*> room_gfx_sheets_;
std::vector<zelda3::dungeon::Room> rooms_;
std::vector<gfx::BitmapManager> room_graphics_;
zelda3::dungeon::DungeonObjectRenderer object_renderer_;
};
} // namespace editor
} // namespace app
} // namespace yaze
#endif

View File

@@ -0,0 +1,768 @@
#include "app/editor/graphics_editor.h"
#include <ImGuiFileDialog/ImGuiFileDialog.h>
#include <imgui/imgui.h>
#include <imgui/misc/cpp/imgui_stdlib.h>
#include <imgui_memory_editor.h>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "app/core/platform/clipboard.h"
#include "app/editor/modules/palette_editor.h"
#include "app/gfx/bitmap.h"
#include "app/gfx/compression.h"
#include "app/gfx/scad_format.h"
#include "app/gfx/snes_palette.h"
#include "app/gfx/snes_tile.h"
#include "app/gui/canvas.h"
#include "app/gui/input.h"
#include "app/gui/pipeline.h"
#include "app/gui/style.h"
#include "app/rom.h"
namespace yaze {
namespace app {
namespace editor {
using ImGui::Button;
using ImGui::InputInt;
using ImGui::InputText;
using ImGui::SameLine;
constexpr ImGuiTableFlags kGfxEditTableFlags =
ImGuiTableFlags_Borders | ImGuiTableFlags_Resizable |
ImGuiTableFlags_Reorderable | ImGuiTableFlags_Hideable |
ImGuiTableFlags_SizingFixedFit;
constexpr ImGuiTabBarFlags kGfxEditTabBarFlags =
ImGuiTabBarFlags_AutoSelectNewTabs | ImGuiTabBarFlags_Reorderable |
ImGuiTabBarFlags_FittingPolicyResizeDown |
ImGuiTabBarFlags_TabListPopupButton;
absl::Status GraphicsEditor::Update() {
TAB_BAR("##TabBar")
status_ = UpdateGfxEdit();
status_ = UpdateScadView();
status_ = UpdateLinkGfxView();
END_TAB_BAR()
CLEAR_AND_RETURN_STATUS(status_)
return absl::OkStatus();
}
absl::Status GraphicsEditor::UpdateGfxEdit() {
TAB_ITEM("Graphics Editor")
if (ImGui::BeginTable("##GfxEditTable", 3, kGfxEditTableFlags,
ImVec2(0, 0))) {
for (const auto& name : kGfxEditColumnNames)
ImGui::TableSetupColumn(name.data());
ImGui::TableHeadersRow();
NEXT_COLUMN();
status_ = UpdateGfxSheetList();
NEXT_COLUMN();
if (rom()->isLoaded()) {
DrawGfxEditToolset();
status_ = UpdateGfxTabView();
}
NEXT_COLUMN();
if (rom()->isLoaded()) {
status_ = UpdatePaletteColumn();
}
}
ImGui::EndTable();
END_TAB_ITEM()
return absl::OkStatus();
}
void GraphicsEditor::DrawGfxEditToolset() {
if (ImGui::BeginTable("##GfxEditToolset", 9, ImGuiTableFlags_SizingFixedFit,
ImVec2(0, 0))) {
for (const auto& name :
{"Select", "Pencil", "Fill", "Copy Sheet", "Paste Sheet", "Zoom Out",
"Zoom In", "Current Color", "Tile Size"})
ImGui::TableSetupColumn(name);
ImGui::TableNextColumn();
if (Button(ICON_MD_SELECT_ALL)) {
gfx_edit_mode_ = GfxEditMode::kSelect;
}
ImGui::TableNextColumn();
if (Button(ICON_MD_DRAW)) {
gfx_edit_mode_ = GfxEditMode::kPencil;
}
ImGui::TableNextColumn();
if (Button(ICON_MD_FORMAT_COLOR_FILL)) {
gfx_edit_mode_ = GfxEditMode::kFill;
}
ImGui::TableNextColumn();
if (Button(ICON_MD_CONTENT_COPY)) {
std::vector<uint8_t> png_data =
rom()->bitmap_manager().GetBitmap(current_sheet_)->GetPngData();
CopyImageToClipboard(png_data);
}
ImGui::TableNextColumn();
if (Button(ICON_MD_CONTENT_PASTE)) {
std::vector<uint8_t> png_data;
int width, height;
GetImageFromClipboard(png_data, width, height);
if (png_data.size() > 0) {
rom()
->bitmap_manager()
.GetBitmap(current_sheet_)
->LoadFromPngData(png_data, width, height);
rom()->UpdateBitmap(rom()
->mutable_bitmap_manager()
->mutable_bitmap(current_sheet_)
.get());
}
}
HOVER_HINT("Paste from Clipboard");
ImGui::TableNextColumn();
if (Button(ICON_MD_ZOOM_OUT)) {
if (current_scale_ >= 0.0f) {
current_scale_ -= 1.0f;
}
}
ImGui::TableNextColumn();
if (Button(ICON_MD_ZOOM_IN)) {
if (current_scale_ <= 16.0f) {
current_scale_ += 1.0f;
}
}
ImGui::TableNextColumn();
auto bitmap = rom()->bitmap_manager()[current_sheet_];
auto palette = bitmap->palette();
for (int i = 0; i < 8; i++) {
ImGui::SameLine();
auto color =
ImVec4(palette[i].GetRGB().x / 255.0f, palette[i].GetRGB().y / 255.0f,
palette[i].GetRGB().z / 255.0f, 255.0f);
if (ImGui::ColorButton(absl::StrFormat("Palette Color %d", i).c_str(),
color)) {
current_color_ = color;
}
}
ImGui::TableNextColumn();
gui::InputHexByte("Tile Size", &tile_size_, 0x01);
ImGui::EndTable();
}
}
absl::Status GraphicsEditor::UpdateGfxSheetList() {
ImGui::BeginChild(
"##GfxEditChild", ImVec2(0, 0), true,
ImGuiWindowFlags_NoDecoration | ImGuiWindowFlags_AlwaysVerticalScrollbar);
ImGui::PushStyleVar(ImGuiStyleVar_WindowPadding, ImVec2(0, 0));
for (auto& [key, value] : rom()->bitmap_manager()) {
ImGui::BeginChild(absl::StrFormat("##GfxSheet%02X", key).c_str(),
ImVec2(0x100 + 1, 0x40 + 1), true,
ImGuiWindowFlags_NoDecoration);
ImGui::PopStyleVar();
gui::Canvas graphics_bin_canvas_;
auto select_tile_event = [&]() {
if (value.get()->IsActive()) {
auto texture = value.get()->texture();
graphics_bin_canvas_.GetDrawList()->AddImage(
(void*)texture,
ImVec2(graphics_bin_canvas_.zero_point().x + 2,
graphics_bin_canvas_.zero_point().y + 2),
ImVec2(graphics_bin_canvas_.zero_point().x +
value.get()->width() * sheet_scale_,
graphics_bin_canvas_.zero_point().y +
value.get()->height() * sheet_scale_));
if (ImGui::IsItemClicked(ImGuiMouseButton_Left)) {
current_sheet_ = key;
open_sheets_.insert(key);
}
// Add a slightly transparent rectangle behind the text
ImVec2 text_pos(graphics_bin_canvas_.zero_point().x + 2,
graphics_bin_canvas_.zero_point().y + 2);
ImVec2 text_size =
ImGui::CalcTextSize(absl::StrFormat("%02X", key).c_str());
ImVec2 rent_min(text_pos.x, text_pos.y);
ImVec2 rent_max(text_pos.x + text_size.x, text_pos.y + text_size.y);
graphics_bin_canvas_.GetDrawList()->AddRectFilled(
rent_min, rent_max, IM_COL32(0, 125, 0, 128));
graphics_bin_canvas_.GetDrawList()->AddText(
text_pos, IM_COL32(125, 255, 125, 255),
absl::StrFormat("%02X", key).c_str());
}
};
graphics_bin_canvas_.UpdateEvent(
select_tile_event, ImVec2(0x100 + 1, 0x40 + 1), 0x20, sheet_scale_,
/*grid_size=*/16.0f);
ImGui::PushStyleVar(ImGuiStyleVar_WindowPadding, ImVec2(0, 0));
ImGui::EndChild();
}
ImGui::PopStyleVar();
ImGui::EndChild();
return absl::OkStatus();
}
absl::Status GraphicsEditor::UpdateGfxTabView() {
static int next_tab_id = 0;
if (ImGui::BeginTabBar("##GfxEditTabBar", kGfxEditTabBarFlags)) {
if (ImGui::TabItemButton(
"+", ImGuiTabItemFlags_Trailing | ImGuiTabItemFlags_NoTooltip)) {
open_sheets_.insert(next_tab_id++);
}
for (auto& sheet_id : open_sheets_) {
bool open = true;
if (ImGui::BeginTabItem(absl::StrFormat("%d", sheet_id).c_str(), &open,
ImGuiTabItemFlags_None)) {
current_sheet_ = sheet_id;
if (ImGui::IsItemClicked(ImGuiMouseButton_Right)) {
release_queue_.push(sheet_id);
}
if (ImGui::IsItemHovered()) {
if (ImGui::IsMouseDragging(ImGuiMouseButton_Left)) {
release_queue_.push(sheet_id);
child_window_sheets_.insert(sheet_id);
}
}
const auto child_id =
absl::StrFormat("##GfxEditPaletteChildWindow%d", sheet_id);
ImGui::BeginChild(child_id.c_str(), ImVec2(0, 0), true,
ImGuiWindowFlags_NoDecoration |
ImGuiWindowFlags_AlwaysVerticalScrollbar |
ImGuiWindowFlags_AlwaysHorizontalScrollbar);
auto draw_tile_event = [&]() {
gfx::Bitmap& current_bitmap =
*rom()->mutable_bitmap_manager()->mutable_bitmap(sheet_id);
current_sheet_canvas_.DrawTileOnBitmap(tile_size_, current_bitmap,
current_color_);
rom()->UpdateBitmap(&current_bitmap);
};
auto size = ImVec2(0x80, 0x20);
current_sheet_canvas_.UpdateColorPainter(
*rom()->bitmap_manager()[sheet_id], current_color_, draw_tile_event,
size, tile_size_, current_scale_, 8.0f);
ImGui::EndChild();
ImGui::EndTabItem();
}
if (!open) release_queue_.push(sheet_id);
}
ImGui::EndTabBar();
}
// Release any tabs that were closed
while (!release_queue_.empty()) {
auto sheet_id = release_queue_.top();
open_sheets_.erase(sheet_id);
release_queue_.pop();
}
// Draw any child windows that were created
if (!child_window_sheets_.empty()) {
int id_to_release = -1;
for (const auto& id : child_window_sheets_) {
bool active = true;
ImGui::SetNextWindowPos(ImGui::GetIO().MousePos, ImGuiCond_Once);
ImGui::SetNextWindowSize(ImVec2(0x100 + 1 * 16, 0x40 + 1 * 16),
ImGuiCond_Once);
ImGui::Begin(absl::StrFormat("##GfxEditPaletteChildWindow%d", id).c_str(),
&active, ImGuiWindowFlags_AlwaysUseWindowPadding);
current_sheet_ = id;
current_sheet_canvas_.UpdateColorPainter(
*rom()->bitmap_manager()[id], current_color_,
[&]() {
},
ImVec2(0x100, 0x40), tile_size_, current_scale_, 8.0f);
ImGui::End();
if (active == false) {
id_to_release = id;
}
}
if (id_to_release != -1) {
child_window_sheets_.erase(id_to_release);
}
}
return absl::OkStatus();
}
absl::Status GraphicsEditor::UpdatePaletteColumn() {
auto palette_group = rom()->palette_group(
kPaletteGroupAddressesKeys[edit_palette_group_name_index_]);
auto palette = palette_group[edit_palette_index_];
if (rom()->isLoaded()) {
gui::TextWithSeparators("ROM Palette");
ImGui::SetNextItemWidth(100.f);
ImGui::Combo("Palette Group", (int*)&edit_palette_group_name_index_,
kPaletteGroupAddressesKeys,
IM_ARRAYSIZE(kPaletteGroupAddressesKeys));
ImGui::SetNextItemWidth(100.f);
gui::InputHex("Palette Group Index", &edit_palette_index_);
}
gui::SelectablePalettePipeline(edit_palette_sub_index_, refresh_graphics_,
palette);
if (refresh_graphics_) {
rom()->bitmap_manager()[current_sheet_]->ApplyPaletteWithTransparent(
palette, edit_palette_sub_index_);
rom()->UpdateBitmap(
rom()->mutable_bitmap_manager()->mutable_bitmap(current_sheet_).get());
refresh_graphics_ = false;
}
return absl::OkStatus();
}
absl::Status GraphicsEditor::UpdateLinkGfxView() {
TAB_ITEM("Player Animations")
const auto link_gfx_offset = 0x80000;
const auto link_gfx_length = 0x7000;
// Load Links graphics from the ROM
RETURN_IF_ERROR(rom()->LoadLinkGraphics());
// Split it into the pose data frames
// Create an animation step display for the poses
// Allow the user to modify the frames used in an anim step
// LinkOAM_AnimationSteps:
// #_0D85FB
END_TAB_ITEM()
return absl::OkStatus();
}
absl::Status GraphicsEditor::UpdateScadView() {
TAB_ITEM("Prototype")
RETURN_IF_ERROR(DrawToolset())
if (open_memory_editor_) {
ImGui::Begin("Memory Editor", &open_memory_editor_);
RETURN_IF_ERROR(DrawMemoryEditor())
ImGui::End();
}
BEGIN_TABLE("#gfxEditTable", 4, kGfxEditFlags)
SETUP_COLUMN("File Import (BIN, CGX, ROM)")
SETUP_COLUMN("Palette (COL)")
ImGui::TableSetupColumn("Tilemaps and Objects (SCR, PNL, OBJ)",
ImGuiTableColumnFlags_WidthFixed);
SETUP_COLUMN("Graphics Preview")
TABLE_HEADERS()
NEXT_COLUMN() {
status_ = DrawCgxImport();
status_ = DrawClipboardImport();
status_ = DrawFileImport();
status_ = DrawExperimentalFeatures();
}
NEXT_COLUMN() { status_ = DrawPaletteControls(); }
NEXT_COLUMN()
gui::BitmapCanvasPipeline(scr_canvas_, scr_bitmap_, 0x200, 0x200, 0x20,
scr_loaded_, false, 0);
status_ = DrawScrImport();
NEXT_COLUMN()
if (super_donkey_) {
if (refresh_graphics_) {
for (int i = 0; i < graphics_bin_.size(); i++) {
graphics_bin_[i].ApplyPalette(
col_file_palette_group_[current_palette_index_]);
rom()->UpdateBitmap(&graphics_bin_[i]);
}
refresh_graphics_ = false;
}
// Load the full graphics space from `super_donkey_1.bin`
gui::GraphicsBinCanvasPipeline(0x100, 0x40, 0x20, num_sheets_to_load_, 3,
super_donkey_, graphics_bin_);
} else if (cgx_loaded_ && col_file_) {
// Load the CGX graphics
gui::BitmapCanvasPipeline(import_canvas_, cgx_bitmap_, 0x100, 16384, 0x20,
cgx_loaded_, true, 5);
} else {
// Load the BIN/Clipboard Graphics
gui::BitmapCanvasPipeline(import_canvas_, bin_bitmap_, 0x100, 16384, 0x20,
gfx_loaded_, true, 2);
}
END_TABLE()
END_TAB_ITEM()
return absl::OkStatus();
}
absl::Status GraphicsEditor::DrawToolset() {
if (ImGui::BeginTable("GraphicsToolset", 2, ImGuiTableFlags_SizingFixedFit,
ImVec2(0, 0))) {
for (const auto& name : kGfxToolsetColumnNames)
ImGui::TableSetupColumn(name.data());
ImGui::TableNextColumn();
if (Button(ICON_MD_MEMORY)) {
if (!open_memory_editor_) {
open_memory_editor_ = true;
} else {
open_memory_editor_ = false;
}
}
TEXT_COLUMN("Open Memory Editor") // Separator
ImGui::EndTable();
}
return absl::OkStatus();
}
absl::Status GraphicsEditor::DrawCgxImport() {
gui::TextWithSeparators("Cgx Import");
InputInt("BPP", &current_bpp_);
InputText("##CGXFile", cgx_file_name_, sizeof(cgx_file_name_));
SameLine();
gui::FileDialogPipeline("ImportCgxKey", ".CGX,.cgx\0", "Open CGX", [this]() {
strncpy(cgx_file_path_,
ImGuiFileDialog::Instance()->GetFilePathName().c_str(),
sizeof(cgx_file_path_));
strncpy(cgx_file_name_,
ImGuiFileDialog::Instance()->GetCurrentFileName().c_str(),
sizeof(cgx_file_name_));
is_open_ = true;
cgx_loaded_ = true;
});
gui::ButtonPipe("Copy CGX Path",
[this]() { ImGui::SetClipboardText(cgx_file_path_); });
gui::ButtonPipe("Load CGX Data", [this]() {
status_ = gfx::LoadCgx(current_bpp_, cgx_file_path_, cgx_data_,
decoded_cgx_, extra_cgx_data_);
cgx_bitmap_.InitializeFromData(0x80, 0x200, 8, decoded_cgx_);
if (col_file_) {
cgx_bitmap_.ApplyPalette(decoded_col_);
rom()->RenderBitmap(&cgx_bitmap_);
}
});
return absl::OkStatus();
}
absl::Status GraphicsEditor::DrawScrImport() {
InputText("##ScrFile", scr_file_name_, sizeof(scr_file_name_));
gui::FileDialogPipeline(
"ImportScrKey", ".SCR,.scr,.BAK\0", "Open SCR", [this]() {
strncpy(scr_file_path_,
ImGuiFileDialog::Instance()->GetFilePathName().c_str(),
sizeof(scr_file_path_));
strncpy(scr_file_name_,
ImGuiFileDialog::Instance()->GetCurrentFileName().c_str(),
sizeof(scr_file_name_));
is_open_ = true;
scr_loaded_ = true;
});
InputInt("SCR Mod", &scr_mod_value_);
gui::ButtonPipe("Load Scr Data", [this]() {
status_ = gfx::LoadScr(scr_file_path_, scr_mod_value_, scr_data_);
decoded_scr_data_.resize(0x100 * 0x100);
status_ = gfx::DrawScrWithCgx(current_bpp_, scr_data_, decoded_scr_data_,
decoded_cgx_);
scr_bitmap_.InitializeFromData(0x100, 0x100, 8, decoded_scr_data_);
if (scr_loaded_) {
scr_bitmap_.ApplyPalette(decoded_col_);
rom()->RenderBitmap(&scr_bitmap_);
}
});
return absl::OkStatus();
}
absl::Status GraphicsEditor::DrawPaletteControls() {
gui::TextWithSeparators("COL Import");
InputText("##ColFile", col_file_name_, sizeof(col_file_name_));
SameLine();
gui::FileDialogPipeline(
"ImportColKey", ".COL,.col,.BAK,.bak\0", "Open COL", [this]() {
strncpy(col_file_path_,
ImGuiFileDialog::Instance()->GetFilePathName().c_str(),
sizeof(col_file_path_));
strncpy(col_file_name_,
ImGuiFileDialog::Instance()->GetCurrentFileName().c_str(),
sizeof(col_file_name_));
status_ = temp_rom_.LoadFromFile(col_file_path_,
/*z3_load=*/false);
auto col_data_ = gfx::GetColFileData(temp_rom_.data());
if (col_file_palette_group_.size() != 0) {
col_file_palette_group_.Clear();
}
col_file_palette_group_ = gfx::CreatePaletteGroupFromColFile(col_data_);
col_file_palette_ = gfx::SNESPalette(col_data_);
// gigaleak dev format based code
decoded_col_ = gfx::DecodeColFile(col_file_path_);
col_file_ = true;
is_open_ = true;
});
gui::ButtonPipe("Copy COL Path",
[this]() { ImGui::SetClipboardText(col_file_path_); });
if (rom()->isLoaded()) {
gui::TextWithSeparators("ROM Palette");
gui::InputHex("Palette Index", &current_palette_index_);
ImGui::Combo("Palette", &current_palette_, kPaletteGroupAddressesKeys,
IM_ARRAYSIZE(kPaletteGroupAddressesKeys));
}
if (col_file_palette_.size() != 0) {
gui::SelectablePalettePipeline(current_palette_index_, refresh_graphics_,
col_file_palette_);
}
return absl::OkStatus();
}
absl::Status GraphicsEditor::DrawObjImport() {
gui::TextWithSeparators("OBJ Import");
InputText("##ObjFile", obj_file_path_, sizeof(obj_file_path_));
SameLine();
gui::FileDialogPipeline(
"ImportObjKey", ".obj,.OBJ,.bak,.BAK\0", "Open OBJ", [this]() {
strncpy(file_path_,
ImGuiFileDialog::Instance()->GetFilePathName().c_str(),
sizeof(file_path_));
status_ = temp_rom_.LoadFromFile(file_path_);
is_open_ = true;
});
return absl::OkStatus();
}
absl::Status GraphicsEditor::DrawTilemapImport() {
gui::TextWithSeparators("Tilemap Import");
InputText("##TMapFile", tilemap_file_path_, sizeof(tilemap_file_path_));
SameLine();
gui::FileDialogPipeline(
"ImportTilemapKey", ".DAT,.dat,.BIN,.bin,.hex,.HEX\0", "Open Tilemap",
[this]() {
strncpy(tilemap_file_path_,
ImGuiFileDialog::Instance()->GetFilePathName().c_str(),
sizeof(tilemap_file_path_));
status_ = tilemap_rom_.LoadFromFile(tilemap_file_path_);
// Extract the high and low bytes from the file.
auto decomp_sheet = gfx::lc_lz2::DecompressV2(
tilemap_rom_.data(), gfx::lc_lz2::kNintendoMode1);
tilemap_loaded_ = true;
is_open_ = true;
});
return absl::OkStatus();
}
absl::Status GraphicsEditor::DrawFileImport() {
gui::TextWithSeparators("BIN Import");
InputText("##ROMFile", file_path_, sizeof(file_path_));
SameLine();
gui::FileDialogPipeline("ImportDlgKey", ".bin,.hex\0", "Open BIN", [this]() {
strncpy(file_path_, ImGuiFileDialog::Instance()->GetFilePathName().c_str(),
sizeof(file_path_));
status_ = temp_rom_.LoadFromFile(file_path_);
is_open_ = true;
});
gui::ButtonPipe("Copy File Path",
[this]() { ImGui::SetClipboardText(file_path_); });
gui::InputHex("BIN Offset", &current_offset_);
gui::InputHex("BIN Size", &bin_size_);
if (Button("Decompress BIN")) {
if (strlen(file_path_) > 0) {
RETURN_IF_ERROR(DecompressImportData(bin_size_))
} else {
return absl::InvalidArgumentError(
"Please select a file before importing.");
}
}
return absl::OkStatus();
}
absl::Status GraphicsEditor::DrawClipboardImport() {
gui::TextWithSeparators("Clipboard Import");
gui::ButtonPipe("Paste from Clipboard", [this]() {
const char* text = ImGui::GetClipboardText();
if (text) {
const auto clipboard_data = Bytes(text, text + strlen(text));
ImGui::MemFree((void*)text);
status_ = temp_rom_.LoadFromBytes(clipboard_data);
is_open_ = true;
open_memory_editor_ = true;
}
});
gui::InputHex("Offset", &clipboard_offset_);
gui::InputHex("Size", &clipboard_size_);
gui::InputHex("Num Sheets", &num_sheets_to_load_);
gui::ButtonPipe("Decompress Clipboard Data", [this]() {
if (temp_rom_.isLoaded()) {
status_ = DecompressImportData(0x40000);
} else {
status_ = absl::InvalidArgumentError(
"Please paste data into the clipboard before "
"decompressing.");
}
});
return absl::OkStatus();
}
absl::Status GraphicsEditor::DrawExperimentalFeatures() {
gui::TextWithSeparators("Experimental");
if (Button("Decompress Super Donkey Full")) {
if (strlen(file_path_) > 0) {
RETURN_IF_ERROR(DecompressSuperDonkey())
} else {
return absl::InvalidArgumentError(
"Please select `super_donkey_1.bin` before "
"importing.");
}
}
ImGui::SetItemTooltip(
"Requires `super_donkey_1.bin` to be imported under the "
"BIN import section.");
return absl::OkStatus();
}
absl::Status GraphicsEditor::DrawMemoryEditor() {
std::string title = "Memory Editor";
if (is_open_) {
static MemoryEditor mem_edit;
mem_edit.DrawWindow(title.c_str(), temp_rom_.data(), temp_rom_.size());
}
return absl::OkStatus();
}
absl::Status GraphicsEditor::DecompressImportData(int size) {
ASSIGN_OR_RETURN(import_data_, gfx::lc_lz2::DecompressV2(
temp_rom_.data(), current_offset_, size))
auto converted_sheet = gfx::SnesTo8bppSheet(import_data_, 3);
bin_bitmap_.Create(core::kTilesheetWidth, 0x2000, core::kTilesheetDepth,
converted_sheet);
if (rom()->isLoaded()) {
auto palette_group = rom()->palette_group("ow_main");
z3_rom_palette_ = palette_group[current_palette_];
if (col_file_) {
bin_bitmap_.ApplyPalette(col_file_palette_);
} else {
bin_bitmap_.ApplyPalette(z3_rom_palette_);
}
}
rom()->RenderBitmap(&bin_bitmap_);
gfx_loaded_ = true;
return absl::OkStatus();
}
absl::Status GraphicsEditor::DecompressSuperDonkey() {
int i = 0;
for (const auto& offset : kSuperDonkeyTiles) {
int offset_value =
std::stoi(offset, nullptr, 16); // convert hex string to int
ASSIGN_OR_RETURN(
auto decompressed_data,
gfx::lc_lz2::DecompressV2(temp_rom_.data(), offset_value, 0x1000))
auto converted_sheet = gfx::SnesTo8bppSheet(decompressed_data, 3);
graphics_bin_[i] =
gfx::Bitmap(core::kTilesheetWidth, core::kTilesheetHeight,
core::kTilesheetDepth, converted_sheet);
if (col_file_) {
graphics_bin_[i].ApplyPalette(
col_file_palette_group_[current_palette_index_]);
} else {
// ROM palette
auto palette_group =
rom()->palette_group(kPaletteGroupAddressesKeys[current_palette_]);
z3_rom_palette_ = palette_group[current_palette_index_];
graphics_bin_[i].ApplyPalette(z3_rom_palette_);
}
rom()->RenderBitmap(&graphics_bin_[i]);
i++;
}
for (const auto& offset : kSuperDonkeySprites) {
int offset_value =
std::stoi(offset, nullptr, 16); // convert hex string to int
ASSIGN_OR_RETURN(
auto decompressed_data,
gfx::lc_lz2::DecompressV2(temp_rom_.data(), offset_value, 0x1000))
auto converted_sheet = gfx::SnesTo8bppSheet(decompressed_data, 3);
graphics_bin_[i] =
gfx::Bitmap(core::kTilesheetWidth, core::kTilesheetHeight,
core::kTilesheetDepth, converted_sheet);
if (col_file_) {
graphics_bin_[i].ApplyPalette(
col_file_palette_group_[current_palette_index_]);
} else {
// ROM palette
auto palette_group =
rom()->palette_group(kPaletteGroupAddressesKeys[current_palette_]);
z3_rom_palette_ = palette_group[current_palette_index_];
graphics_bin_[i].ApplyPalette(z3_rom_palette_);
}
rom()->RenderBitmap(&graphics_bin_[i]);
i++;
}
super_donkey_ = true;
num_sheets_to_load_ = i;
return absl::OkStatus();
}
} // namespace editor
} // namespace app
} // namespace yaze

View File

@@ -0,0 +1,193 @@
#ifndef YAZE_APP_EDITOR_GRAPHICS_EDITOR_H
#define YAZE_APP_EDITOR_GRAPHICS_EDITOR_H
#include <ImGuiFileDialog/ImGuiFileDialog.h>
#include <imgui/imgui.h>
#include <imgui/misc/cpp/imgui_stdlib.h>
#include <imgui_memory_editor.h>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "app/editor/modules/palette_editor.h"
#include "app/gfx/bitmap.h"
#include "app/gfx/snes_tile.h"
#include "app/gui/canvas.h"
#include "app/gui/input.h"
#include "app/gui/pipeline.h"
#include "app/rom.h"
#include "app/zelda3/overworld.h"
namespace yaze {
namespace app {
namespace editor {
// "99973","A3D80",
const std::string kSuperDonkeyTiles[] = {
"97C05", "98219", "9871E", "98C00", "99084", "995AF", "99DE0", "9A27E",
"9A741", "9AC31", "9B07E", "9B55C", "9B963", "9BB99", "9C009", "9C4B4",
"9C92B", "9CDD6", "9D2C2", "9E037", "9E527", "9EA56", "9EF65", "9FCD1",
"A0193", "A059E", "A0B17", "A0FB6", "A14A5", "A1988", "A1E66", "A232B",
"A27F0", "A2B6E", "A302C", "A3453", "A38CA", "A42BB", "A470C", "A4BA9",
"A5089", "A5385", "A5742", "A5BCC", "A6017", "A6361", "A66F8"};
const std::string kSuperDonkeySprites[] = {
"A8E5D", "A9435", "A9934", "A9D83", "AA2F1", "AA6D4", "AABE4", "AB127",
"AB65A", "ABBDD", "AC38D", "AC797", "ACCC8", "AD0AE", "AD245", "AD554",
"ADAAC", "ADECC", "AE453", "AE9D2", "AEF40", "AF3C9", "AF92E", "AFE9D",
"B03D2", "B09AC", "B0F0C", "B1430", "B1859", "B1E01", "B229A", "B2854",
"B2D27", "B31D7", "B3B58", "B40B5", "B45A5", "B4D64", "B5031", "B555F",
"B5F30", "B6858", "B70DD", "B7526", "B79EC", "B7C83", "B80F7", "B85CC",
"B8A3F", "B8F97", "B94F2", "B9A20", "B9E9A", "BA3A2", "BA8F6", "BACDC",
"BB1F9", "BB781", "BBCCA", "BC26D", "BC7D4", "BCBB0", "BD082", "BD5FC",
"BE115", "BE5C2", "BEB63", "BF0CB", "BF607", "BFA55", "BFD71", "C017D",
"C0567", "C0981", "C0BA7", "C116D", "C166A", "C1FE0", "C24CE", "C2B19"};
constexpr const char* kPaletteGroupAddressesKeys[] = {
"ow_main", "ow_aux", "ow_animated", "hud",
"global_sprites", "armors", "swords", "shields",
"sprites_aux1", "sprites_aux2", "sprites_aux3", "dungeon_main",
"grass", "3d_object", "ow_mini_map",
};
static constexpr std::string_view kGfxEditColumnNames[] = {
"Tilesheets", "Current Graphics", "Palette Controls"};
static constexpr absl::string_view kGfxToolsetColumnNames[] = {
"#memoryEditor",
"##separator_gfx1",
};
constexpr ImGuiTableFlags kGfxEditFlags = ImGuiTableFlags_Reorderable |
ImGuiTableFlags_Resizable |
ImGuiTableFlags_SizingStretchSame;
class GraphicsEditor : public SharedROM {
public:
absl::Status Update();
private:
enum class GfxEditMode {
kSelect,
kPencil,
kFill,
};
// Graphics Editor Tab
absl::Status UpdateGfxEdit();
absl::Status UpdateGfxSheetList();
absl::Status UpdateGfxTabView();
absl::Status UpdatePaletteColumn();
void DrawGfxEditToolset();
// Link Graphics Edit Tab
absl::Status UpdateLinkGfxView();
// Prototype Graphics Viewer
absl::Status UpdateScadView();
// Import Functions
absl::Status DrawCgxImport();
absl::Status DrawScrImport();
absl::Status DrawFileImport();
absl::Status DrawObjImport();
absl::Status DrawTilemapImport();
// Other Functions
absl::Status DrawToolset();
absl::Status DrawPaletteControls();
absl::Status DrawClipboardImport();
absl::Status DrawExperimentalFeatures();
absl::Status DrawMemoryEditor();
absl::Status DecompressImportData(int size);
absl::Status DecompressSuperDonkey();
// Member Variables
ImVec4 current_color_;
uint16_t current_sheet_ = 0;
uint8_t tile_size_ = 0x01;
std::set<uint16_t> open_sheets_;
std::set<uint16_t> child_window_sheets_;
std::stack<uint16_t> release_queue_;
uint64_t edit_palette_group_name_index_ = 0;
uint64_t edit_palette_group_index_ = 0;
uint64_t edit_palette_index_ = 0;
uint64_t edit_palette_sub_index_ = 0;
float sheet_scale_ = 2.0f;
float current_scale_ = 4.0f;
// Prototype Graphics Viewer
int current_palette_ = 0;
uint64_t current_offset_ = 0;
uint64_t current_size_ = 0;
uint64_t current_palette_index_ = 0;
int current_bpp_ = 0;
int scr_mod_value_ = 0;
uint64_t num_sheets_to_load_ = 1;
uint64_t bin_size_ = 0;
uint64_t clipboard_offset_ = 0;
uint64_t clipboard_size_ = 0;
bool refresh_graphics_ = false;
bool open_memory_editor_ = false;
bool gfx_loaded_ = false;
bool is_open_ = false;
bool super_donkey_ = false;
bool col_file_ = false;
bool cgx_loaded_ = false;
bool scr_loaded_ = false;
bool obj_loaded_ = false;
bool tilemap_loaded_ = false;
char file_path_[256] = "";
char col_file_path_[256] = "";
char col_file_name_[256] = "";
char cgx_file_path_[256] = "";
char cgx_file_name_[256] = "";
char scr_file_path_[256] = "";
char scr_file_name_[256] = "";
char obj_file_path_[256] = "";
char tilemap_file_path_[256] = "";
char tilemap_file_name_[256] = "";
GfxEditMode gfx_edit_mode_ = GfxEditMode::kSelect;
ROM temp_rom_;
ROM tilemap_rom_;
zelda3::Overworld overworld_;
MemoryEditor cgx_memory_editor_;
MemoryEditor col_memory_editor_;
PaletteEditor palette_editor_;
Bytes import_data_;
Bytes graphics_buffer_;
std::vector<uint8_t> decoded_cgx_;
std::vector<uint8_t> cgx_data_;
std::vector<uint8_t> extra_cgx_data_;
std::vector<SDL_Color> decoded_col_;
std::vector<uint8_t> scr_data_;
std::vector<uint8_t> decoded_scr_data_;
gfx::Bitmap cgx_bitmap_;
gfx::Bitmap scr_bitmap_;
gfx::Bitmap bin_bitmap_;
gfx::Bitmap link_full_sheet_;
gfx::BitmapTable graphics_bin_;
gfx::BitmapTable clipboard_graphics_bin_;
gfx::BitmapTable link_graphics_;
gfx::PaletteGroup col_file_palette_group_;
gfx::SNESPalette z3_rom_palette_;
gfx::SNESPalette col_file_palette_;
gfx::SNESPalette link_palette_;
gui::Canvas import_canvas_;
gui::Canvas scr_canvas_;
gui::Canvas super_donkey_canvas_;
gui::Canvas current_sheet_canvas_;
absl::Status status_;
};
} // namespace editor
} // namespace app
} // namespace yaze
#endif // YAZE_APP_EDITOR_GRAPHICS_EDITOR_H

View File

@@ -0,0 +1,484 @@
#include "master_editor.h"
#include <ImGuiColorTextEdit/TextEditor.h>
#include <ImGuiFileDialog/ImGuiFileDialog.h>
#include <imgui/imgui.h>
#include <imgui/misc/cpp/imgui_stdlib.h>
#include <imgui_memory_editor.h>
#include "absl/status/status.h"
#include "app/core/common.h"
#include "app/core/constants.h"
#include "app/core/platform/file_dialog.h"
#include "app/editor/dungeon_editor.h"
#include "app/editor/graphics_editor.h"
#include "app/editor/modules/assembly_editor.h"
#include "app/editor/modules/music_editor.h"
#include "app/editor/modules/palette_editor.h"
#include "app/editor/overworld_editor.h"
#include "app/editor/screen_editor.h"
#include "app/editor/sprite_editor.h"
#include "app/emu/emulator.h"
#include "app/gfx/snes_palette.h"
#include "app/gfx/snes_tile.h"
#include "app/gui/canvas.h"
#include "app/gui/icons.h"
#include "app/gui/input.h"
#include "app/gui/pipeline.h"
#include "app/gui/style.h"
#include "app/gui/widgets.h"
#include "app/rom.h"
namespace yaze {
namespace app {
namespace editor {
namespace {
constexpr ImGuiWindowFlags kMainEditorFlags =
ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoCollapse |
ImGuiWindowFlags_NoScrollbar | ImGuiWindowFlags_MenuBar |
ImGuiWindowFlags_NoBringToFrontOnFocus | ImGuiWindowFlags_NoTitleBar;
void NewMasterFrame() {
const ImGuiIO& io = ImGui::GetIO();
ImGui::NewFrame();
ImGui::SetNextWindowPos(gui::kZeroPos);
ImVec2 dimensions(io.DisplaySize.x, io.DisplaySize.y);
ImGui::SetNextWindowSize(dimensions, ImGuiCond_Always);
if (!ImGui::Begin("##YazeMain", nullptr, kMainEditorFlags)) {
ImGui::End();
return;
}
}
bool BeginCentered(const char* name) {
ImGuiIO const& io = ImGui::GetIO();
ImVec2 pos(io.DisplaySize.x * 0.5f, io.DisplaySize.y * 0.5f);
ImGui::SetNextWindowPos(pos, ImGuiCond_Always, ImVec2(0.5f, 0.5f));
ImGuiWindowFlags flags =
ImGuiWindowFlags_NoMove | ImGuiWindowFlags_NoDecoration |
ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoSavedSettings;
return ImGui::Begin(name, nullptr, flags);
}
class RecentFilesManager {
public:
RecentFilesManager(const std::string& filename) : filename_(filename) {}
void AddFile(const std::string& filePath) {
// Add a file to the list, avoiding duplicates
auto it = std::find(recentFiles_.begin(), recentFiles_.end(), filePath);
if (it == recentFiles_.end()) {
recentFiles_.push_back(filePath);
}
}
void Save() {
std::ofstream file(filename_);
if (!file.is_open()) {
return; // Handle the error appropriately
}
for (const auto& filePath : recentFiles_) {
file << filePath << std::endl;
}
}
void Load() {
std::ifstream file(filename_);
if (!file.is_open()) {
return; // Handle the error appropriately
}
recentFiles_.clear();
std::string line;
while (std::getline(file, line)) {
if (!line.empty()) {
recentFiles_.push_back(line);
}
}
}
const std::vector<std::string>& GetRecentFiles() const {
return recentFiles_;
}
private:
std::string filename_;
std::vector<std::string> recentFiles_;
};
} // namespace
using ImGui::BeginMenu;
using ImGui::MenuItem;
using ImGui::Text;
void MasterEditor::SetupScreen(std::shared_ptr<SDL_Renderer> renderer) {
sdl_renderer_ = renderer;
rom()->SetupRenderer(renderer);
}
absl::Status MasterEditor::Update() {
NewMasterFrame();
DrawYazeMenu();
DrawFileDialog();
DrawStatusPopup();
DrawAboutPopup();
DrawInfoPopup();
if (rom()->isLoaded() && !rom_assets_loaded_) {
// Initialize overworld graphics, maps, and palettes
RETURN_IF_ERROR(overworld_editor_.LoadGraphics());
rom_assets_loaded_ = true;
}
TAB_BAR("##TabBar")
gui::RenderTabItem("Overworld", [&]() {
current_editor_ = &overworld_editor_;
status_ = overworld_editor_.Update();
});
gui::RenderTabItem("Dungeon", [&]() {
current_editor_ = &dungeon_editor_;
status_ = dungeon_editor_.Update();
});
gui::RenderTabItem("Graphics",
[&]() { status_ = graphics_editor_.Update(); });
gui::RenderTabItem("Sprites", [&]() { status_ = sprite_editor_.Update(); });
gui::RenderTabItem("Palettes", [&]() { status_ = palette_editor_.Update(); });
gui::RenderTabItem("Screens", [&]() { screen_editor_.Update(); });
gui::RenderTabItem("Music", [&]() { music_editor_.Update(); });
END_TAB_BAR()
ImGui::End();
return absl::OkStatus();
}
void MasterEditor::DrawFileDialog() {
gui::FileDialogPipeline("ChooseFileDlgKey", ".sfc,.smc", std::nullopt, [&]() {
std::string filePathName = ImGuiFileDialog::Instance()->GetFilePathName();
status_ = rom()->LoadFromFile(filePathName);
static RecentFilesManager manager("recent_files.txt");
// Load existing recent files
manager.Load();
// Add a new file
manager.AddFile(filePathName);
// Save the updated list
manager.Save();
});
}
void MasterEditor::DrawStatusPopup() {
if (!status_.ok()) {
show_status_ = true;
prev_status_ = status_;
}
if (show_status_ && (BeginCentered("StatusWindow"))) {
Text("%s", prev_status_.ToString().c_str());
ImGui::Spacing();
ImGui::NextColumn();
ImGui::Columns(1);
ImGui::Separator();
ImGui::NewLine();
ImGui::SameLine(270);
if (ImGui::Button("OK", gui::kDefaultModalSize)) {
show_status_ = false;
}
ImGui::End();
}
}
void MasterEditor::DrawAboutPopup() {
if (about_) ImGui::OpenPopup("About");
if (ImGui::BeginPopupModal("About", nullptr,
ImGuiWindowFlags_AlwaysAutoResize)) {
Text("Yet Another Zelda3 Editor - v0.05");
Text("Written by: scawful");
ImGui::Spacing();
Text("Special Thanks: Zarby89, JaredBrian");
ImGui::Separator();
if (ImGui::Button("Close", gui::kDefaultModalSize)) {
about_ = false;
ImGui::CloseCurrentPopup();
}
ImGui::EndPopup();
}
}
void MasterEditor::DrawInfoPopup() {
if (rom_info_) ImGui::OpenPopup("ROM Information");
if (ImGui::BeginPopupModal("ROM Information", nullptr,
ImGuiWindowFlags_AlwaysAutoResize)) {
Text("Title: %s", rom()->title());
Text("ROM Size: %ld", rom()->size());
if (ImGui::Button("Close", gui::kDefaultModalSize)) {
rom_info_ = false;
ImGui::CloseCurrentPopup();
}
ImGui::EndPopup();
}
}
void MasterEditor::DrawYazeMenu() {
static bool show_display_settings = false;
static bool show_command_line_interface = false;
MENU_BAR()
DrawFileMenu();
DrawEditMenu();
DrawViewMenu();
DrawHelpMenu();
ImGui::SameLine(ImGui::GetWindowWidth() - ImGui::GetStyle().ItemSpacing.x -
ImGui::CalcTextSize(ICON_MD_DISPLAY_SETTINGS).x - 150);
// Modify the style of the button to have no background color
ImGui::PushStyleColor(ImGuiCol_Button, ImVec4(0, 0, 0, 0));
if (ImGui::Button(ICON_MD_DISPLAY_SETTINGS)) {
show_display_settings = !show_display_settings;
}
if (ImGui::Button(ICON_MD_TERMINAL)) {
show_command_line_interface = !show_command_line_interface;
}
ImGui::PopStyleColor();
Text("%s", absl::StrCat("yaze v", core::kYazeVersion).c_str());
END_MENU_BAR()
if (show_display_settings) {
ImGui::Begin("Display Settings", &show_display_settings,
ImGuiWindowFlags_None);
gui::DrawDisplaySettings();
ImGui::End();
}
if (show_command_line_interface) {
ImGui::Begin("Command Line Interface", &show_command_line_interface,
ImGuiWindowFlags_None);
Text("Enter a command:");
ImGui::End();
}
}
void MasterEditor::DrawFileMenu() {
static bool save_as_menu = false;
if (BeginMenu("File")) {
if (MenuItem("Open", "Ctrl+O")) {
if (flags()->kNewFileDialogWrapper) {
auto file_name = FileDialogWrapper::ShowOpenFileDialog();
PRINT_IF_ERROR(rom()->LoadFromFile(file_name));
static RecentFilesManager manager("recent_files.txt");
manager.Load();
manager.AddFile(file_name);
manager.Save();
} else {
ImGuiFileDialog::Instance()->OpenDialog("ChooseFileDlgKey", "Open ROM",
".sfc,.smc", ".");
}
}
if (BeginMenu("Open Recent")) {
static RecentFilesManager manager("recent_files.txt");
manager.Load();
if (manager.GetRecentFiles().empty()) {
MenuItem("No Recent Files", nullptr, false, false);
} else {
for (const auto& filePath : manager.GetRecentFiles()) {
if (MenuItem(filePath.c_str())) {
status_ = rom()->LoadFromFile(filePath);
}
}
}
ImGui::EndMenu();
}
MENU_ITEM2("Save", "Ctrl+S") { status_ = rom()->SaveToFile(backup_rom_); }
MENU_ITEM("Save As..") { save_as_menu = true; }
if (rom()->isLoaded()) {
MENU_ITEM("Reload") { status_ = rom()->Reload(); }
MENU_ITEM("Close") { status_ = rom()->Close(); }
}
ImGui::Separator();
if (BeginMenu("Options")) {
MenuItem("Backup ROM", "", &backup_rom_);
ImGui::Separator();
Text("Experiment Flags");
ImGui::Checkbox("Enable Texture Streaming",
&mutable_flags()->kLoadTexturesAsStreaming);
ImGui::Checkbox("Enable Overworld Sprites",
&mutable_flags()->kDrawOverworldSprites);
ImGui::Checkbox("Use Bitmap Manager",
&mutable_flags()->kUseBitmapManager);
ImGui::Checkbox("Log Instructions to Debugger",
&mutable_flags()->kLogInstructions);
ImGui::Checkbox("Use New ImGui Input",
&mutable_flags()->kUseNewImGuiInput);
ImGui::Checkbox("Save All Palettes", &mutable_flags()->kSaveAllPalettes);
ImGui::Checkbox("Save With Change Queue",
&mutable_flags()->kSaveWithChangeQueue);
ImGui::Checkbox("Draw Dungeon Room Graphics",
&mutable_flags()->kDrawDungeonRoomGraphics);
ImGui::EndMenu();
}
ImGui::Separator();
if (MenuItem("Quit", "Ctrl+Q")) {
// TODO: Implement quit confirmation dialog.
}
ImGui::EndMenu();
}
if (save_as_menu) {
static std::string save_as_filename = "";
ImGui::Begin("Save As..", &save_as_menu, ImGuiWindowFlags_AlwaysAutoResize);
ImGui::InputText("Filename", &save_as_filename);
if (ImGui::Button("Save", gui::kDefaultModalSize)) {
status_ = rom()->SaveToFile(backup_rom_, save_as_filename);
save_as_menu = false;
}
ImGui::SameLine();
if (ImGui::Button("Cancel", gui::kDefaultModalSize)) {
save_as_menu = false;
}
ImGui::End();
}
}
void MasterEditor::DrawEditMenu() {
if (BeginMenu("Edit")) {
MENU_ITEM2("Undo", "Ctrl+Z") { status_ = current_editor_->Undo(); }
MENU_ITEM2("Redo", "Ctrl+Y") { status_ = current_editor_->Redo(); }
ImGui::Separator();
MENU_ITEM2("Cut", "Ctrl+X") { status_ = current_editor_->Cut(); }
MENU_ITEM2("Copy", "Ctrl+C") { status_ = current_editor_->Copy(); }
MENU_ITEM2("Paste", "Ctrl+V") { status_ = current_editor_->Paste(); }
ImGui::Separator();
MENU_ITEM2("Find", "Ctrl+F") {}
ImGui::Separator();
MENU_ITEM("ROM Information") rom_info_ = true;
ImGui::EndMenu();
}
}
void MasterEditor::DrawViewMenu() {
static bool show_imgui_metrics = false;
static bool show_memory_editor = false;
static bool show_asm_editor = false;
static bool show_imgui_demo = false;
static bool show_memory_viewer = false;
static bool show_palette_editor = false;
static bool show_emulator = false;
if (show_emulator) {
ImGui::Begin("Emulator", &show_emulator, ImGuiWindowFlags_MenuBar);
emulator_.Run();
ImGui::End();
}
if (show_imgui_metrics) {
ImGui::ShowMetricsWindow(&show_imgui_metrics);
}
if (show_memory_editor) {
static MemoryEditor mem_edit;
mem_edit.DrawWindow("Memory Editor", (void*)&(*rom()), rom()->size());
}
if (show_imgui_demo) {
ImGui::ShowDemoWindow();
}
if (show_asm_editor) {
assembly_editor_.Update(show_asm_editor);
}
if (show_palette_editor) {
ImGui::Begin("Palette Editor", &show_palette_editor);
status_ = palette_editor_.Update();
ImGui::End();
}
if (show_memory_viewer) {
ImGui::Begin("Memory Viewer (ImGui)", &show_memory_viewer);
const float TEXT_BASE_HEIGHT = ImGui::GetTextLineHeightWithSpacing();
static ImGuiTableFlags flags =
ImGuiTableFlags_Borders | ImGuiTableFlags_Resizable |
ImGuiTableFlags_ContextMenuInBody | ImGuiTableFlags_RowBg |
ImGuiTableFlags_SizingFixedFit | ImGuiTableFlags_NoHostExtendX;
if (auto outer_size = ImVec2(0.0f, TEXT_BASE_HEIGHT * 5.5f);
ImGui::BeginTable("table1", 3, flags, outer_size)) {
for (int row = 0; row < 10; row++) {
ImGui::TableNextRow();
for (int column = 0; column < 3; column++) {
ImGui::TableNextColumn();
Text("Cell %d,%d", column, row);
}
}
ImGui::EndTable();
}
ImGui::End();
}
if (BeginMenu("View")) {
MenuItem("Emulator", nullptr, &show_emulator);
MenuItem("HEX Editor", nullptr, &show_memory_editor);
MenuItem("ASM Editor", nullptr, &show_asm_editor);
MenuItem("Palette Editor", nullptr, &show_palette_editor);
MenuItem("Memory Viewer", nullptr, &show_memory_viewer);
MenuItem("ImGui Demo", nullptr, &show_imgui_demo);
MenuItem("ImGui Metrics", nullptr, &show_imgui_metrics);
ImGui::EndMenu();
}
}
void MasterEditor::DrawHelpMenu() {
static bool open_rom_help = false;
if (BeginMenu("Help")) {
if (MenuItem("How to open a ROM")) open_rom_help = true;
if (MenuItem("About")) about_ = true;
ImGui::EndMenu();
}
if (open_rom_help) ImGui::OpenPopup("Open a ROM");
if (ImGui::BeginPopupModal("Open a ROM", nullptr,
ImGuiWindowFlags_AlwaysAutoResize)) {
Text("File -> Open");
Text("Select a ROM file to open");
Text("Supported ROMs (headered or unheadered):");
Text("The Legend of Zelda: A Link to the Past");
Text("US Version 1.0");
Text("JP Version 1.0");
if (ImGui::Button("Close", gui::kDefaultModalSize)) {
open_rom_help = false;
ImGui::CloseCurrentPopup();
}
ImGui::EndPopup();
}
}
} // namespace editor
} // namespace app
} // namespace yaze

View File

@@ -0,0 +1,87 @@
#ifndef YAZE_APP_EDITOR_MASTER_EDITOR_H
#define YAZE_APP_EDITOR_MASTER_EDITOR_H
#include <ImGuiColorTextEdit/TextEditor.h>
#include <ImGuiFileDialog/ImGuiFileDialog.h>
#include <imgui/imgui.h>
#include <imgui/misc/cpp/imgui_stdlib.h>
#include <imgui_memory_editor.h>
#include "absl/status/status.h"
#include "app/core/common.h"
#include "app/core/constants.h"
#include "app/gui/pipeline.h"
#include "app/editor/context/gfx_context.h"
#include "app/editor/dungeon_editor.h"
#include "app/editor/graphics_editor.h"
#include "app/editor/modules/assembly_editor.h"
#include "app/editor/modules/music_editor.h"
#include "app/editor/modules/palette_editor.h"
#include "app/editor/overworld_editor.h"
#include "app/editor/screen_editor.h"
#include "app/editor/sprite_editor.h"
#include "app/emu/emulator.h"
#include "app/gfx/snes_palette.h"
#include "app/gfx/snes_tile.h"
#include "app/gui/canvas.h"
#include "app/gui/icons.h"
#include "app/gui/input.h"
#include "app/rom.h"
namespace yaze {
namespace app {
namespace editor {
class MasterEditor : public SharedROM,
public GfxContext,
public core::ExperimentFlags {
public:
MasterEditor() { current_editor_ = &overworld_editor_; }
void SetupScreen(std::shared_ptr<SDL_Renderer> renderer);
absl::Status Update();
void Shutdown() { overworld_editor_.Shutdown(); }
private:
void DrawFileDialog();
void DrawStatusPopup();
void DrawAboutPopup();
void DrawInfoPopup();
void DrawYazeMenu();
void DrawFileMenu();
void DrawEditMenu();
void DrawViewMenu();
void DrawHelpMenu();
bool about_ = false;
bool rom_info_ = false;
bool backup_rom_ = true;
bool show_status_ = false;
bool rom_assets_loaded_ = false;
absl::Status status_;
absl::Status prev_status_;
std::shared_ptr<SDL_Renderer> sdl_renderer_;
emu::Emulator emulator_;
AssemblyEditor assembly_editor_;
DungeonEditor dungeon_editor_;
GraphicsEditor graphics_editor_;
MusicEditor music_editor_;
OverworldEditor overworld_editor_;
PaletteEditor palette_editor_;
ScreenEditor screen_editor_;
SpriteEditor sprite_editor_;
Editor *current_editor_ = nullptr;
};
} // namespace editor
} // namespace app
} // namespace yaze
#endif // YAZE_APP_EDITOR_MASTER_EDITOR_H

View File

@@ -0,0 +1,152 @@
#include "assembly_editor.h"
#include "app/gui/widgets.h"
#include "core/constants.h"
namespace yaze {
namespace app {
namespace editor {
AssemblyEditor::AssemblyEditor() {
text_editor_.SetLanguageDefinition(gui::GetAssemblyLanguageDef());
text_editor_.SetPalette(TextEditor::GetDarkPalette());
}
void AssemblyEditor::Update(bool& is_loaded) {
ImGui::Begin("Assembly Editor", &is_loaded);
MENU_BAR()
DrawFileMenu();
DrawEditMenu();
END_MENU_BAR()
auto cpos = text_editor_.GetCursorPosition();
SetEditorText();
ImGui::Text("%6d/%-6d %6d lines | %s | %s | %s | %s", cpos.mLine + 1,
cpos.mColumn + 1, text_editor_.GetTotalLines(),
text_editor_.IsOverwrite() ? "Ovr" : "Ins",
text_editor_.CanUndo() ? "*" : " ",
text_editor_.GetLanguageDefinition().mName.c_str(),
current_file_.c_str());
text_editor_.Render("##asm_editor");
ImGui::End();
}
void AssemblyEditor::InlineUpdate() {
ChangeActiveFile("assets/asm/template_song.asm");
auto cpos = text_editor_.GetCursorPosition();
SetEditorText();
ImGui::Text("%6d/%-6d %6d lines | %s | %s | %s | %s", cpos.mLine + 1,
cpos.mColumn + 1, text_editor_.GetTotalLines(),
text_editor_.IsOverwrite() ? "Ovr" : "Ins",
text_editor_.CanUndo() ? "*" : " ",
text_editor_.GetLanguageDefinition().mName.c_str(),
current_file_.c_str());
text_editor_.Render("##asm_editor", ImVec2(0, 0));
}
void AssemblyEditor::ChangeActiveFile(const std::string_view& filename) {
current_file_ = filename;
}
void AssemblyEditor::DrawFileView() {
ImGui::BeginTable("##table_view", 4,
ImGuiTableFlags_Borders | ImGuiTableFlags_RowBg);
// Table headers
ImGui::TableSetupColumn("Files", ImGuiTableColumnFlags_WidthFixed, 150.0f);
ImGui::TableSetupColumn("Line", ImGuiTableColumnFlags_WidthFixed, 60.0f);
ImGui::TableSetupColumn("Address", ImGuiTableColumnFlags_WidthFixed, 100.0f);
ImGui::TableSetupColumn("Editor", ImGuiTableColumnFlags_WidthStretch);
ImGui::TableHeadersRow();
// Table data
ImGui::TableNextRow();
ImGui::TableNextColumn();
// TODO: Add tree view of files
ImGui::TableNextColumn();
// TODO: Add line number
ImGui::TableNextColumn();
// TODO: Add address per line
ImGui::TableNextColumn();
auto cpos = text_editor_.GetCursorPosition();
SetEditorText();
ImGui::Text("%6d/%-6d %6d lines | %s | %s | %s | %s", cpos.mLine + 1,
cpos.mColumn + 1, text_editor_.GetTotalLines(),
text_editor_.IsOverwrite() ? "Ovr" : "Ins",
text_editor_.CanUndo() ? "*" : " ",
text_editor_.GetLanguageDefinition().mName.c_str(),
current_file_.c_str());
text_editor_.Render("##asm_editor");
ImGui::EndTable();
}
void AssemblyEditor::DrawFileMenu() {
if (ImGui::BeginMenu("File")) {
if (ImGui::MenuItem("Open", "Ctrl+O")) {
ImGuiFileDialog::Instance()->OpenDialog(
"ChooseASMFileDlg", "Open ASM file", ".asm,.txt", ".");
}
if (ImGui::MenuItem("Save", "Ctrl+S")) {
// TODO: Implement this
}
ImGui::EndMenu();
}
if (ImGuiFileDialog::Instance()->Display("ChooseASMFileDlg")) {
if (ImGuiFileDialog::Instance()->IsOk()) {
ChangeActiveFile(ImGuiFileDialog::Instance()->GetFilePathName());
}
ImGuiFileDialog::Instance()->Close();
}
}
void AssemblyEditor::DrawEditMenu() {
if (ImGui::BeginMenu("Edit")) {
if (ImGui::MenuItem("Undo", "Ctrl+Z")) {
text_editor_.Undo();
}
if (ImGui::MenuItem("Redo", "Ctrl+Y")) {
text_editor_.Redo();
}
ImGui::Separator();
if (ImGui::MenuItem("Cut", "Ctrl+X")) {
text_editor_.Cut();
}
if (ImGui::MenuItem("Copy", "Ctrl+C")) {
text_editor_.Copy();
}
if (ImGui::MenuItem("Paste", "Ctrl+V")) {
text_editor_.Paste();
}
ImGui::Separator();
if (ImGui::MenuItem("Find", "Ctrl+F")) {
// TODO: Implement this.
}
ImGui::EndMenu();
}
}
void AssemblyEditor::SetEditorText() {
if (!file_is_loaded_) {
std::ifstream t(current_file_);
if (t.good()) {
std::string str((std::istreambuf_iterator<char>(t)),
std::istreambuf_iterator<char>());
text_editor_.SetText(str);
file_is_loaded_ = true;
}
}
}
} // namespace editor
} // namespace app
} // namespace yaze

View File

@@ -0,0 +1,41 @@
#ifndef YAZE_APP_EDITOR_ASSEMBLY_EDITOR_H
#define YAZE_APP_EDITOR_ASSEMBLY_EDITOR_H
#include <ImGuiColorTextEdit/TextEditor.h>
#include <ImGuiFileDialog/ImGuiFileDialog.h>
#include <fstream>
#include <istream>
#include <string>
namespace yaze {
namespace app {
namespace editor {
class AssemblyEditor {
public:
AssemblyEditor();
void Update(bool &is_loaded);
void InlineUpdate();
void ChangeActiveFile(const std::string_view &);
private:
void DrawFileMenu();
void DrawEditMenu();
void DrawFileView();
void SetEditorText();
bool file_is_loaded_ = false;
std::string current_file_;
TextEditor text_editor_;
};
} // namespace editor
} // namespace app
} // namespace yaze
#endif

View File

@@ -0,0 +1,182 @@
#include "gfx_group_editor.h"
#include <imgui/imgui.h>
#include <cmath>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "app/core/editor.h"
#include "app/editor/modules/palette_editor.h"
#include "app/gfx/bitmap.h"
#include "app/gfx/snes_palette.h"
#include "app/gfx/snes_tile.h"
#include "app/gui/canvas.h"
#include "app/gui/icons.h"
#include "app/gui/input.h"
#include "app/gui/pipeline.h"
#include "app/gui/widgets.h"
#include "app/rom.h"
#include "app/zelda3/overworld.h"
namespace yaze {
namespace app {
namespace editor {
using ImGui::SameLine;
using ImGui::TableHeadersRow;
using ImGui::TableNextColumn;
using ImGui::TableNextRow;
using ImGui::TableSetupColumn;
absl::Status GfxGroupEditor::Update() {
if (ImGui::BeginTabBar("GfxGroupEditor")) {
if (ImGui::BeginTabItem("Main")) {
gui::InputHexByte("Selected Blockset", &selected_blockset_);
ImGui::Text("Values");
if (ImGui::BeginTable("##BlocksetTable", 2, ImGuiTableFlags_Borders,
ImVec2(0, 0))) {
TableSetupColumn("Inputs", ImGuiTableColumnFlags_WidthStretch,
ImGui::GetContentRegionAvail().x);
TableSetupColumn("Sheets", ImGuiTableColumnFlags_WidthFixed, 256);
TableHeadersRow();
TableNextRow();
TableNextColumn();
{
ImGui::BeginGroup();
for (int i = 0; i < 8; i++) {
ImGui::SetNextItemWidth(100.f);
gui::InputHexByte(("##blockset0" + std::to_string(i)).c_str(),
&rom()->main_blockset_ids[selected_blockset_][i]);
if (i != 3 && i != 7) {
SameLine();
}
}
ImGui::EndGroup();
}
TableNextColumn();
{
ImGui::BeginGroup();
for (int i = 0; i < 8; i++) {
int sheet_id = rom()->main_blockset_ids[selected_blockset_][i];
auto &sheet = *rom()->bitmap_manager()[sheet_id];
if (sheet_id != last_sheet_id_) {
last_sheet_id_ = sheet_id;
auto palette_group = rom()->palette_group("ow_main");
auto palette = palette_group[preview_palette_id_];
sheet.ApplyPalette(palette);
rom()->UpdateBitmap(&sheet);
}
gui::BitmapCanvasPipeline(blockset_canvas_, sheet, 256, 0x10 * 0x04,
0x20, true, false, 22);
}
ImGui::EndGroup();
}
ImGui::EndTable();
}
ImGui::EndTabItem();
}
if (ImGui::BeginTabItem("Rooms")) {
gui::InputHexByte("Selected Blockset", &selected_roomset_);
ImGui::Text("Values - Overwrites 4 of main blockset");
if (ImGui::BeginTable("##Roomstable", 2, ImGuiTableFlags_Borders,
ImVec2(0, 0))) {
TableSetupColumn("Inputs", ImGuiTableColumnFlags_WidthStretch,
ImGui::GetContentRegionAvail().x);
TableSetupColumn("Sheets", ImGuiTableColumnFlags_WidthFixed, 256);
TableHeadersRow();
TableNextRow();
TableNextColumn();
{
ImGui::BeginGroup();
for (int i = 0; i < 4; i++) {
ImGui::SetNextItemWidth(100.f);
gui::InputHexByte(("##roomset0" + std::to_string(i)).c_str(),
&rom()->room_blockset_ids[selected_roomset_][i]);
if (i != 3 && i != 7) {
SameLine();
}
}
ImGui::EndGroup();
}
TableNextColumn();
{
ImGui::BeginGroup();
for (int i = 0; i < 4; i++) {
int sheet_id = rom()->room_blockset_ids[selected_roomset_][i];
auto &sheet = *rom()->bitmap_manager()[sheet_id];
gui::BitmapCanvasPipeline(roomset_canvas_, sheet, 256, 0x10 * 0x04,
0x20, true, false, 23);
}
ImGui::EndGroup();
}
ImGui::EndTable();
}
ImGui::EndTabItem();
}
if (ImGui::BeginTabItem("Sprites")) {
gui::InputHexByte("Selected Spriteset", &selected_spriteset_);
ImGui::Text("Values");
if (ImGui::BeginTable("##SpritesTable", 2, ImGuiTableFlags_Borders,
ImVec2(0, 0))) {
TableSetupColumn("Inputs", ImGuiTableColumnFlags_WidthStretch,
ImGui::GetContentRegionAvail().x);
TableSetupColumn("Sheets", ImGuiTableColumnFlags_WidthFixed, 256);
TableHeadersRow();
TableNextRow();
TableNextColumn();
{
ImGui::BeginGroup();
for (int i = 0; i < 4; i++) {
ImGui::SetNextItemWidth(100.f);
gui::InputHexByte(("##spriteset0" + std::to_string(i)).c_str(),
&rom()->spriteset_ids[selected_spriteset_][i]);
if (i != 3 && i != 7) {
SameLine();
}
}
ImGui::EndGroup();
}
TableNextColumn();
{
ImGui::BeginGroup();
for (int i = 0; i < 4; i++) {
int sheet_id = rom()->spriteset_ids[selected_spriteset_][i];
auto sheet = *rom()->bitmap_manager()[sheet_id];
gui::BitmapCanvasPipeline(spriteset_canvas_, sheet, 256,
0x10 * 0x04, 0x20, true, false, 24);
}
ImGui::EndGroup();
}
ImGui::EndTable();
}
ImGui::EndTabItem();
}
if (ImGui::BeginTabItem("Palettes")) {
ImGui::EndTabItem();
}
ImGui::EndTabBar();
}
ImGui::Separator();
ImGui::Text("Palette: ");
ImGui::InputInt("##PreviewPaletteID", &preview_palette_id_);
return absl::OkStatus();
}
void GfxGroupEditor::InitBlockset(gfx::Bitmap tile16_blockset) {
tile16_blockset_bmp_ = tile16_blockset;
}
} // namespace editor
} // namespace app
} // namespace yaze

View File

@@ -0,0 +1,57 @@
#ifndef YAZE_APP_EDITOR_GFX_GROUP_EDITOR_H
#define YAZE_APP_EDITOR_GFX_GROUP_EDITOR_H
#include <imgui/imgui.h>
#include <cmath>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "app/core/editor.h"
#include "app/gui/pipeline.h"
#include "app/editor/modules/palette_editor.h"
#include "app/gfx/bitmap.h"
#include "app/gfx/snes_palette.h"
#include "app/gfx/snes_tile.h"
#include "app/gui/canvas.h"
#include "app/gui/icons.h"
#include "app/gui/widgets.h"
#include "app/rom.h"
#include "app/zelda3/overworld.h"
namespace yaze {
namespace app {
namespace editor {
class GfxGroupEditor : public SharedROM {
public:
absl::Status Update();
void InitBlockset(gfx::Bitmap tile16_blockset);
private:
int preview_palette_id_ = 0;
int last_sheet_id_ = 0;
uint8_t selected_blockset_ = 0;
uint8_t selected_roomset_ = 0;
uint8_t selected_spriteset_ = 0;
gui::Canvas blockset_canvas_;
gui::Canvas roomset_canvas_;
gui::Canvas spriteset_canvas_;
gfx::SNESPalette palette_;
gfx::PaletteGroup palette_group_;
gfx::Bitmap tile16_blockset_bmp_;
std::vector<Bytes> tile16_individual_data_;
std::vector<gfx::Bitmap> tile16_individual_;
gui::BitmapViewer gfx_group_viewer_;
zelda3::Overworld overworld_;
};
} // namespace editor
} // namespace app
} // namespace yaze
#endif // YAZE_APP_EDITOR_GFX_GROUP_EDITOR_H

View File

@@ -0,0 +1,297 @@
#include "music_editor.h"
#include <SDL_mixer.h>
#include <imgui/imgui.h>
#include "absl/strings/str_format.h"
#include "app/editor/modules/assembly_editor.h"
#include "app/gui/canvas.h"
#include "app/gui/icons.h"
#include "app/gui/input.h"
// #include "snes_spc/demo/demo_util.h"
// #include "snes_spc/demo/wave_writer.h"
// #include "snes_spc/snes_spc/spc.h"
namespace yaze {
namespace app {
namespace editor {
namespace {
#define BUF_SIZE 2048
void PlaySPC() {
// /* Create emulator and filter */
// SNES_SPC* snes_spc = spc_new();
// SPC_Filter* filter = spc_filter_new();
// if (!snes_spc || !filter) error("Out of memory");
// /* Load SPC */
// {
// /* Load file into memory */
// long spc_size;
// void* spc = load_file("assets/music/hyrule_field.spc", &spc_size);
// /* Load SPC data into emulator */
// error(spc_load_spc(snes_spc, spc, spc_size));
// free(spc); /* emulator makes copy of data */
// /* Most SPC files have garbage data in the echo buffer, so clear that */
// spc_clear_echo(snes_spc);
// /* Clear filter before playing */
// spc_filter_clear(filter);
// }
// /* Record 20 seconds to wave file */
// wave_open(spc_sample_rate, "out.wav");
// wave_enable_stereo();
// while (wave_sample_count() < 30 * spc_sample_rate * 2) {
// /* Play into buffer */
// short buf[BUF_SIZE];
// error(spc_play(snes_spc, BUF_SIZE, buf));
// /* Filter samples */
// spc_filter_run(filter, buf, BUF_SIZE);
// wave_write(buf, BUF_SIZE);
// }
// /* Cleanup */
// spc_filter_delete(filter);
// spc_delete(snes_spc);
// wave_close();
}
} // namespace
void MusicEditor::Update() {
if (ImGui::BeginTable("MusicEditorColumns", 2, music_editor_flags_,
ImVec2(0, 0))) {
ImGui::TableSetupColumn("Assembly");
ImGui::TableSetupColumn("Composition");
ImGui::TableHeadersRow();
ImGui::TableNextRow();
ImGui::TableNextColumn();
assembly_editor_.InlineUpdate();
ImGui::TableNextColumn();
DrawToolset();
DrawChannels();
DrawPianoRoll();
ImGui::EndTable();
}
}
void MusicEditor::DrawChannels() {
if (ImGui::BeginTabBar("MyTabBar", ImGuiTabBarFlags_None)) {
for (int i = 1; i <= 8; ++i) {
if (ImGui::BeginTabItem(absl::StrFormat("%d", i).data())) {
DrawPianoStaff();
ImGui::EndTabItem();
}
}
ImGui::EndTabBar();
}
}
static const int NUM_KEYS = 25;
static bool keys[NUM_KEYS];
void MusicEditor::DrawPianoStaff() {
if (ImGuiID child_id = ImGui::GetID((void*)(intptr_t)9);
ImGui::BeginChild(child_id, ImVec2(0, 170), false)) {
const int NUM_LINES = 5;
const int LINE_THICKNESS = 2;
const int LINE_SPACING = 40;
// Get the draw list for the current window
ImDrawList* draw_list = ImGui::GetWindowDrawList();
// Draw the staff lines
ImVec2 canvas_p0 =
ImVec2(ImGui::GetCursorScreenPos().x, ImGui::GetCursorScreenPos().y);
ImVec2 canvas_p1 = ImVec2(canvas_p0.x + ImGui::GetContentRegionAvail().x,
canvas_p0.y + ImGui::GetContentRegionAvail().y);
draw_list->AddRectFilled(canvas_p0, canvas_p1, IM_COL32(32, 32, 32, 255));
for (int i = 0; i < NUM_LINES; i++) {
auto line_start = ImVec2(canvas_p0.x, canvas_p0.y + i * LINE_SPACING);
auto line_end = ImVec2(canvas_p1.x + ImGui::GetContentRegionAvail().x,
canvas_p0.y + i * LINE_SPACING);
draw_list->AddLine(line_start, line_end, IM_COL32(200, 200, 200, 255),
LINE_THICKNESS);
}
// Draw the ledger lines
const int NUM_LEDGER_LINES = 3;
for (int i = -NUM_LEDGER_LINES; i <= NUM_LINES + NUM_LEDGER_LINES; i++) {
if (i % 2 == 0) continue; // skip every other line
auto line_start = ImVec2(canvas_p0.x, canvas_p0.y + i * LINE_SPACING / 2);
auto line_end = ImVec2(canvas_p1.x + ImGui::GetContentRegionAvail().x,
canvas_p0.y + i * LINE_SPACING / 2);
draw_list->AddLine(line_start, line_end, IM_COL32(150, 150, 150, 255),
LINE_THICKNESS);
}
}
ImGui::EndChild();
}
void MusicEditor::DrawPianoRoll() {
// Render the piano roll
float key_width = ImGui::GetContentRegionAvail().x / NUM_KEYS;
float white_key_height = ImGui::GetContentRegionAvail().y * 0.8f;
float black_key_height = ImGui::GetContentRegionAvail().y * 0.5f;
ImGui::Text("Piano Roll");
ImGui::Separator();
ImDrawList* draw_list = ImGui::GetWindowDrawList();
// Draw the staff lines
ImVec2 canvas_p0 =
ImVec2(ImGui::GetCursorScreenPos().x, ImGui::GetCursorScreenPos().y);
ImVec2 canvas_p1 = ImVec2(canvas_p0.x + ImGui::GetContentRegionAvail().x,
canvas_p0.y + ImGui::GetContentRegionAvail().y);
draw_list->AddRectFilled(canvas_p0, canvas_p1, IM_COL32(200, 200, 200, 255));
ImGui::PushStyleVar(ImGuiStyleVar_ItemSpacing, ImVec2(4.f, 0.f));
ImGui::PushStyleVar(ImGuiStyleVar_FrameRounding, 0.f);
for (int i = 0; i < NUM_KEYS; i++) {
// Calculate the position and size of the key
ImVec2 key_pos = ImVec2(i * key_width, 0.0f);
ImVec2 key_size;
ImVec4 key_color;
ImVec4 text_color;
if (i % 12 == 1 || i % 12 == 3 || i % 12 == 6 || i % 12 == 8 ||
i % 12 == 10) {
// This is a black key
key_size = ImVec2(key_width * 0.6f, black_key_height);
key_color = ImVec4(0, 0, 0, 255);
text_color = ImVec4(255, 255, 255, 255);
} else {
// This is a white key
key_size = ImVec2(key_width, white_key_height);
key_color = ImVec4(255, 255, 255, 255);
text_color = ImVec4(0, 0, 0, 255);
}
ImGui::PushID(i);
ImGui::PushStyleVar(ImGuiStyleVar_FramePadding, ImVec2(0.f, 0.f));
ImGui::PushStyleColor(ImGuiCol_Button, key_color);
ImGui::PushStyleColor(ImGuiCol_Text, text_color);
if (ImGui::Button(kSongNotes[i].data(), key_size)) {
keys[i] ^= 1;
}
ImGui::PopStyleColor();
ImGui::PopStyleColor();
ImGui::PopStyleVar();
ImVec2 button_pos = ImGui::GetItemRectMin();
ImVec2 button_size = ImGui::GetItemRectSize();
if (keys[i]) {
ImVec2 dest;
dest.x = button_pos.x + button_size.x;
dest.y = button_pos.y + button_size.y;
ImGui::GetWindowDrawList()->AddRectFilled(button_pos, dest,
IM_COL32(200, 200, 255, 200));
}
ImGui::PopID();
ImGui::SameLine();
}
ImGui::PopStyleVar();
ImGui::PopStyleVar();
}
void MusicEditor::DrawSongToolset() {
if (ImGui::BeginTable("DWToolset", 8, toolset_table_flags_, ImVec2(0, 0))) {
ImGui::TableSetupColumn("#1");
ImGui::TableSetupColumn("#play");
ImGui::TableSetupColumn("#rewind");
ImGui::TableSetupColumn("#fastforward");
ImGui::TableSetupColumn("volumeController");
ImGui::EndTable();
}
}
void MusicEditor::DrawToolset() {
static bool is_playing = false;
static int selected_option = 0;
static int current_volume = 0;
static bool has_loaded_song = false;
const int MAX_VOLUME = 100;
if (is_playing) {
if (!has_loaded_song) {
// PlaySPC();
// current_song_ = Mix_LoadMUS("out.wav");
// Mix_PlayMusic(current_song_, -1);
// has_loaded_song = true;
}
// // If there is no music playing
// if (Mix_PlayingMusic() == 0) {
// Mix_PlayMusic(current_song_, -1);
// }
// // If music is being played
// else {
// // If the music is paused
// if (Mix_PausedMusic() == 1) {
// // Resume the music
// Mix_ResumeMusic();
// }
// // If the music is playing
// else {
// // Pause the music
// Mix_PauseMusic();
// }
// }
}
gui::ItemLabel("Select a song to edit: ", gui::ItemLabelFlags::Left);
ImGui::Combo("#songs_in_game", &selected_option, kGameSongs, 30);
gui::ItemLabel("Controls: ", gui::ItemLabelFlags::Left);
if (ImGui::BeginTable("SongToolset", 6, toolset_table_flags_, ImVec2(0, 0))) {
ImGui::TableSetupColumn("#play");
ImGui::TableSetupColumn("#rewind");
ImGui::TableSetupColumn("#fastforward");
ImGui::TableSetupColumn("#volume");
ImGui::TableSetupColumn("#debug");
ImGui::TableSetupColumn("#slider");
ImGui::TableNextColumn();
if (ImGui::Button(is_playing ? ICON_MD_STOP : ICON_MD_PLAY_ARROW)) {
if (is_playing) {
Mix_HaltMusic();
has_loaded_song = false;
}
is_playing = !is_playing;
}
BUTTON_COLUMN(ICON_MD_FAST_REWIND)
BUTTON_COLUMN(ICON_MD_FAST_FORWARD)
BUTTON_COLUMN(ICON_MD_VOLUME_UP)
if (ImGui::Button(ICON_MD_ACCESS_TIME)) {
music_tracker_.LoadSongs(*rom());
}
ImGui::TableNextColumn();
ImGui::SliderInt("Volume", &current_volume, 0, 100);
ImGui::EndTable();
}
const int SONG_DURATION = 120; // duration of the song in seconds
static int current_time = 0; // current time in the song in seconds
// Display the current time in the song
gui::ItemLabel("Current Time: ", gui::ItemLabelFlags::Left);
ImGui::Text("%d:%02d", current_time / 60, current_time % 60);
ImGui::SameLine();
// Display the song duration/progress using a progress bar
ImGui::ProgressBar((float)current_time / SONG_DURATION);
}
} // namespace editor
} // namespace app
} // namespace yaze

View File

@@ -0,0 +1,90 @@
#ifndef YAZE_APP_EDITOR_MUSIC_EDITOR_H
#define YAZE_APP_EDITOR_MUSIC_EDITOR_H
#include <SDL_mixer.h>
#include <imgui/imgui.h>
#include "absl/strings/str_format.h"
#include "app/editor/modules/assembly_editor.h"
#include "app/gui/canvas.h"
#include "app/gui/icons.h"
#include "app/gui/input.h"
#include "app/rom.h"
#include "app/zelda3/music/tracker.h"
// #include "snes_spc/demo/demo_util.h"
// #include "snes_spc/demo/wave_writer.h"
// #include "snes_spc/snes_spc/spc.h"
namespace yaze {
namespace app {
namespace editor {
static const char* kGameSongs[] = {"Title",
"Light World",
"Beginning",
"Rabbit",
"Forest",
"Intro",
"Town",
"Warp",
"Dark world",
"Master sword",
"File select",
"Soldier",
"Mountain",
"Shop",
"Fanfare",
"Castle",
"Palace (Pendant)",
"Cave (Same as Secret Way)",
"Clear (Dungeon end)",
"Church",
"Boss",
"Dungeon (Crystal)",
"Psychic",
"Secret Way (Same as Cave)",
"Rescue",
"Crystal",
"Fountain",
"Pyramid",
"Kill Agahnim",
"Ganon Room",
"Last Boss"};
static constexpr absl::string_view kSongNotes[] = {
"C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B", "C",
"C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B", "C"};
class MusicEditor : public SharedROM {
public:
void Update();
private:
void DrawChannels();
void DrawPianoStaff();
void DrawPianoRoll();
void DrawSongToolset();
void DrawToolset();
zelda3::Tracker music_tracker_;
// Mix_Music* current_song_ = NULL;
AssemblyEditor assembly_editor_;
ImGuiTableFlags toolset_table_flags_ = ImGuiTableFlags_SizingFixedFit;
ImGuiTableFlags music_editor_flags_ = ImGuiTableFlags_SizingFixedFit |
ImGuiTableFlags_Resizable |
ImGuiTableFlags_Reorderable;
ImGuiTableFlags channel_table_flags_ =
ImGuiTableFlags_Resizable | ImGuiTableFlags_Reorderable |
ImGuiTableFlags_Hideable | ImGuiTableFlags_Sortable |
ImGuiTableFlags_SortMulti | ImGuiTableFlags_RowBg |
ImGuiTableFlags_BordersOuter | ImGuiTableFlags_BordersV |
ImGuiTableFlags_NoBordersInBody | ImGuiTableFlags_ScrollY;
};
} // namespace editor
} // namespace app
} // namespace yaze
#endif

View File

@@ -0,0 +1,288 @@
#include "palette_editor.h"
#include <imgui/imgui.h>
#include "absl/status/status.h"
#include "app/gfx/snes_palette.h"
#include "app/gui/canvas.h"
#include "app/gui/color.h"
#include "app/gui/icons.h"
static inline float ImSaturate(float f) {
return (f < 0.0f) ? 0.0f : (f > 1.0f) ? 1.0f : f;
}
#define IM_F32_TO_INT8_SAT(_VAL) \
((int)(ImSaturate(_VAL) * 255.0f + 0.5f)) // Saturated, always output 0..255
int CustomFormatString(char* buf, size_t buf_size, const char* fmt, ...) {
va_list args;
va_start(args, fmt);
#ifdef IMGUI_USE_STB_SPRINTF
int w = stbsp_vsnprintf(buf, (int)buf_size, fmt, args);
#else
int w = vsnprintf(buf, buf_size, fmt, args);
#endif
va_end(args);
if (buf == nullptr) return w;
if (w == -1 || w >= (int)buf_size) w = (int)buf_size - 1;
buf[w] = 0;
return w;
}
namespace yaze {
namespace app {
namespace editor {
absl::Status PaletteEditor::Update() {
if (ImGui::BeginTable("paletteEditorTable", 2,
ImGuiTableFlags_Reorderable |
ImGuiTableFlags_Resizable |
ImGuiTableFlags_SizingStretchSame,
ImVec2(0, 0))) {
ImGui::TableSetupColumn("Palette Groups",
ImGuiTableColumnFlags_WidthStretch,
ImGui::GetContentRegionAvail().x);
ImGui::TableSetupColumn("Editor", ImGuiTableColumnFlags_WidthStretch,
ImGui::GetContentRegionAvail().x);
ImGui::TableHeadersRow();
ImGui::TableNextRow();
ImGui::TableNextColumn();
for (int category = 0; category < kNumPalettes; ++category) {
if (ImGui::TreeNode(kPaletteCategoryNames[category].data())) {
status_ = DrawPaletteGroup(category);
ImGui::TreePop();
}
}
ImGui::TableNextColumn();
ImGui::Text("Test Column");
ImGui::EndTable();
}
CLEAR_AND_RETURN_STATUS(status_)
return absl::OkStatus();
}
void PaletteEditor::EditColorInPalette(gfx::SNESPalette& palette, int index) {
if (index >= palette.size()) {
// Handle error: the index is out of bounds
return;
}
// Get the current color
auto currentColor = palette.GetColor(index).GetRGB();
if (ImGui::ColorPicker4("Color Picker", (float*)&palette[index])) {
// The color was modified, update it in the palette
palette(index, currentColor);
}
}
void PaletteEditor::ResetColorToOriginal(
gfx::SNESPalette& palette, int index,
const gfx::SNESPalette& originalPalette) {
if (index >= palette.size() || index >= originalPalette.size()) {
// Handle error: the index is out of bounds
return;
}
auto originalColor = originalPalette.GetColor(index).GetRGB();
palette(index, originalColor);
}
absl::Status PaletteEditor::DrawPaletteGroup(int category) {
if (!rom()->isLoaded()) {
return absl::NotFoundError("ROM not open, no palettes to display");
}
const auto size =
rom()->palette_group(kPaletteGroupNames[category].data()).size();
auto palettes = rom()->palette_group(kPaletteGroupNames[category].data());
static bool edit_color = false;
for (int j = 0; j < size; j++) {
ImGui::Text("%d", j);
auto palette = palettes[j];
auto pal_size = palette.size();
for (int n = 0; n < pal_size; n++) {
ImGui::PushID(n);
if ((n % 8) != 0) ImGui::SameLine(0.0f, ImGui::GetStyle().ItemSpacing.y);
auto popup_id =
absl::StrCat(kPaletteCategoryNames[category].data(), j, "_", n);
// Small icon of the color in the palette
if (gui::SNESColorButton(popup_id, palette[n], palette_button_flags)) {
edit_color = true;
}
if (ImGui::BeginPopupContextItem(popup_id.c_str())) {
RETURN_IF_ERROR(HandleColorPopup(palette, category, j, n))
}
if (edit_color) {
// The color button was clicked, open the popup
if (ImGui::ColorEdit4(popup_id.c_str(),
gfx::ToFloatArray(palette[n]).data(),
palette_button_flags)) {
EditColorInPalette(palette, n);
}
}
ImGui::PopID();
}
}
return absl::OkStatus();
}
absl::Status PaletteEditor::HandleColorPopup(gfx::SNESPalette& palette, int i,
int j, int n) {
auto col = gfx::ToFloatArray(palette[n]);
if (ImGui::ColorEdit4("Edit Color", col.data(), color_popup_flags)) {
RETURN_IF_ERROR(rom()->UpdatePaletteColor(kPaletteGroupNames[i].data(), j,
n, palette[n]))
}
if (ImGui::Button("Copy as..", ImVec2(-1, 0))) ImGui::OpenPopup("Copy");
if (ImGui::BeginPopup("Copy")) {
int cr = IM_F32_TO_INT8_SAT(col[0]);
int cg = IM_F32_TO_INT8_SAT(col[1]);
int cb = IM_F32_TO_INT8_SAT(col[2]);
char buf[64];
CustomFormatString(buf, IM_ARRAYSIZE(buf), "(%.3ff, %.3ff, %.3ff)", col[0],
col[1], col[2]);
if (ImGui::Selectable(buf)) ImGui::SetClipboardText(buf);
CustomFormatString(buf, IM_ARRAYSIZE(buf), "(%d,%d,%d)", cr, cg, cb);
if (ImGui::Selectable(buf)) ImGui::SetClipboardText(buf);
CustomFormatString(buf, IM_ARRAYSIZE(buf), "#%02X%02X%02X", cr, cg, cb);
if (ImGui::Selectable(buf)) ImGui::SetClipboardText(buf);
ImGui::EndPopup();
}
ImGui::EndPopup();
return absl::OkStatus();
}
void PaletteEditor::DisplayPalette(gfx::SNESPalette& palette, bool loaded) {
static ImVec4 color = ImVec4(0, 0, 0, 255.f);
ImGuiColorEditFlags misc_flags = ImGuiColorEditFlags_AlphaPreview |
ImGuiColorEditFlags_NoDragDrop |
ImGuiColorEditFlags_NoOptions;
// Generate a default palette. The palette will persist and can be edited.
static bool init = false;
if (loaded && !init) {
InitializeSavedPalette(palette);
init = true;
}
static ImVec4 backup_color;
bool open_popup = ImGui::ColorButton("MyColor##3b", color, misc_flags);
ImGui::SameLine(0, ImGui::GetStyle().ItemInnerSpacing.x);
open_popup |= ImGui::Button("Palette");
if (open_popup) {
ImGui::OpenPopup("mypicker");
backup_color = color;
}
if (ImGui::BeginPopup("mypicker")) {
TEXT_WITH_SEPARATOR("Current Overworld Palette");
ImGui::ColorPicker4("##picker", (float*)&color,
misc_flags | ImGuiColorEditFlags_NoSidePreview |
ImGuiColorEditFlags_NoSmallPreview);
ImGui::SameLine();
ImGui::BeginGroup(); // Lock X position
ImGui::Text("Current ==>");
ImGui::SameLine();
ImGui::Text("Previous");
if (ImGui::Button("Update Map Palette")) {
}
ImGui::ColorButton(
"##current", color,
ImGuiColorEditFlags_NoPicker | ImGuiColorEditFlags_AlphaPreviewHalf,
ImVec2(60, 40));
ImGui::SameLine();
if (ImGui::ColorButton(
"##previous", backup_color,
ImGuiColorEditFlags_NoPicker | ImGuiColorEditFlags_AlphaPreviewHalf,
ImVec2(60, 40)))
color = backup_color;
// List of Colors in Overworld Palette
ImGui::Separator();
ImGui::Text("Palette");
for (int n = 0; n < IM_ARRAYSIZE(saved_palette_); n++) {
ImGui::PushID(n);
if ((n % 8) != 0) ImGui::SameLine(0.0f, ImGui::GetStyle().ItemSpacing.y);
if (ImGui::ColorButton("##palette", saved_palette_[n],
palette_button_flags_2, ImVec2(20, 20)))
color = ImVec4(saved_palette_[n].x, saved_palette_[n].y,
saved_palette_[n].z, color.w); // Preserve alpha!
if (ImGui::BeginDragDropTarget()) {
if (const ImGuiPayload* payload =
ImGui::AcceptDragDropPayload(IMGUI_PAYLOAD_TYPE_COLOR_3F))
memcpy((float*)&saved_palette_[n], payload->Data, sizeof(float) * 3);
if (const ImGuiPayload* payload =
ImGui::AcceptDragDropPayload(IMGUI_PAYLOAD_TYPE_COLOR_4F))
memcpy((float*)&saved_palette_[n], payload->Data, sizeof(float) * 4);
ImGui::EndDragDropTarget();
}
ImGui::PopID();
}
ImGui::EndGroup();
ImGui::EndPopup();
}
}
void PaletteEditor::DrawPortablePalette(gfx::SNESPalette& palette) {
static bool init = false;
if (!init) {
InitializeSavedPalette(palette);
init = true;
}
if (ImGuiID child_id = ImGui::GetID((void*)(intptr_t)100);
ImGui::BeginChild(child_id, ImGui::GetContentRegionAvail(), true,
ImGuiWindowFlags_AlwaysVerticalScrollbar)) {
ImGui::BeginGroup(); // Lock X position
ImGui::Text("Palette");
for (int n = 0; n < IM_ARRAYSIZE(saved_palette_); n++) {
ImGui::PushID(n);
if ((n % 8) != 0) ImGui::SameLine(0.0f, ImGui::GetStyle().ItemSpacing.y);
if (ImGui::ColorButton("##palette", saved_palette_[n],
palette_button_flags_2, ImVec2(20, 20)))
ImVec4(saved_palette_[n].x, saved_palette_[n].y, saved_palette_[n].z,
1.0f); // Preserve alpha!
if (ImGui::BeginDragDropTarget()) {
if (const ImGuiPayload* payload =
ImGui::AcceptDragDropPayload(IMGUI_PAYLOAD_TYPE_COLOR_3F))
memcpy((float*)&saved_palette_[n], payload->Data, sizeof(float) * 3);
if (const ImGuiPayload* payload =
ImGui::AcceptDragDropPayload(IMGUI_PAYLOAD_TYPE_COLOR_4F))
memcpy((float*)&saved_palette_[n], payload->Data, sizeof(float) * 4);
ImGui::EndDragDropTarget();
}
ImGui::PopID();
}
ImGui::EndGroup();
}
ImGui::EndChild();
}
} // namespace editor
} // namespace app
} // namespace yaze

View File

@@ -0,0 +1,122 @@
#ifndef YAZE_APP_EDITOR_PALETTE_EDITOR_H
#define YAZE_APP_EDITOR_PALETTE_EDITOR_H
#include <imgui/imgui.h>
#include "absl/status/status.h"
#include "app/gfx/snes_palette.h"
#include "app/gui/canvas.h"
#include "app/gui/icons.h"
#include "app/rom.h"
namespace yaze {
namespace app {
namespace editor {
constexpr int kNumPalettes = 11;
static constexpr absl::string_view kPaletteCategoryNames[] = {
"Sword", "Shield", "Clothes", "World Colors",
"Area Colors", "Enemies", "Dungeons", "World Map",
"Dungeon Map", "Triforce", "Crystal"};
static constexpr absl::string_view kPaletteGroupNames[] = {
"swords", "shields", "armors", "ow_main",
"ow_aux", "global_sprites", "dungeon_main", "ow_mini_map",
"ow_mini_map", "3d_object", "3d_object"};
struct PaletteChange {
std::string groupName;
size_t paletteIndex;
size_t colorIndex;
gfx::SNESColor originalColor;
gfx::SNESColor newColor;
};
class PaletteEditorHistory {
public:
// Record a change in the palette editor
void RecordChange(const std::string& groupName, size_t paletteIndex,
size_t colorIndex, const gfx::SNESColor& originalColor,
const gfx::SNESColor& newColor) {
// Check size and remove the oldest if necessary
if (recentChanges.size() >= maxHistorySize) {
recentChanges.pop_front();
}
// Push the new change
recentChanges.push_back(
{groupName, paletteIndex, colorIndex, originalColor, newColor});
}
// Get recent changes for display in the palette editor
const std::deque<PaletteChange>& GetRecentChanges() const {
return recentChanges;
}
// Restore the original color
gfx::SNESColor GetOriginalColor(const std::string& groupName,
size_t paletteIndex,
size_t colorIndex) const {
for (const auto& change : recentChanges) {
if (change.groupName == groupName &&
change.paletteIndex == paletteIndex &&
change.colorIndex == colorIndex) {
return change.originalColor;
}
}
// Handle error or return default (this is just an example,
// handle as appropriate for your application)
return gfx::SNESColor();
}
private:
std::deque<PaletteChange> recentChanges;
static const size_t maxHistorySize = 50; // or any other number you deem fit
};
class PaletteEditor : public SharedROM {
public:
absl::Status Update();
absl::Status DrawPaletteGroups();
void EditColorInPalette(gfx::SNESPalette& palette, int index);
void ResetColorToOriginal(gfx::SNESPalette& palette, int index,
const gfx::SNESPalette& originalPalette);
void DisplayPalette(gfx::SNESPalette& palette, bool loaded);
void DrawPortablePalette(gfx::SNESPalette& palette);
private:
absl::Status DrawPaletteGroup(int category);
absl::Status HandleColorPopup(gfx::SNESPalette& palette, int i, int j, int n);
void InitializeSavedPalette(const gfx::SNESPalette& palette) {
for (int n = 0; n < palette.size(); n++) {
saved_palette_[n].x = palette.GetColor(n).GetRGB().x / 255;
saved_palette_[n].y = palette.GetColor(n).GetRGB().y / 255;
saved_palette_[n].z = palette.GetColor(n).GetRGB().z / 255;
saved_palette_[n].w = 255; // Alpha
}
}
absl::Status status_;
PaletteEditorHistory history_;
ImVec4 saved_palette_[256] = {};
ImVec4 current_color_;
ImGuiColorEditFlags color_popup_flags =
ImGuiColorEditFlags_NoInputs | ImGuiColorEditFlags_NoAlpha;
ImGuiColorEditFlags palette_button_flags =
ImGuiColorEditFlags_NoAlpha | ImGuiColorEditFlags_NoTooltip;
ImGuiColorEditFlags palette_button_flags_2 = ImGuiColorEditFlags_NoAlpha |
ImGuiColorEditFlags_NoPicker |
ImGuiColorEditFlags_NoTooltip;
};
} // namespace editor
} // namespace app
} // namespace yaze
#endif

View File

@@ -0,0 +1,298 @@
#include "tile16_editor.h"
#include <imgui/imgui.h>
#include <cmath>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "app/core/editor.h"
#include "app/editor/modules/palette_editor.h"
#include "app/gfx/bitmap.h"
#include "app/gfx/snes_palette.h"
#include "app/gfx/snes_tile.h"
#include "app/gui/canvas.h"
#include "app/gui/icons.h"
#include "app/gui/input.h"
#include "app/gui/pipeline.h"
#include "app/rom.h"
#include "app/zelda3/overworld.h"
namespace yaze {
namespace app {
namespace editor {
using ImGui::BeginChild;
using ImGui::BeginTabBar;
using ImGui::BeginTabItem;
using ImGui::BeginTable;
using ImGui::Combo;
using ImGui::EndChild;
using ImGui::EndTabBar;
using ImGui::EndTabItem;
using ImGui::TableHeadersRow;
using ImGui::TableNextColumn;
using ImGui::TableNextRow;
using ImGui::TableSetupColumn;
absl::Status Tile16Editor::Update() {
// Create a tab for Tile16 Editing
static bool start_task = false;
if (ImGui::Button("Test")) {
start_task = true;
}
if (start_task && !map_blockset_loaded_) {
LoadTile8();
}
// Create a tab bar for Tile16 Editing and Tile16 Transfer
if (BeginTabBar("Tile16 Editor Tabs")) {
if (BeginTabItem("Tile16 Editing")) {
if (BeginTable("#Tile16EditorTable", 2, TABLE_BORDERS_RESIZABLE,
ImVec2(0, 0))) {
TableSetupColumn("Tiles", ImGuiTableColumnFlags_WidthFixed,
ImGui::GetContentRegionAvail().x);
TableSetupColumn("Properties", ImGuiTableColumnFlags_WidthStretch,
ImGui::GetContentRegionAvail().x);
TableHeadersRow();
TableNextRow();
TableNextColumn();
RETURN_IF_ERROR(UpdateBlockset());
TableNextColumn();
RETURN_IF_ERROR(UpdateTile16Edit());
ImGui::EndTable();
}
ImGui::EndTabItem();
}
// Create a tab for Tile16 Transfer
if (BeginTabItem("Tile16 Transfer")) {
if (BeginTable("#Tile16TransferTable", 2,
ImGuiTableFlags_Borders | ImGuiTableFlags_Resizable,
ImVec2(0, 0))) {
TableSetupColumn("Current ROM Tiles", ImGuiTableColumnFlags_WidthFixed,
ImGui::GetContentRegionAvail().x / 2);
TableSetupColumn("Transfer ROM Tiles", ImGuiTableColumnFlags_WidthFixed,
ImGui::GetContentRegionAvail().x / 2);
TableHeadersRow();
TableNextRow();
TableNextColumn();
RETURN_IF_ERROR(UpdateBlockset());
TableNextColumn();
RETURN_IF_ERROR(UpdateTransferTileCanvas());
ImGui::EndTable();
}
ImGui::EndTabItem();
}
ImGui::EndTabBar();
}
return absl::OkStatus();
}
absl::Status Tile16Editor::UpdateBlockset() {
gui::BitmapCanvasPipeline(blockset_canvas_, tile16_blockset_bmp_, 0x100,
(8192 * 2), 0x20, map_blockset_loaded_, true, 55);
if (!blockset_canvas_.Points().empty()) {
uint16_t x = blockset_canvas_.Points().front().x / 32;
uint16_t y = blockset_canvas_.Points().front().y / 32;
notify_tile16.mutable_get() = x + (y * 8);
notify_tile16.apply_changes();
if (notify_tile16.modified()) {
current_tile16_bmp_ = tile16_individual_[notify_tile16];
current_tile16_bmp_.ApplyPalette(
rom()->palette_group("ow_main")[current_palette_]);
rom()->RenderBitmap(&current_tile16_bmp_);
}
}
return absl::OkStatus();
}
absl::Status Tile16Editor::UpdateTile16Edit() {
if (ImGui::BeginChild("Tile8 Selector",
ImVec2(ImGui::GetContentRegionAvail().x, 0x100),
true)) {
tile8_source_canvas_.DrawBackground(
ImVec2(core::kTilesheetWidth * 2, core::kTilesheetHeight * 0x10 * 2));
tile8_source_canvas_.DrawContextMenu();
tile8_source_canvas_.DrawTileSelector(16);
tile8_source_canvas_.DrawBitmap(current_gfx_bmp_, 0, 0, 2.0f);
tile8_source_canvas_.DrawGrid(16.0f);
tile8_source_canvas_.DrawOverlay();
}
ImGui::EndChild();
if (ImGui::BeginChild("Tile16 Editor Options",
ImVec2(ImGui::GetContentRegionAvail().x, 0x50), true)) {
tile16_edit_canvas_.DrawBackground(ImVec2(0x40, 0x40));
tile16_edit_canvas_.DrawContextMenu();
// if (current_tile8_bmp_.modified()) {
// rom()->UpdateBitmap(&current_tile8_bmp_);
// current_tile8_bmp_.set_modified(false);
// }
tile16_edit_canvas_.DrawBitmap(current_tile16_bmp_, 0, 0, 4.0f);
tile16_edit_canvas_.HandleTileEdits(
tile8_source_canvas_, current_gfx_individual_, current_tile8_bmp_,
current_tile8_, 2.0f);
tile16_edit_canvas_.DrawGrid(128.0f);
tile16_edit_canvas_.DrawOverlay();
}
ImGui::EndChild();
DrawTileEditControls();
return absl::OkStatus();
}
void Tile16Editor::DrawTileEditControls() {
ImGui::Separator();
ImGui::Text("Options:");
gui::InputHexByte("Palette", &notify_palette.mutable_get());
notify_palette.apply_changes();
if (notify_palette.modified()) {
current_gfx_bmp_.ApplyPalette(
rom()->palette_group("ow_main")[notify_palette.get()]);
current_tile16_bmp_.ApplyPalette(
rom()->palette_group("ow_main")[notify_palette.get()]);
rom()->UpdateBitmap(&current_gfx_bmp_);
}
ImGui::Checkbox("X Flip", &x_flip);
ImGui::Checkbox("Y Flip", &y_flip);
ImGui::Checkbox("Priority Tile", &priority_tile);
}
absl::Status Tile16Editor::UpdateTransferTileCanvas() {
// Create a button for loading another ROM
if (ImGui::Button("Load ROM")) {
ImGuiFileDialog::Instance()->OpenDialog(
"ChooseTransferFileDlgKey", "Open Transfer ROM", ".sfc,.smc", ".");
}
gui::FileDialogPipeline(
"ChooseTransferFileDlgKey", ".sfc,.smc", std::nullopt, [&]() {
std::string filePathName =
ImGuiFileDialog::Instance()->GetFilePathName();
transfer_status_ = transfer_rom_.LoadFromFile(filePathName);
transfer_started_ = true;
});
if (transfer_started_ && !transfer_blockset_loaded_) {
PRINT_IF_ERROR(transfer_rom_.LoadAllGraphicsData())
graphics_bin_ = transfer_rom_.graphics_bin();
// Load the Link to the Past overworld.
PRINT_IF_ERROR(transfer_overworld_.Load(transfer_rom_))
transfer_overworld_.SetCurrentMap(0);
palette_ = transfer_overworld_.AreaPalette();
// Create the tile16 blockset image
gui::BuildAndRenderBitmapPipeline(0x80, 0x2000, 0x80,
transfer_overworld_.Tile16Blockset(),
*rom(), transfer_blockset_bmp_, palette_);
transfer_blockset_loaded_ = true;
}
// Create a canvas for holding the tiles which will be exported
gui::BitmapCanvasPipeline(transfer_canvas_, transfer_blockset_bmp_, 0x100,
(8192 * 2), 0x20, transfer_blockset_loaded_, true,
3);
return absl::OkStatus();
}
using core::TaskManager;
absl::Status Tile16Editor::InitBlockset(
const gfx::Bitmap& tile16_blockset_bmp, gfx::Bitmap current_gfx_bmp,
const std::vector<gfx::Bitmap>& tile16_individual) {
tile16_blockset_bmp_ = tile16_blockset_bmp;
tile16_individual_ = tile16_individual;
current_gfx_bmp_ = current_gfx_bmp;
return absl::OkStatus();
}
absl::Status Tile16Editor::LoadTile8() {
current_gfx_individual_.reserve(128);
// Define the task function
std::function<void(int)> taskFunc = [&](int index) {
auto current_gfx_data = current_gfx_bmp_.mutable_data();
std::vector<uint8_t> tile_data;
tile_data.reserve(0x40);
for (int i = 0; i < 0x40; i++) {
tile_data.emplace_back(0x00);
}
// Copy the pixel data for the current tile into the vector
for (int ty = 0; ty < 8; ty++) {
for (int tx = 0; tx < 8; tx++) {
int position = tx + (ty * 0x08);
uint8_t value =
current_gfx_data[(index % 16 * 32) + (index / 16 * 32 * 0x80) +
(ty * 0x80) + tx];
tile_data[position] = value;
}
}
current_gfx_individual_.emplace_back();
current_gfx_individual_[index].Create(0x08, 0x08, 0x80, tile_data);
current_gfx_individual_[index].ApplyPalette(
rom()->palette_group("ow_main")[current_palette_]);
rom()->RenderBitmap(&current_gfx_individual_[index]);
};
// Create the task manager
static bool started = false;
if (!started) {
task_manager_ = TaskManager<std::function<void(int)>>(127, 1);
started = true;
}
task_manager_.ExecuteTasks(taskFunc);
if (task_manager_.IsTaskComplete()) {
// All tasks are complete
current_tile8_bmp_ = current_gfx_individual_[0];
map_blockset_loaded_ = true;
}
// auto current_gfx_data = current_gfx_bmp_.mutable_data();
// for (int i = 0; i < 128; i++) {
// std::vector<uint8_t> tile_data(0x40, 0x00);
// Copy the pixel data for the current tile into the vector
// for (int ty = 0; ty < 8; ty++) {
// for (int tx = 0; tx < 8; tx++) {
// int position = tx + (ty * 0x10);
// uint8_t value = current_gfx_data[(i % 16 * 32) + (i / 16 * 32 * 0x80)
// +
// (ty * 0x80) + tx];
// tile_data[position] = value;
// }
// }
// current_gfx_individual_data_.emplace_back(tile_data);
// current_gfx_individual_.emplace_back();
// current_gfx_individual_[i].Create(0x08, 0x08, 0x80, tile_data);
// current_gfx_individual_[i].ApplyPalette(
// rom()->palette_group("ow_main")[current_palette_]);
// rom()->RenderBitmap(&current_gfx_individual_[i]);
// }
return absl::OkStatus();
}
} // namespace editor
} // namespace app
} // namespace yaze

View File

@@ -0,0 +1,107 @@
#ifndef YAZE_APP_EDITOR_TILE16EDITOR_H
#define YAZE_APP_EDITOR_TILE16EDITOR_H
#include <imgui/imgui.h>
#include <cmath>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "app/core/editor.h"
#include "app/gui/pipeline.h"
#include "app/editor/modules/palette_editor.h"
#include "app/gfx/bitmap.h"
#include "app/gfx/snes_palette.h"
#include "app/gfx/snes_tile.h"
#include "app/gui/canvas.h"
#include "app/gui/icons.h"
#include "app/rom.h"
#include "app/zelda3/overworld.h"
namespace yaze {
namespace app {
namespace editor {
class Tile16Editor : public SharedROM {
public:
absl::Status Update();
absl::Status UpdateBlockset();
absl::Status UpdateTile16Edit();
void DrawTileEditControls();
absl::Status UpdateTransferTileCanvas();
absl::Status InitBlockset(const gfx::Bitmap& tile16_blockset_bmp,
gfx::Bitmap current_gfx_bmp,
const std::vector<gfx::Bitmap>& tile16_individual);
absl::Status LoadTile8();
private:
bool map_blockset_loaded_ = false;
bool transfer_started_ = false;
bool transfer_blockset_loaded_ = false;
int current_tile16_ = 0;
int current_tile8_ = 0;
uint8_t current_palette_ = 0;
core::NotifyValue<uint8_t> notify_tile16;
core::NotifyValue<uint8_t> notify_palette;
// Canvas dimensions
int canvas_width;
int canvas_height;
// Texture ID for the canvas
int texture_id;
// Various options for the Tile16 Editor
bool x_flip;
bool y_flip;
bool priority_tile;
int tile_size;
// Tile16 blockset for selecting the tile to edit
gui::Canvas blockset_canvas_;
gfx::Bitmap tile16_blockset_bmp_;
// Canvas for editing the selected tile
gui::Canvas tile16_edit_canvas_;
gfx::Bitmap current_tile16_bmp_;
gfx::Bitmap current_tile8_bmp_;
// Tile8 canvas to get the tile to drawing in the tile16_edit_canvas_
gui::Canvas tile8_source_canvas_;
gfx::Bitmap current_gfx_bmp_;
gui::Canvas transfer_canvas_;
gfx::Bitmap transfer_blockset_bmp_;
gfx::Bitmap transfer_current_bmp_;
std::vector<Bytes> tile16_individual_data_;
std::vector<gfx::Bitmap> tile16_individual_;
std::vector<gfx::Bitmap> current_gfx_individual_;
std::vector<uint8_t> current_tile16_data_;
PaletteEditor palette_editor_;
gfx::SNESPalette palette_;
zelda3::Overworld transfer_overworld_;
gfx::BitmapTable graphics_bin_;
ROM transfer_rom_;
absl::Status transfer_status_;
core::TaskManager<std::function<void(int)>> task_manager_;
};
} // namespace editor
} // namespace app
} // namespace yaze
#endif // YAZE_APP_EDITOR_TILE16EDITOR_H

View File

@@ -0,0 +1,682 @@
#include "overworld_editor.h"
#include <imgui/imgui.h>
#include <cmath>
#include <unordered_map>
#include "absl/container/flat_hash_map.h"
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/strings/str_format.h"
#include "app/core/common.h"
#include "app/editor/modules/palette_editor.h"
#include "app/gfx/bitmap.h"
#include "app/gfx/snes_palette.h"
#include "app/gfx/snes_tile.h"
#include "app/gui/canvas.h"
#include "app/gui/icons.h"
#include "app/gui/input.h"
#include "app/gui/pipeline.h"
#include "app/gui/style.h"
#include "app/gui/widgets.h"
#include "app/rom.h"
#include "app/zelda3/overworld.h"
namespace yaze {
namespace app {
namespace editor {
using ImGui::Button;
using ImGui::Separator;
using ImGui::TableHeadersRow;
using ImGui::TableNextColumn;
using ImGui::TableNextRow;
using ImGui::TableSetupColumn;
using ImGui::Text;
absl::Status OverworldEditor::Update() {
if (rom()->isLoaded() && !all_gfx_loaded_) {
RETURN_IF_ERROR(tile16_editor_.InitBlockset(
tile16_blockset_bmp_, current_gfx_bmp_, tile16_individual_));
gfx_group_editor_.InitBlockset(tile16_blockset_bmp_);
all_gfx_loaded_ = true;
} else if (!rom()->isLoaded() && all_gfx_loaded_) {
// TODO: Destroy the overworld graphics canvas.
// Reset the editor if the ROM is unloaded
Shutdown();
all_gfx_loaded_ = false;
map_blockset_loaded_ = false;
}
// Draws the toolset for editing the Overworld.
RETURN_IF_ERROR(DrawToolset())
if (ImGui::BeginTable(kOWEditTable.data(), 2, kOWEditFlags, ImVec2(0, 0))) {
TableSetupColumn("Canvas", ImGuiTableColumnFlags_WidthStretch,
ImGui::GetContentRegionAvail().x);
TableSetupColumn("Tile Selector", ImGuiTableColumnFlags_WidthFixed, 256);
TableHeadersRow();
TableNextRow();
TableNextColumn();
DrawOverworldCanvas();
TableNextColumn();
DrawTileSelector();
ImGui::EndTable();
}
if (!status_.ok()) {
auto temp = status_;
status_ = absl::OkStatus();
return temp;
}
return absl::OkStatus();
}
// ----------------------------------------------------------------------------
absl::Status OverworldEditor::DrawToolset() {
static bool show_gfx_group = false;
static bool show_tile16 = false;
if (ImGui::BeginTable("OWToolset", 19, kToolsetTableFlags, ImVec2(0, 0))) {
for (const auto &name : kToolsetColumnNames)
ImGui::TableSetupColumn(name.data());
NEXT_COLUMN()
if (ImGui::Button(ICON_MD_UNDO)) {
status_ = Undo();
}
NEXT_COLUMN()
if (ImGui::Button(ICON_MD_REDO)) {
status_ = Redo();
}
TEXT_COLUMN(ICON_MD_MORE_VERT) // Separator
NEXT_COLUMN()
if (ImGui::Button(ICON_MD_ZOOM_OUT)) {
ow_map_canvas_.ZoomOut();
}
NEXT_COLUMN()
if (ImGui::Button(ICON_MD_ZOOM_IN)) {
ow_map_canvas_.ZoomIn();
}
TEXT_COLUMN(ICON_MD_MORE_VERT) // Separator
NEXT_COLUMN()
if (ImGui::Button(ICON_MD_DRAW)) {
current_mode = EditingMode::DRAW_TILE;
}
HOVER_HINT("Draw Tile")
NEXT_COLUMN()
if (ImGui::Button(ICON_MD_DOOR_FRONT)) {
current_mode = EditingMode::ENTRANCES;
}
HOVER_HINT("Entrances")
NEXT_COLUMN()
if (ImGui::Button(ICON_MD_DOOR_BACK)) {
current_mode = EditingMode::EXITS;
}
HOVER_HINT("Exits")
NEXT_COLUMN()
if (ImGui::Button(ICON_MD_GRASS)) {
current_mode = EditingMode::ITEMS;
}
HOVER_HINT("Items")
NEXT_COLUMN()
if (ImGui::Button(ICON_MD_PEST_CONTROL_RODENT)) {
current_mode = EditingMode::SPRITES;
}
HOVER_HINT("Sprites")
NEXT_COLUMN()
if (ImGui::Button(ICON_MD_ADD_LOCATION)) {
current_mode = EditingMode::TRANSPORTS;
}
HOVER_HINT("Transports")
NEXT_COLUMN()
if (ImGui::Button(ICON_MD_MUSIC_NOTE)) {
current_mode = EditingMode::MUSIC;
}
HOVER_HINT("Music")
TableNextColumn();
if (ImGui::Button(ICON_MD_GRID_VIEW)) {
show_tile16 = !show_tile16;
}
TableNextColumn();
if (ImGui::Button(ICON_MD_TABLE_CHART)) {
show_gfx_group = !show_gfx_group;
}
TEXT_COLUMN(ICON_MD_MORE_VERT) // Separator
TableNextColumn(); // Palette
palette_editor_.DisplayPalette(palette_, overworld_.isLoaded());
TEXT_COLUMN(ICON_MD_MORE_VERT) // Separator
TableNextColumn(); // Experimental
ImGui::Checkbox("Experimental", &show_experimental);
ImGui::EndTable();
}
if (show_experimental) {
RETURN_IF_ERROR(DrawExperimentalModal())
}
if (show_tile16) {
// Create a table in ImGui for the Tile16 Editor
ImGui::Begin("Tile16 Editor", &show_tile16);
RETURN_IF_ERROR(tile16_editor_.Update())
ImGui::End();
}
if (show_gfx_group) {
ImGui::Begin("Gfx Group Editor", &show_gfx_group);
RETURN_IF_ERROR(gfx_group_editor_.Update())
ImGui::End();
}
return absl::OkStatus();
}
// ----------------------------------------------------------------------------
void OverworldEditor::DrawOverworldMapSettings() {
if (ImGui::BeginTable(kOWMapTable.data(), 7, kOWMapFlags, ImVec2(0, 0), -1)) {
for (const auto &name : {"##1stCol", "##gfxCol", "##palCol", "##sprgfxCol",
"##sprpalCol", "##msgidCol", "##2ndCol"})
ImGui::TableSetupColumn(name);
TableNextColumn();
ImGui::SetNextItemWidth(120.f);
ImGui::Combo("##world", &current_world_, kWorldList.data(), 3);
TableNextColumn();
gui::InputHexByte(
"Gfx",
overworld_.mutable_overworld_map(current_map_)->mutable_area_graphics(),
kInputFieldSize);
TableNextColumn();
gui::InputHexByte(
"Palette",
overworld_.mutable_overworld_map(current_map_)->mutable_area_palette(),
kInputFieldSize);
TableNextColumn();
gui::InputHexByte("Spr Gfx",
overworld_.mutable_overworld_map(current_map_)
->mutable_sprite_graphics(game_state_),
kInputFieldSize);
TableNextColumn();
gui::InputHexByte("Spr Palette",
overworld_.mutable_overworld_map(current_map_)
->mutable_sprite_palette(game_state_),
kInputFieldSize);
TableNextColumn();
gui::InputHexByte(
"Msg Id",
overworld_.mutable_overworld_map(current_map_)->mutable_message_id(),
kInputFieldSize);
TableNextColumn();
ImGui::SetNextItemWidth(100.f);
ImGui::Combo("##World", &game_state_, kGamePartComboString.data(), 3);
ImGui::EndTable();
}
}
// ----------------------------------------------------------------------------
void OverworldEditor::DrawOverworldEntrances(ImVec2 canvas_p0,
ImVec2 scrolling) {
for (auto &each : overworld_.Entrances()) {
if (each.map_id_ < 0x40 + (current_world_ * 0x40) &&
each.map_id_ >= (current_world_ * 0x40)) {
ow_map_canvas_.DrawRect(each.x_, each.y_, 16, 16,
ImVec4(210, 24, 210, 150));
std::string str = absl::StrFormat("%#x", each.entrance_id_);
ow_map_canvas_.DrawText(str, each.x_ - 4, each.y_ - 2);
// Check if this entrance is being clicked and dragged
if (IsMouseHoveringOverEntrance(each, canvas_p0, scrolling) &&
ImGui::IsMouseDragging(ImGuiMouseButton_Left)) {
dragged_entrance_ = &each;
is_dragging_entrance_ = true;
if (ImGui::BeginDragDropSource()) {
ImGui::SetDragDropPayload("ENTRANCE_PAYLOAD", &each,
sizeof(zelda3::OverworldEntrance));
Text("Moving Entrance ID: %s", str.c_str());
ImGui::EndDragDropSource();
}
} else if (is_dragging_entrance_ && dragged_entrance_ == &each &&
ImGui::IsMouseReleased(ImGuiMouseButton_Left)) {
// Adjust the X and Y position of the entrance rectangle based on the
// mouse position when it is released after being dragged
const ImGuiIO &io = ImGui::GetIO();
const ImVec2 origin(canvas_p0.x + scrolling.x,
canvas_p0.y + scrolling.y);
dragged_entrance_->x_ = io.MousePos.x - origin.x - 8;
dragged_entrance_->y_ = io.MousePos.y - origin.y - 8;
is_dragging_entrance_ = false;
}
}
}
}
bool OverworldEditor::IsMouseHoveringOverEntrance(
const zelda3::OverworldEntrance &entrance, ImVec2 canvas_p0,
ImVec2 scrolling) {
// Get the mouse position relative to the canvas
const ImGuiIO &io = ImGui::GetIO();
const ImVec2 origin(canvas_p0.x + scrolling.x, canvas_p0.y + scrolling.y);
const ImVec2 mouse_pos(io.MousePos.x - origin.x, io.MousePos.y - origin.y);
// Check if the mouse is hovering over the entrance
if (mouse_pos.x >= entrance.x_ && mouse_pos.x <= entrance.x_ + 16 &&
mouse_pos.y >= entrance.y_ && mouse_pos.y <= entrance.y_ + 16) {
return true;
}
return false;
}
// ----------------------------------------------------------------------------
void OverworldEditor::DrawOverworldSprites() {
for (const auto &sprite : overworld_.Sprites(game_state_)) {
// Get the sprite's bitmap and real X and Y positions
auto id = sprite.id();
const gfx::Bitmap &sprite_bitmap = sprite_previews_[id];
int realX = sprite.GetRealX();
int realY = sprite.GetRealY();
// Draw the sprite's bitmap onto the canvas at its real X and Y positions
ow_map_canvas_.DrawBitmap(sprite_bitmap, realX, realY);
ow_map_canvas_.DrawRect(realX, realY, sprite.Width(), sprite.Height(),
ImVec4(255, 0, 0, 150));
std::string str = absl::StrFormat("%s", sprite.Name());
ow_map_canvas_.DrawText(str, realX - 4, realY - 2);
}
}
// ----------------------------------------------------------------------------
void OverworldEditor::DrawOverworldMaps() {
int xx = 0;
int yy = 0;
for (int i = 0; i < 0x40; i++) {
int world_index = i + (current_world_ * 0x40);
int map_x = (xx * 0x200 * ow_map_canvas_.global_scale());
int map_y = (yy * 0x200 * ow_map_canvas_.global_scale());
ow_map_canvas_.DrawBitmap(maps_bmp_[world_index], map_x, map_y,
ow_map_canvas_.global_scale());
xx++;
if (xx >= 8) {
yy++;
xx = 0;
}
}
}
void OverworldEditor::DrawOverworldEdits() {
auto mouse_position = ow_map_canvas_.drawn_tile_position();
auto canvas_size = ow_map_canvas_.canvas_size();
int x = mouse_position.x / canvas_size.x;
int y = mouse_position.y / canvas_size.y;
// Determine which overworld map the user is currently editing.
DetermineActiveMap(mouse_position);
// Render the updated map bitmap.
RenderUpdatedMapBitmap(mouse_position,
tile16_individual_data_[current_tile16_]);
}
void OverworldEditor::DetermineActiveMap(const ImVec2 &mouse_position) {
// Assuming each small map is 256x256 pixels (adjust as needed)
constexpr int small_map_size = 512;
// Calculate which small map the mouse is currently over
int map_x = mouse_position.x / small_map_size;
int map_y = mouse_position.y / small_map_size;
// Calculate the index of the map in the `maps_bmp_` vector
current_map_ = map_x + map_y * 8;
}
void OverworldEditor::RenderUpdatedMapBitmap(const ImVec2 &click_position,
const Bytes &tile_data) {
// Calculate the tile position relative to the current active map
constexpr int tile_size = 16; // Tile size is 16x16 pixels
// Calculate the tile index for x and y based on the click_position
int tile_index_x = (static_cast<int>(click_position.x) % 512) / tile_size;
int tile_index_y = (static_cast<int>(click_position.y) % 512) / tile_size;
// Calculate the pixel start position based on tile index and tile size
ImVec2 start_position;
start_position.x = tile_index_x * tile_size;
start_position.y = tile_index_y * tile_size;
// Get the current map's bitmap from the BitmapTable
gfx::Bitmap &current_bitmap = maps_bmp_[current_map_];
// Update the bitmap's pixel data based on the start_position and tile_data
for (int y = 0; y < tile_size; ++y) {
for (int x = 0; x < tile_size; ++x) {
int pixel_index = (start_position.y + y) * current_bitmap.width() +
(start_position.x + x);
current_bitmap.WriteToPixel(pixel_index, tile_data[y * tile_size + x]);
}
}
// Render the updated bitmap to the canvas
rom()->UpdateBitmap(&current_bitmap);
}
void OverworldEditor::SaveOverworldChanges() {
// Store the changes made by the user to the ROM (or project file)
rom()->QueueChanges([&]() {
PRINT_IF_ERROR(overworld_.SaveOverworldMaps());
if (!overworld_.CreateTile32Tilemap()) {
// overworld_.SaveMap16Tiles();
PRINT_IF_ERROR(overworld_.SaveMap32Tiles());
} else {
std::cout << "Failed to create tile32 tilemap" << std::endl;
}
});
}
void OverworldEditor::CheckForOverworldEdits() {
if (!blockset_canvas_.Points().empty()) {
// User has selected a tile they want to draw from the blockset.
int x = blockset_canvas_.Points().front().x / 32;
int y = blockset_canvas_.Points().front().y / 32;
current_tile16_ = x + (y * 8);
if (ow_map_canvas_.DrawTilePainter(tile16_individual_[current_tile16_],
16)) {
// Update the overworld map.
DrawOverworldEdits();
}
}
}
void OverworldEditor::CheckForCurrentMap() {
// DetermineActiveMap(ImGui::GetIO().MousePos);
// 4096x4096, 512x512 maps and some are larges maps 1024x1024
auto current_map_x = current_map_ % 8;
auto current_map_y = current_map_ / 8;
auto large_map_size = 1024;
auto map_size = 512;
auto mouse_position = ImGui::GetIO().MousePos;
// Assuming each small map is 256x256 pixels (adjust as needed)
constexpr int small_map_size = 512;
// Calculate which small map the mouse is currently over
int map_x = mouse_position.x / small_map_size;
int map_y = mouse_position.y / small_map_size;
// Calculate the index of the map in the `maps_bmp_` vector
current_map_ = map_x + map_y * 8;
if (overworld_.overworld_map(current_map_).IsLargeMap()) {
// Draw an outline around the current map
ow_map_canvas_.DrawOutline(current_map_x * large_map_size,
current_map_y * large_map_size, large_map_size,
large_map_size);
} else {
// Draw an outline around the current map
ow_map_canvas_.DrawOutline(current_map_x * map_size,
current_map_y * map_size, map_size, map_size);
}
static int prev_map_;
if (current_map_ != prev_map_) {
// Update the current map's tile16 blockset
// core::BuildAndRenderBitmapPipeline(
// 0x80, 0x2000, 0x80, maps_bmp_[current_map_].mutable_data(), *rom(),
// maps_bmp_[current_map_], palette_);
prev_map_ = current_map_;
}
}
// Overworld Editor canvas
// Allows the user to make changes to the overworld map.
void OverworldEditor::DrawOverworldCanvas() {
if (all_gfx_loaded_) {
DrawOverworldMapSettings();
Separator();
}
ImGui::PushStyleVar(ImGuiStyleVar_FramePadding, ImVec2(0, 0));
ImGui::PushStyleVar(ImGuiStyleVar_WindowPadding, ImVec2(0, 0));
if (ImGuiID child_id = ImGui::GetID((void *)(intptr_t)7);
ImGui::BeginChild(child_id, ImGui::GetContentRegionAvail(), true,
ImGuiWindowFlags_AlwaysVerticalScrollbar |
ImGuiWindowFlags_AlwaysHorizontalScrollbar)) {
ow_map_canvas_.DrawBackground(ImVec2(0x200 * 8, 0x200 * 8));
ImGui::PopStyleVar(2);
ow_map_canvas_.DrawContextMenu();
if (overworld_.isLoaded()) {
DrawOverworldMaps();
DrawOverworldEntrances(ow_map_canvas_.zero_point(),
ow_map_canvas_.Scrolling());
if (flags()->kDrawOverworldSprites) {
DrawOverworldSprites();
}
CheckForCurrentMap();
CheckForOverworldEdits();
}
ow_map_canvas_.DrawGrid(64.0f);
ow_map_canvas_.DrawOverlay();
}
ImGui::EndChild();
}
// Tile 8 Selector
// Displays all the individual tiles that make up a tile16.
void OverworldEditor::DrawTile8Selector() {
graphics_bin_canvas_.DrawBackground(
ImVec2(0x100 + 1, kNumSheetsToLoad * 0x40 + 1));
graphics_bin_canvas_.DrawContextMenu();
if (all_gfx_loaded_) {
// for (const auto &[key, value] : graphics_bin_) {
for (auto &[key, value] : rom()->bitmap_manager()) {
int offset = 0x40 * (key + 1);
int top_left_y = graphics_bin_canvas_.zero_point().y + 2;
if (key >= 1) {
top_left_y = graphics_bin_canvas_.zero_point().y + 0x40 * key;
}
auto texture = value.get()->texture();
graphics_bin_canvas_.GetDrawList()->AddImage(
(void *)texture,
ImVec2(graphics_bin_canvas_.zero_point().x + 2, top_left_y),
ImVec2(graphics_bin_canvas_.zero_point().x + 0x100,
graphics_bin_canvas_.zero_point().y + offset));
}
}
graphics_bin_canvas_.DrawGrid(16.0f);
graphics_bin_canvas_.DrawOverlay();
}
void OverworldEditor::DrawTileSelector() {
if (ImGui::BeginTabBar(kTileSelectorTab.data(),
ImGuiTabBarFlags_FittingPolicyScroll)) {
if (ImGui::BeginTabItem("Tile16")) {
gui::BitmapCanvasPipeline(blockset_canvas_, tile16_blockset_bmp_, 0x100,
(8192 * 2), 0x20, map_blockset_loaded_, true,
1);
ImGui::EndTabItem();
}
if (ImGui::BeginTabItem("Tile8")) {
if (ImGui::BeginChild("##tile8viewer", ImGui::GetContentRegionAvail(),
true, ImGuiWindowFlags_AlwaysVerticalScrollbar)) {
DrawTile8Selector();
}
ImGui::EndChild();
ImGui::EndTabItem();
}
if (ImGui::BeginTabItem("Area Graphics")) {
gui::BitmapCanvasPipeline(current_gfx_canvas_, current_gfx_bmp_, 256,
0x10 * 0x40, 0x20, overworld_.isLoaded(), true,
3);
ImGui::EndTabItem();
}
ImGui::EndTabBar();
}
}
// ----------------------------------------------------------------------------
absl::Status OverworldEditor::LoadGraphics() {
// Load all of the graphics data from the game.
PRINT_IF_ERROR(rom()->LoadAllGraphicsData())
graphics_bin_ = rom()->graphics_bin();
// Load the Link to the Past overworld.
RETURN_IF_ERROR(overworld_.Load(*rom()))
palette_ = overworld_.AreaPalette();
// Create the area graphics image
gui::BuildAndRenderBitmapPipeline(0x80, 0x200, 0x40,
overworld_.AreaGraphics(), *rom(),
current_gfx_bmp_, palette_);
// Create the tile16 blockset image
gui::BuildAndRenderBitmapPipeline(0x80, 0x2000, 0x80,
overworld_.Tile16Blockset(), *rom(),
tile16_blockset_bmp_, palette_);
map_blockset_loaded_ = true;
// Copy the tile16 data into individual tiles.
auto tile16_data = overworld_.Tile16Blockset();
std::cout << tile16_data.size() << std::endl;
// Loop through the tiles and copy their pixel data into separate vectors
for (int i = 0; i < 4096; i++) {
// Create a new vector for the pixel data of the current tile
Bytes tile_data(16 * 16, 0x00); // More efficient initialization
// Copy the pixel data for the current tile into the vector
for (int ty = 0; ty < 16; ty++) {
for (int tx = 0; tx < 16; tx++) {
int position = tx + (ty * 0x10);
uchar value =
tile16_data[(i % 8 * 16) + (i / 8 * 16 * 0x80) + (ty * 0x80) + tx];
tile_data[position] = value;
}
}
// Add the vector for the current tile to the vector of tile pixel data
tile16_individual_data_.push_back(tile_data);
}
// Render the bitmaps of each tile.
for (int id = 0; id < 4096; id++) {
tile16_individual_.emplace_back();
gui::BuildAndRenderBitmapPipeline(0x10, 0x10, 0x80,
tile16_individual_data_[id], *rom(),
tile16_individual_[id], palette_);
}
// Render the overworld maps loaded from the ROM.
for (int i = 0; i < zelda3::kNumOverworldMaps; ++i) {
overworld_.SetCurrentMap(i);
auto palette = overworld_.AreaPalette();
gui::BuildAndRenderBitmapPipeline(0x200, 0x200, 0x200,
overworld_.BitmapData(), *rom(),
maps_bmp_[i], palette);
}
if (flags()->kDrawOverworldSprites) {
RETURN_IF_ERROR(LoadSpriteGraphics());
}
return absl::OkStatus();
}
absl::Status OverworldEditor::LoadSpriteGraphics() {
// Render the sprites for each Overworld map
for (int i = 0; i < 3; i++)
for (auto const &sprite : overworld_.Sprites(i)) {
int width = sprite.Width();
int height = sprite.Height();
int depth = 0x40;
auto spr_gfx = sprite.PreviewGraphics();
sprite_previews_[sprite.id()].Create(width, height, depth, spr_gfx);
sprite_previews_[sprite.id()].ApplyPalette(palette_);
rom()->RenderBitmap(&(sprite_previews_[sprite.id()]));
}
return absl::OkStatus();
}
absl::Status OverworldEditor::DrawExperimentalModal() {
ImGui::Begin("Experimental", &show_experimental);
gui::TextWithSeparators("PROTOTYPE OVERWORLD TILEMAP LOADER");
Text("Please provide two files:");
Text("One based on MAPn.DAT, which represents the overworld tilemap");
Text("One based on MAPDATn.DAT, which is the tile32 configurations.");
Text("Currently, loading CGX for this component is NOT supported. ");
Text("Please load a US ROM of LTTP (JP ROM support coming soon).");
Text(
"Once you've loaded the files, you can click the button below to load "
"the tilemap into the editor");
ImGui::InputText("##TilemapFile", &ow_tilemap_filename_);
ImGui::SameLine();
gui::FileDialogPipeline(
"ImportTilemapsKey", ".DAT,.dat\0", "Tilemap Hex File", [this]() {
ow_tilemap_filename_ = ImGuiFileDialog::Instance()->GetFilePathName();
});
ImGui::InputText("##Tile32ConfigurationFile",
&tile32_configuration_filename_);
ImGui::SameLine();
gui::FileDialogPipeline("ImportTile32Key", ".DAT,.dat\0", "Tile32 Hex File",
[this]() {
tile32_configuration_filename_ =
ImGuiFileDialog::Instance()->GetFilePathName();
});
if (ImGui::Button("Load Prototype Overworld with ROM graphics")) {
RETURN_IF_ERROR(LoadGraphics())
all_gfx_loaded_ = true;
}
gui::TextWithSeparators("Configuration");
gui::InputHexShort("Tilemap File Offset (High)", &tilemap_file_offset_high_);
gui::InputHexShort("Tilemap File Offset (Low)", &tilemap_file_offset_low_);
gui::InputHexShort("LW Maps to Load", &light_maps_to_load_);
gui::InputHexShort("DW Maps to Load", &dark_maps_to_load_);
gui::InputHexShort("SP Maps to Load", &sp_maps_to_load_);
ImGui::End();
return absl::OkStatus();
}
} // namespace editor
} // namespace app
} // namespace yaze

View File

@@ -0,0 +1,195 @@
#ifndef YAZE_APP_EDITOR_OVERWORLDEDITOR_H
#define YAZE_APP_EDITOR_OVERWORLDEDITOR_H
#include <imgui/imgui.h>
#include <cmath>
#include <unordered_map>
#include "absl/container/flat_hash_map.h"
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/strings/str_format.h"
#include "app/core/common.h"
#include "app/core/editor.h"
#include "app/editor/modules/gfx_group_editor.h"
#include "app/editor/modules/palette_editor.h"
#include "app/editor/modules/tile16_editor.h"
#include "app/gfx/bitmap.h"
#include "app/gfx/snes_palette.h"
#include "app/gfx/snes_tile.h"
#include "app/gui/canvas.h"
#include "app/gui/icons.h"
#include "app/gui/pipeline.h"
#include "app/rom.h"
#include "app/zelda3/overworld.h"
namespace yaze {
namespace app {
namespace editor {
static constexpr uint k4BPP = 4;
static constexpr uint kByteSize = 3;
static constexpr uint kMessageIdSize = 5;
static constexpr uint kNumSheetsToLoad = 223;
static constexpr uint kTile8DisplayHeight = 64;
static constexpr float kInputFieldSize = 30.f;
static constexpr absl::string_view kToolsetColumnNames[] = {
"#undoTool", "#redoTool", "#drawTool", "#separator2",
"#zoomOutTool", "#zoomInTool", "#separator", "#history",
"#entranceTool", "#exitTool", "#itemTool", "#spriteTool",
"#transportTool", "#musicTool", "#separator3", "#tilemapTool"};
constexpr ImGuiTableFlags kOWMapFlags = ImGuiTableFlags_Borders;
constexpr ImGuiTableFlags kToolsetTableFlags = ImGuiTableFlags_SizingFixedFit;
constexpr ImGuiTableFlags kOWEditFlags =
ImGuiTableFlags_Resizable | ImGuiTableFlags_Reorderable |
ImGuiTableFlags_Hideable | ImGuiTableFlags_BordersOuter |
ImGuiTableFlags_BordersV;
constexpr absl::string_view kWorldList =
"Light World\0Dark World\0Extra World\0";
constexpr absl::string_view kGamePartComboString = "Part 0\0Part 1\0Part 2\0";
constexpr absl::string_view kTileSelectorTab = "##TileSelectorTabBar";
constexpr absl::string_view kOWEditTable = "##OWEditTable";
constexpr absl::string_view kOWMapTable = "#MapSettingsTable";
class OverworldEditor : public Editor,
public SharedROM,
public core::ExperimentFlags {
public:
absl::Status Update() final;
absl::Status Undo() { return absl::UnimplementedError("Undo"); }
absl::Status Redo() { return absl::UnimplementedError("Redo"); }
absl::Status Cut() { return absl::UnimplementedError("Cut"); }
absl::Status Copy() { return absl::UnimplementedError("Copy"); }
absl::Status Paste() { return absl::UnimplementedError("Paste"); }
auto overworld() { return &overworld_; }
void Shutdown() {
for (auto &bmp : tile16_individual_) {
bmp.Cleanup();
}
for (auto &[i, bmp] : maps_bmp_) {
bmp.Cleanup();
}
for (auto &[i, bmp] : graphics_bin_) {
bmp.Cleanup();
}
for (auto &[i, bmp] : current_graphics_set_) {
bmp.Cleanup();
}
}
absl::Status LoadGraphics();
private:
absl::Status DrawToolset();
void DrawOverworldMapSettings();
void DrawOverworldEntrances(ImVec2 canvas_p, ImVec2 scrolling);
void DrawOverworldMaps();
void DrawOverworldSprites();
void DrawOverworldEdits();
void RenderUpdatedMapBitmap(const ImVec2 &click_position,
const Bytes &tile_data);
void SaveOverworldChanges();
void DetermineActiveMap(const ImVec2 &mouse_position);
void CheckForOverworldEdits();
void CheckForCurrentMap();
void DrawOverworldCanvas();
void DrawTile8Selector();
void DrawTileSelector();
absl::Status LoadSpriteGraphics();
absl::Status DrawExperimentalModal();
enum class EditingMode {
DRAW_TILE,
ENTRANCES,
EXITS,
ITEMS,
SPRITES,
TRANSPORTS,
MUSIC
};
EditingMode current_mode = EditingMode::DRAW_TILE;
int current_world_ = 0;
int current_map_ = 0;
int current_tile16_ = 0;
int selected_tile_ = 0;
int game_state_ = 0;
char map_gfx_[3] = "";
char map_palette_[3] = "";
char spr_gfx_[3] = "";
char spr_palette_[3] = "";
char message_id_[5] = "";
char staticgfx[16];
uint32_t tilemap_file_offset_high_ = 0;
uint32_t tilemap_file_offset_low_ = 0;
uint32_t light_maps_to_load_ = 0x51;
uint32_t dark_maps_to_load_ = 0x2A;
uint32_t sp_maps_to_load_ = 0x07;
bool opt_enable_grid = true;
bool all_gfx_loaded_ = false;
bool map_blockset_loaded_ = false;
bool selected_tile_loaded_ = false;
bool update_selected_tile_ = true;
bool is_dragging_entrance_ = false;
bool show_tile16_editor_ = false;
bool show_gfx_group_editor_ = false;
bool IsMouseHoveringOverEntrance(const zelda3::OverworldEntrance &entrance,
ImVec2 canvas_p, ImVec2 scrolling);
zelda3::OverworldEntrance *dragged_entrance_;
bool show_experimental = false;
std::string ow_tilemap_filename_ = "";
std::string tile32_configuration_filename_ = "";
Bytes selected_tile_data_;
std::vector<Bytes> tile16_individual_data_;
std::vector<gfx::Bitmap> tile16_individual_;
std::vector<Bytes> tile8_individual_data_;
std::vector<gfx::Bitmap> tile8_individual_;
Tile16Editor tile16_editor_;
GfxGroupEditor gfx_group_editor_;
PaletteEditor palette_editor_;
zelda3::Overworld overworld_;
gui::Canvas ow_map_canvas_;
gui::Canvas current_gfx_canvas_;
gui::Canvas blockset_canvas_;
gui::Canvas graphics_bin_canvas_;
gfx::SNESPalette palette_;
gfx::Bitmap selected_tile_bmp_;
gfx::Bitmap tile16_blockset_bmp_;
gfx::Bitmap current_gfx_bmp_;
gfx::Bitmap all_gfx_bmp;
gfx::BitmapTable maps_bmp_;
gfx::BitmapTable graphics_bin_;
gfx::BitmapTable current_graphics_set_;
gfx::BitmapTable sprite_previews_;
absl::Status status_;
};
} // namespace editor
} // namespace app
} // namespace yaze
#endif

View File

@@ -0,0 +1,143 @@
#include "app/editor/screen_editor.h"
#include <imgui/imgui.h>
#include <algorithm>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include "absl/status/statusor.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
#include "app/core/common.h"
#include "app/core/constants.h"
#include "app/gfx/bitmap.h"
#include "app/gfx/snes_tile.h"
#include "app/gui/canvas.h"
#include "app/gui/icons.h"
#include "app/gui/input.h"
namespace yaze {
namespace app {
namespace editor {
ScreenEditor::ScreenEditor() { screen_canvas_.SetCanvasSize(ImVec2(512, 512)); }
void ScreenEditor::Update() {
TAB_BAR("##TabBar")
DrawInventoryMenuEditor();
DrawTitleScreenEditor();
DrawNamingScreenEditor();
DrawOverworldMapEditor();
DrawDungeonMapsEditor();
END_TAB_BAR()
}
void ScreenEditor::DrawInventoryMenuEditor() {
TAB_ITEM("Inventory Menu")
static bool create = false;
if (!create && rom()->isLoaded()) {
inventory_.Create();
palette_ = inventory_.Palette();
create = true;
}
DrawInventoryToolset();
if (ImGui::BeginTable("InventoryScreen", 3, ImGuiTableFlags_Resizable)) {
ImGui::TableSetupColumn("Canvas");
ImGui::TableSetupColumn("Tiles");
ImGui::TableSetupColumn("Palette");
ImGui::TableHeadersRow();
ImGui::TableNextColumn();
screen_canvas_.DrawBackground();
screen_canvas_.DrawContextMenu();
screen_canvas_.DrawBitmap(inventory_.Bitmap(), 2, create);
screen_canvas_.DrawGrid(32.0f);
screen_canvas_.DrawOverlay();
ImGui::TableNextColumn();
tilesheet_canvas_.DrawBackground(ImVec2(128 * 2 + 2, (192 * 2) + 4));
tilesheet_canvas_.DrawContextMenu();
tilesheet_canvas_.DrawBitmap(inventory_.Tilesheet(), 2, create);
tilesheet_canvas_.DrawGrid(16.0f);
tilesheet_canvas_.DrawOverlay();
ImGui::TableNextColumn();
gui::DisplayPalette(palette_, create);
ImGui::EndTable();
}
ImGui::Separator();
END_TAB_ITEM()
}
void ScreenEditor::DrawTitleScreenEditor() {
TAB_ITEM("Title Screen")
END_TAB_ITEM()
}
void ScreenEditor::DrawNamingScreenEditor() {
TAB_ITEM("Naming Screen")
END_TAB_ITEM()
}
void ScreenEditor::DrawOverworldMapEditor() {
TAB_ITEM("Overworld Map")
END_TAB_ITEM()
}
void ScreenEditor::DrawDungeonMapsEditor() {
TAB_ITEM("Dungeon Maps")
END_TAB_ITEM()
}
void ScreenEditor::DrawToolset() {
static bool show_bg1 = true;
static bool show_bg2 = true;
static bool show_bg3 = true;
static bool drawing_bg1 = true;
static bool drawing_bg2 = false;
static bool drawing_bg3 = false;
ImGui::Checkbox("Show BG1", &show_bg1);
ImGui::SameLine();
ImGui::Checkbox("Show BG2", &show_bg2);
ImGui::Checkbox("Draw BG1", &drawing_bg1);
ImGui::SameLine();
ImGui::Checkbox("Draw BG2", &drawing_bg2);
ImGui::SameLine();
ImGui::Checkbox("Draw BG3", &drawing_bg3);
}
void ScreenEditor::DrawInventoryToolset() {
if (ImGui::BeginTable("InventoryToolset", 8, ImGuiTableFlags_SizingFixedFit,
ImVec2(0, 0))) {
ImGui::TableSetupColumn("#drawTool");
ImGui::TableSetupColumn("#sep1");
ImGui::TableSetupColumn("#zoomOut");
ImGui::TableSetupColumn("#zoomIN");
ImGui::TableSetupColumn("#sep2");
ImGui::TableSetupColumn("#bg2Tool");
ImGui::TableSetupColumn("#bg3Tool");
ImGui::TableSetupColumn("#itemTool");
BUTTON_COLUMN(ICON_MD_UNDO)
BUTTON_COLUMN(ICON_MD_REDO)
TEXT_COLUMN(ICON_MD_MORE_VERT)
BUTTON_COLUMN(ICON_MD_ZOOM_OUT)
BUTTON_COLUMN(ICON_MD_ZOOM_IN)
TEXT_COLUMN(ICON_MD_MORE_VERT)
BUTTON_COLUMN(ICON_MD_DRAW)
BUTTON_COLUMN(ICON_MD_BUILD)
ImGui::EndTable();
}
}
} // namespace editor
} // namespace app
} // namespace yaze

View File

@@ -0,0 +1,48 @@
#ifndef YAZE_APP_EDITOR_SCREEN_EDITOR_H
#define YAZE_APP_EDITOR_SCREEN_EDITOR_H
#include <imgui/imgui.h>
#include <array>
#include "app/core/constants.h"
#include "app/gfx/bitmap.h"
#include "app/gfx/snes_palette.h"
#include "app/gfx/snes_tile.h"
#include "app/gui/canvas.h"
#include "app/gui/color.h"
#include "app/gui/icons.h"
#include "app/rom.h"
#include "app/zelda3/screen/inventory.h"
namespace yaze {
namespace app {
namespace editor {
class ScreenEditor : public SharedROM {
public:
ScreenEditor();
void Update();
private:
void DrawTitleScreenEditor();
void DrawNamingScreenEditor();
void DrawOverworldMapEditor();
void DrawDungeonMapsEditor();
void DrawInventoryMenuEditor();
void DrawToolset();
void DrawInventoryToolset();
Bytes all_gfx_;
zelda3::Inventory inventory_;
gfx::SNESPalette palette_;
gui::Canvas screen_canvas_;
gui::Canvas tilesheet_canvas_;
};
} // namespace editor
} // namespace app
} // namespace yaze
#endif

View File

@@ -0,0 +1,11 @@
#include "sprite_editor.h"
namespace yaze {
namespace app {
namespace editor {
absl::Status SpriteEditor::Update() { return absl::OkStatus(); }
} // namespace editor
} // namespace app
} // namespace yaze

View File

@@ -0,0 +1,19 @@
#ifndef YAZE_APP_EDITOR_SPRITE_EDITOR_H
#define YAZE_APP_EDITOR_SPRITE_EDITOR_H
#include "absl/status/status.h"
namespace yaze {
namespace app {
namespace editor {
class SpriteEditor {
public:
absl::Status Update();
};
} // namespace editor
} // namespace app
} // namespace yaze
#endif // YAZE_APP_EDITOR_SPRITE_EDITOR_H

139
src/app/emu/audio/apu.cc Normal file
View File

@@ -0,0 +1,139 @@
#include "app/emu/audio/apu.h"
#include <cstdint>
#include <functional>
#include <iostream>
#include <vector>
#include "app/emu/audio/dsp.h"
#include "app/emu/audio/spc700.h"
#include "app/emu/cpu/clock.h"
#include "app/emu/memory/memory.h"
namespace yaze {
namespace app {
namespace emu {
void APU::Init() {
// Set the clock frequency
clock_.SetFrequency(kApuClockSpeed);
// Initialize Digital Signal Processor Callbacks
dsp_.SetSampleFetcher([this](uint16_t address) -> uint8_t {
return this->FetchSampleFromRam(address);
});
dsp_.SetSamplePusher(
[this](int16_t sample) { this->PushToAudioBuffer(sample); });
}
void APU::Reset() {
clock_.ResetAccumulatedTime();
spc700_.Reset();
dsp_.Reset();
}
void APU::Update() {
auto cycles_to_run = clock_.GetCycleCount();
for (auto i = 0; i < cycles_to_run; ++i) {
// Update the APU
UpdateChannelSettings();
// Update the SPC700
uint8_t opcode = spc700_.read(spc700_.PC);
spc700_.ExecuteInstructions(opcode);
spc700_.PC++;
}
ProcessSamples();
}
void APU::Notify(uint32_t address, uint8_t data) {
if (address < 0x2140 || address > 0x2143) {
return;
}
auto offset = address - 0x2140;
spc700_.write(offset, data);
// HACK - This is a temporary solution to get the APU to play audio
ports_[address - 0x2140] = data;
switch (address) {
case 0x2140:
if (data == BEGIN_SIGNAL) {
SignalReady();
}
break;
case 0x2141:
// TODO: Handle data byte transfer here
break;
case 0x2142:
// TODO: Handle the setup of destination address
break;
case 0x2143:
// TODO: Handle additional communication/commands
break;
}
}
void APU::ProcessSamples() {
// Fetch sample data from AudioRam
// Iterate over all voices
for (uint8_t voice_num = 0; voice_num < 8; voice_num++) {
// Fetch the sample data for the current voice from AudioRam
uint8_t sample = FetchSampleForVoice(voice_num);
// Process the sample through DSP
int16_t processed_sample = dsp_.ProcessSample(voice_num, sample);
// Add the processed sample to the audio buffer
audio_samples_.push_back(processed_sample);
}
}
uint8_t APU::FetchSampleForVoice(uint8_t voice_num) {
uint16_t address = CalculateAddressForVoice(voice_num);
return aram_.read(address);
}
uint16_t APU::CalculateAddressForVoice(uint8_t voice_num) {
// TODO: Calculate the address for the specified voice
return voice_num;
}
int16_t APU::GetNextSample() {
if (!audio_samples_.empty()) {
int16_t sample = audio_samples_.front();
audio_samples_.erase(audio_samples_.begin());
return sample;
}
return 0; // TODO: Return the last sample instead of 0.
}
const std::vector<int16_t>& APU::GetAudioSamples() const {
return audio_samples_;
}
void APU::UpdateChannelSettings() {
// TODO: Implement this method to update the channel settings.
}
int16_t APU::GenerateSample(int channel) {
// TODO: Implement this method to generate a sample for the specified channel.
}
void APU::ApplyEnvelope(int channel) {
// TODO: Implement this method to apply an envelope to the specified channel.
}
uint8_t APU::ReadDspMemory(uint16_t address) {
return dsp_.ReadGlobalReg(address);
}
void APU::WriteDspMemory(uint16_t address, uint8_t value) {
dsp_.WriteGlobalReg(address, value);
}
} // namespace emu
} // namespace app
} // namespace yaze

137
src/app/emu/audio/apu.h Normal file
View File

@@ -0,0 +1,137 @@
#ifndef YAZE_APP_EMU_APU_H_
#define YAZE_APP_EMU_APU_H_
#include <cstdint>
#include <iostream>
#include <vector>
#include "app/emu/audio/dsp.h"
#include "app/emu/audio/spc700.h"
#include "app/emu/cpu/clock.h"
#include "app/emu/memory/memory.h"
namespace yaze {
namespace app {
namespace emu {
/**
*
* 64 kilobytes of RAM are mapped across the 16-bit memory space of the SPC-700.
* Some regions of this space are overlaid with special hardware functions.
*
* Range Note
* $0000-00EF Zero Page RAM
* $00F0-00FF Sound CPU Registers
* $0100-01FF Stack Page RAM
* $0200-FFBF RAM
* $FFC0-FFFF IPL ROM or RAM
*
* The region at $FFC0-FFFF will normally read from the 64-byte IPL ROM, but the
* underlying RAM can always be written to, and the high bit of the Control
* register $F1 can be cleared to unmap the IPL ROM and allow read access to
* this RAM.
*
*/
const int kApuClockSpeed = 1024000; // 1.024 MHz
const int apuSampleRate = 32000; // 32 KHz
const int apuClocksPerSample = 64; // 64 clocks per sample
class APU : public Observer {
public:
APU(MemoryImpl &memory, AudioRam &aram, Clock &clock)
: aram_(aram), clock_(clock), memory_(memory) {}
void Init();
void Reset();
void Update();
void Notify(uint32_t address, uint8_t data) override;
void ProcessSamples();
uint8_t FetchSampleForVoice(uint8_t voice_num);
uint16_t CalculateAddressForVoice(uint8_t voice_num);
int16_t GetNextSample();
// Called upon a reset
void Initialize() {
spc700_.Reset();
dsp_.Reset();
SignalReady();
}
// Set Port 0 = $AA and Port 1 = $BB
void SignalReady() {
memory_.WriteByte(0x2140, READY_SIGNAL_0);
memory_.WriteByte(0x2141, READY_SIGNAL_1);
}
void WriteToPort(uint8_t portNum, uint8_t value) {
ports_[portNum] = value;
switch (portNum) {
case 0:
memory_.WriteByte(0x2140, value);
break;
case 1:
memory_.WriteByte(0x2141, value);
break;
case 2:
memory_.WriteByte(0x2142, value);
break;
case 3:
memory_.WriteByte(0x2143, value);
break;
}
}
void UpdateClock(int delta_time) { clock_.UpdateClock(delta_time); }
// Method to fetch a sample from AudioRam
uint8_t FetchSampleFromRam(uint16_t address) const {
return aram_.read(address);
}
// Method to push a processed sample to the audio buffer
void PushToAudioBuffer(int16_t sample) { audio_samples_.push_back(sample); }
// Returns the audio samples for the current frame
const std::vector<int16_t> &GetAudioSamples() const;
private:
// Constants for communication
static const uint8_t READY_SIGNAL_0 = 0xAA;
static const uint8_t READY_SIGNAL_1 = 0xBB;
static const uint8_t BEGIN_SIGNAL = 0xCC;
// Port buffers (equivalent to $2140 to $2143 for the main CPU)
uint8_t ports_[4] = {0};
// Updates internal state based on APU register settings
void UpdateChannelSettings();
// Generates a sample for an audio channel
int16_t GenerateSample(int channel);
// Applies an envelope to an audio channel
void ApplyEnvelope(int channel);
// Handles DSP (Digital Signal Processor) memory reads and writes
uint8_t ReadDspMemory(uint16_t address);
void WriteDspMemory(uint16_t address, uint8_t value);
// Member variables to store internal APU state and resources
AudioRam &aram_;
Clock &clock_;
MemoryImpl &memory_;
DigitalSignalProcessor dsp_;
Spc700 spc700_{aram_};
std::vector<int16_t> audio_samples_;
std::function<void()> ready_callback_;
};
} // namespace emu
} // namespace app
} // namespace yaze
#endif

281
src/app/emu/audio/dsp.cc Normal file
View File

@@ -0,0 +1,281 @@
#include "app/emu/audio/dsp.h"
#include "app/emu/memory/memory.h"
namespace yaze {
namespace app {
namespace emu {
void DigitalSignalProcessor::Reset() {}
uint8_t DigitalSignalProcessor::ReadVoiceReg(uint8_t voice, uint8_t reg) const {
voice %= kNumVoices;
switch (reg % kNumVoiceRegs) {
case 0:
return voices_[voice].vol_left;
case 1:
return voices_[voice].vol_right;
case 2:
return voices_[voice].pitch_low;
case 3:
return voices_[voice].pitch_high;
case 4:
return voices_[voice].source_number;
case 5:
return voices_[voice].adsr1;
case 6:
return voices_[voice].adsr2;
case 7:
return voices_[voice].gain;
case 8:
return voices_[voice].envx;
case 9:
return voices_[voice].outx;
default:
return 0; // This shouldn't happen, but it's good to have a default
// case
}
}
void DigitalSignalProcessor::WriteVoiceReg(uint8_t voice, uint8_t reg, uint8_t value) {
voice %= kNumVoices;
switch (reg % kNumVoiceRegs) {
case 0:
voices_[voice].vol_left = static_cast<int8_t>(value);
break;
case 1:
voices_[voice].vol_right = static_cast<int8_t>(value);
break;
case 2:
voices_[voice].pitch_low = value;
break;
case 3:
voices_[voice].pitch_high = value;
break;
case 4:
voices_[voice].source_number = value;
break;
case 5:
voices_[voice].adsr1 = value;
break;
case 6:
voices_[voice].adsr2 = value;
break;
case 7:
voices_[voice].gain = value;
break;
// Note: envx and outx are read-only, so they don't have cases here
}
}
// Set the callbacks
void DigitalSignalProcessor::SetSampleFetcher(SampleFetcher fetcher) { sample_fetcher_ = fetcher; }
void DigitalSignalProcessor::SetSamplePusher(SamplePusher pusher) { sample_pusher_ = pusher; }
int16_t DigitalSignalProcessor::DecodeSample(uint8_t voice_num) {
Voice const& voice = voices_[voice_num];
uint16_t sample_address = voice.source_number;
// Use the callback to fetch the sample
int16_t sample = static_cast<int16_t>(sample_fetcher_(sample_address) << 8);
return sample;
}
int16_t DigitalSignalProcessor::ProcessSample(uint8_t voice_num, int16_t sample) {
Voice const& voice = voices_[voice_num];
// Adjust the pitch (for simplicity, we're just adjusting the sample value)
sample += voice.pitch_low + (voice.pitch_high << 8);
// Apply volume (separate for left and right for stereo sound)
int16_t left_sample = (sample * voice.vol_left) / 255;
int16_t right_sample = (sample * voice.vol_right) / 255;
// Combine stereo samples into a single 16-bit value
return (left_sample + right_sample) / 2;
}
void DigitalSignalProcessor::MixSamples() {
int16_t mixed_sample = 0;
for (uint8_t i = 0; i < kNumVoices; i++) {
int16_t decoded_sample = DecodeSample(i);
int16_t processed_sample = ProcessSample(i, decoded_sample);
mixed_sample += processed_sample;
}
// Clamp the mixed sample to 16-bit range
if (mixed_sample > 32767) {
mixed_sample = 32767;
} else if (mixed_sample < -32768) {
mixed_sample = -32768;
}
// Use the callback to push the mixed sample
sample_pusher_(mixed_sample);
}
void DigitalSignalProcessor::UpdateEnvelope(uint8_t voice) {
uint8_t adsr1 = ReadVoiceReg(voice, 0x05);
uint8_t adsr2 = ReadVoiceReg(voice, 0x06);
uint8_t gain = ReadVoiceReg(voice, 0x07);
uint8_t enableADSR = (adsr1 & 0x80) >> 7;
if (enableADSR) {
// Handle ADSR envelope
Voice& voice_obj = voices_[voice];
switch (voice_obj.state) {
case VoiceState::ATTACK:
// Update amplitude based on attack rate
voice_obj.current_amplitude += AttackRate(adsr1);
if (voice_obj.current_amplitude >= ENVELOPE_MAX) {
voice_obj.current_amplitude = ENVELOPE_MAX;
voice_obj.state = VoiceState::DECAY;
}
break;
case VoiceState::DECAY:
// Update amplitude based on decay rate
voice_obj.current_amplitude -= DecayRate(adsr2);
if (voice_obj.current_amplitude <= voice_obj.decay_level) {
voice_obj.current_amplitude = voice_obj.decay_level;
voice_obj.state = VoiceState::SUSTAIN;
}
break;
case VoiceState::SUSTAIN:
// Keep amplitude at the calculated decay level
voice_obj.current_amplitude = voice_obj.decay_level;
break;
case VoiceState::RELEASE:
// Update amplitude based on release rate
voice_obj.current_amplitude -= ReleaseRate(adsr2);
if (voice_obj.current_amplitude <= 0) {
voice_obj.current_amplitude = 0;
voice_obj.state = VoiceState::OFF;
}
break;
default:
break;
}
} else {
// Handle Gain envelope
// Extract mode from the gain byte
uint8_t mode = (gain & 0xE0) >> 5;
uint8_t rate = gain & 0x1F;
Voice& voice_obj = voices_[voice];
switch (mode) {
case 0: // Direct Designation
case 1:
case 2:
case 3:
voice_obj.current_amplitude =
rate << 3; // Multiplying by 8 to scale to 0-255
break;
case 6: // Increase Mode (Linear)
voice_obj.current_amplitude += gainTimings[0][rate];
if (voice_obj.current_amplitude > ENVELOPE_MAX) {
voice_obj.current_amplitude = ENVELOPE_MAX;
}
break;
case 7: // Increase Mode (Bent Line)
// Hypothetical behavior: Increase linearly at first, then increase
// more slowly You'll likely need to adjust this based on your
// specific requirements
if (voice_obj.current_amplitude < (ENVELOPE_MAX / 2)) {
voice_obj.current_amplitude += gainTimings[1][rate];
} else {
voice_obj.current_amplitude += gainTimings[1][rate] / 2;
}
if (voice_obj.current_amplitude > ENVELOPE_MAX) {
voice_obj.current_amplitude = ENVELOPE_MAX;
}
break;
case 4: // Decrease Mode (Linear)
if (voice_obj.current_amplitude < gainTimings[2][rate]) {
voice_obj.current_amplitude = 0;
} else {
voice_obj.current_amplitude -= gainTimings[2][rate];
}
break;
case 5: // Decrease Mode (Exponential)
voice_obj.current_amplitude -=
(voice_obj.current_amplitude * gainTimings[3][rate]) / ENVELOPE_MAX;
break;
default:
// Default behavior can be handled here if necessary
break;
}
}
}
void DigitalSignalProcessor::update_voice_state(uint8_t voice_num) {
if (voice_num >= kNumVoices) return;
Voice& voice = voices_[voice_num];
switch (voice.state) {
case VoiceState::OFF:
// Reset current amplitude
voice.current_amplitude = 0;
break;
case VoiceState::ATTACK:
// Increase the current amplitude at a rate defined by the ATTACK
// setting
voice.current_amplitude += AttackRate(voice.adsr1);
if (voice.current_amplitude >= ENVELOPE_MAX) {
voice.current_amplitude = ENVELOPE_MAX;
voice.state = VoiceState::DECAY;
voice.decay_level = CalculateDecayLevel(voice.adsr2);
}
break;
case VoiceState::DECAY:
// Decrease the current amplitude at a rate defined by the DECAY setting
voice.current_amplitude -= DecayRate(voice.adsr2);
if (voice.current_amplitude <= voice.decay_level) {
voice.current_amplitude = voice.decay_level;
voice.state = VoiceState::SUSTAIN;
}
break;
case VoiceState::SUSTAIN:
// Keep the current amplitude at the decay level
break;
case VoiceState::RELEASE:
// Decrease the current amplitude at a rate defined by the RELEASE
// setting
voice.current_amplitude -= ReleaseRate(voice.adsr2);
if (voice.current_amplitude == 0) {
voice.state = VoiceState::OFF;
}
break;
}
}
void DigitalSignalProcessor::process_envelope(uint8_t voice_num) {
if (voice_num >= kNumVoices) return;
Voice& voice = voices_[voice_num];
// Update the voice state first (based on keys, etc.)
update_voice_state(voice_num);
// Calculate the envelope value based on the current amplitude
voice.envx = calculate_envelope_value(voice.current_amplitude);
// Apply the envelope value to the audio output
apply_envelope_to_output(voice_num);
}
} // namespace emu
} // namespace app
} // namespace yaze

315
src/app/emu/audio/dsp.h Normal file
View File

@@ -0,0 +1,315 @@
#ifndef YAZE_APP_EMU_AUDIO_S_DSP_H
#define YAZE_APP_EMU_AUDIO_S_DSP_H
#include <cstdint>
#include <functional>
#include <vector>
#include "app/emu/memory/memory.h"
namespace yaze {
namespace app {
namespace emu {
using SampleFetcher = std::function<uint8_t(uint16_t)>;
using SamplePusher = std::function<void(int16_t)>;
/**
*
* The S-DSP is a digital signal processor generating the sound data.
*
* A DSP register can be selected with $F2, after which it can be read or
* written at $F3. Often it is useful to load the register address into A, and
* the value to send in Y, so that MOV $F2, YA can be used to do both in one
* 16-bit instruction.
*
* The DSP register address space only has 7 bits. The high bit of $F2, if set,
* will make the selected register read-only via $F3.
*
* When initializing the DSP registers for the first time, take care not to
* accidentally enable echo writeback via FLG, because it will immediately begin
* overwriting values in RAM.
*
* Voices
* There are 8 voices, numbered 0 to 7.
* Each voice X has 10 registers in the range $X0-$X9.
*
* Name Address Bits Notes
* VOL (L) $X0 SVVV VVVV Left channel volume, signed.
* VOL (R) $X1 SVVV VVVV Right channel volume, signed.
* P (L) $X2 LLLL LLLL Low 8 bits of sample pitch.
* P (H) $X3 --HH HHHH High 6 bits of sample pitch.
* SCRN $X4 SSSS SSSS Selects a sample source entry from the
* directory ADSR (1) $X5 EDDD AAAA ADSR enable (E), decay rate (D),
* attack rate (A).
* ADSR (2) $X6 SSSR RRRR Sustain level (S), release rate (R).
* GAIN $X7 0VVV VVVV 1MMV VVVV Mode (M), value (V).
* ENVX $X8 0VVV VVVV Reads current 7-bit value of ADSR/GAIN
* envelope.
* OUTX $X9 SVVV VVVV Reads signed 8-bit value of current
* sample wave multiplied by ENVX, before applying VOL.
*
*/
class DigitalSignalProcessor {
private:
static const size_t kNumVoices = 8;
static const size_t kNumVoiceRegs = 10;
static const size_t kNumGlobalRegs = 15;
enum class VoiceState { OFF, ATTACK, DECAY, SUSTAIN, RELEASE };
struct Voice {
int8_t vol_left; // x0
int8_t vol_right; // x1
uint8_t pitch_low; // x2
uint8_t pitch_high; // x3
uint8_t source_number; // x4
uint8_t adsr1; // x5
uint8_t adsr2; // x6
uint8_t gain; // x7
uint8_t envx; // x8 (read-only)
int8_t outx; // x9 (read-only)
VoiceState state = VoiceState::OFF;
uint16_t current_amplitude = 0; // Current amplitude value used for ADSR
uint16_t decay_level; // Calculated decay level based on ADSR settings
};
Voice voices_[8];
// Global DSP registers
uint8_t mvol_left; // 0C
uint8_t mvol_right; // 0D
uint8_t evol_left; // 0E
uint8_t evol_right; // 0F
uint8_t kon; // 10
uint8_t koff; // 11
uint8_t flags; // 12
uint8_t endx; // 13 (read-only)
// Global registers
std::vector<uint8_t> globalRegs = std::vector<uint8_t>(kNumGlobalRegs, 0x00);
static const uint16_t ENVELOPE_MAX = 2047; // $7FF
// Attack times in ms
const std::vector<uint32_t> attackTimes = {
4100, 2600, 1500, 1000, 640, 380, 260, 160, 96, 64, 40, 24, 16, 10, 6, 0};
// Decay times in ms
const std::vector<uint32_t> decayTimes = {1200, 740, 440, 290,
180, 110, 74, 37};
// Release times in ms
const std::vector<uint32_t> releaseTimes = {
// "Infinite" is represented by a large value, e.g., UINT32_MAX
UINT32_MAX, 38000, 28000, 24000, 19000, 14000, 12000, 9400,
7100, 5900, 4700, 3500, 2900, 2400, 1800, 1500,
1200, 880, 740, 590, 440, 370, 290, 220,
180, 150, 110, 92, 74, 55, 37, 18};
// Gain timings for decrease linear, decrease exponential, etc.
// Organized by mode: [Linear Increase, Bentline Increase, Linear Decrease,
// Exponential Decrease]
const std::vector<std::vector<uint32_t>> gainTimings = {
{UINT32_MAX, 3100, 2600, 2000, 1500, 1300, 1000, 770, 640, 510, 380,
320, 260, 190, 160, 130, 96, 80, 64, 48, 40, 32,
24, 20, 16, 12, 10, 8, 6, 4, 2},
{UINT32_MAX, 5400, 4600, 3500, 2600, 2300, 1800, 1300, 1100, 900,
670, 560, 450, 340, 280, 220, 170, 140, 110, 84,
70, 56, 42, 35, 28, 21, 18, 14, 11, 7,
/*3.5=*/3},
// Repeating the Linear Increase timings for Linear Decrease, since they
// are the same.
{UINT32_MAX, 3100, 2600, 2000, 1500, 1300, 1000, 770, 640, 510, 380,
320, 260, 190, 160, 130, 96, 80, 64, 48, 40, 32,
24, 20, 16, 12, 10, 8, 6, 4, 2},
{UINT32_MAX, 38000, 28000, 24000, 19000, 14000, 12000, 9400,
7100, 5900, 4700, 3500, 2900, 2400, 1800, 1500,
1200, 880, 740, 590, 440, 370, 290, 220,
180, 150, 110, 92, 55, 37, 18}};
// DSP Period Table
const std::vector<std::vector<uint16_t>> DigitalSignalProcessorPeriodTable = {
// ... Your DSP period table here ...
};
// DSP Period Offset
const std::vector<uint16_t> DigitalSignalProcessorPeriodOffset = {
// ... Your DSP period offsets here ...
};
uint8_t calculate_envelope_value(uint16_t amplitude) const {
// Convert the 16-bit amplitude to an 8-bit envelope value
return amplitude >> 8;
}
void apply_envelope_to_output(uint8_t voice_num) {
Voice& voice = voices_[voice_num];
// Scale the OUTX by the envelope value
// This might be a linear scaling, or more complex operations can be used
voice.outx = (voice.outx * voice.envx) / 255;
}
SampleFetcher sample_fetcher_;
SamplePusher sample_pusher_;
public:
DigitalSignalProcessor() = default;
void Reset();
void SetSampleFetcher(std::function<uint8_t(uint16_t)> fetcher);
void SetSamplePusher(std::function<void(int16_t)> pusher);
// Read a byte from a voice register
uint8_t ReadVoiceReg(uint8_t voice, uint8_t reg) const;
// Write a byte to a voice register
void WriteVoiceReg(uint8_t voice, uint8_t reg, uint8_t value);
// Read a byte from a global register
uint8_t ReadGlobalReg(uint8_t reg) const {
return globalRegs[reg % kNumGlobalRegs];
}
// Write a byte to a global register
void WriteGlobalReg(uint8_t reg, uint8_t value) {
globalRegs[reg % kNumGlobalRegs] = value;
}
int16_t DecodeSample(uint8_t voice_num);
int16_t ProcessSample(uint8_t voice_num, int16_t sample);
void MixSamples();
// Trigger a voice to start playing
void trigger_voice(uint8_t voice_num) {
if (voice_num >= kNumVoices) return;
Voice& voice = voices_[voice_num];
voice.state = VoiceState::ATTACK;
// Initialize other state management variables if needed
}
// Release a voice (e.g., note release in ADSR)
void release_voice(uint8_t voice_num) {
if (voice_num >= kNumVoices) return;
Voice& voice = voices_[voice_num];
if (voice.state != VoiceState::OFF) {
voice.state = VoiceState::RELEASE;
}
// Update other state management variables if needed
}
// Calculate envelope for a given voice
void UpdateEnvelope(uint8_t voice);
// Voice-related functions (implementations)
void set_voice_volume(int voice_num, int8_t left, int8_t right) {
voices_[voice_num].vol_left = left;
voices_[voice_num].vol_right = right;
}
void set_voice_pitch(int voice_num, uint16_t pitch) {
voices_[voice_num].pitch_low = pitch & 0xFF;
voices_[voice_num].pitch_high = (pitch >> 8) & 0xFF;
}
void set_voice_source_number(int voice_num, uint8_t srcn) {
voices_[voice_num].source_number = srcn;
}
void set_voice_adsr(int voice_num, uint8_t adsr1, uint8_t adsr2) {
voices_[voice_num].adsr1 = adsr1;
voices_[voice_num].adsr2 = adsr2;
}
void set_voice_gain(int voice_num, uint8_t gain) {
voices_[voice_num].gain = gain;
}
uint8_t read_voice_envx(int voice_num) { return voices_[voice_num].envx; }
int8_t read_voice_outx(int voice_num) { return voices_[voice_num].outx; }
// Global DSP functions
void set_master_volume(int8_t left, int8_t right) {
mvol_left = left;
mvol_right = right;
}
void set_echo_volume(int8_t left, int8_t right) {
evol_left = left;
evol_right = right;
}
void update_voice_state(uint8_t voice_num);
// Override the key_on and key_off methods to utilize the new state management
void key_on(uint8_t value) {
for (uint8_t i = 0; i < kNumVoices; i++) {
if (value & (1 << i)) {
trigger_voice(i);
}
}
}
void key_off(uint8_t value) {
for (uint8_t i = 0; i < kNumVoices; i++) {
if (value & (1 << i)) {
release_voice(i);
}
}
}
void set_flags(uint8_t value) {
flags = value;
// More logic may be needed here depending on flag behaviors
}
uint8_t read_endx() { return endx; }
uint16_t AttackRate(uint8_t adsr1) {
// Convert the ATTACK portion of adsr1 into a rate of amplitude change
// You might need to adjust this logic based on the exact ADSR
// implementation details
return (adsr1 & 0x0F) * 16; // Just a hypothetical conversion
}
uint16_t DecayRate(uint8_t adsr2) {
// Convert the DECAY portion of adsr2 into a rate of amplitude change
return ((adsr2 >> 4) & 0x07) * 8; // Hypothetical conversion
}
uint16_t ReleaseRate(uint8_t adsr2) {
// Convert the RELEASE portion of adsr2 into a rate of amplitude change
return (adsr2 & 0x0F) * 16; // Hypothetical conversion
}
uint16_t CalculateDecayLevel(uint8_t adsr2) {
// Calculate the decay level based on the SUSTAIN portion of adsr2
// This is the level the amplitude will decay to before entering the SUSTAIN
// phase Again, adjust based on your implementation details
return ((adsr2 >> 4) & 0x07) * 256; // Hypothetical conversion
}
// Envelope processing for all voices
// Goes through each voice and processes its envelope.
void process_envelopes() {
for (size_t i = 0; i < kNumVoices; ++i) {
process_envelope(i);
}
}
// Envelope processing for a specific voice
// For a given voice, update its state (ADSR), calculate the envelope value,
// and apply the envelope to the audio output.
void process_envelope(uint8_t voice_num);
};
} // namespace emu
} // namespace app
} // namespace yaze
#endif // YAZE_APP_EMU_AUDIO_S_DSP_H

View File

@@ -0,0 +1,94 @@
#include "app/emu/audio/spc700.h"
namespace yaze {
namespace app {
namespace emu {
// Immediate
uint8_t Spc700::imm() {
PC++;
return read(PC);
}
// Direct page
uint8_t Spc700::dp() {
PC++;
uint8_t offset = read(PC);
return read((PSW.P << 8) + offset);
}
uint8_t& Spc700::mutable_dp() {
PC++;
uint8_t offset = read(PC);
return mutable_read((PSW.P << 8) + offset);
}
uint8_t Spc700::get_dp_addr() {
PC++;
uint8_t offset = read(PC);
return (PSW.P << 8) + offset;
}
// Direct page indexed by X
uint8_t Spc700::dp_plus_x() {
PC++;
uint8_t offset = read(PC);
return read((PSW.P << 8) + offset + X);
}
// Direct page indexed by Y
uint8_t Spc700::dp_plus_y() {
PC++;
uint8_t offset = read(PC);
return read((PSW.P << 8) + offset + Y);
}
// Indexed indirect (add index before 16-bit lookup).
uint16_t Spc700::dp_plus_x_indirect() {
PC++;
uint16_t addr = read_16(PC + X);
return addr;
}
// Indirect indexed (add index after 16-bit lookup).
uint16_t Spc700::dp_indirect_plus_y() {
PC++;
uint16_t offset = read_16(PC);
return offset + Y;
}
uint16_t Spc700::abs() {
PC++;
uint16_t addr = read(PC) | (read(PC) << 8);
return addr;
}
int8_t Spc700::rel() {
PC++;
return static_cast<int8_t>(read(PC));
}
uint8_t Spc700::i() { return read((PSW.P << 8) + X); }
uint8_t Spc700::i_postinc() {
uint8_t value = read((PSW.P << 8) + X);
X++;
return value;
}
uint16_t Spc700::addr_plus_i() {
PC++;
uint16_t addr = read(PC) | (read(PC) << 8);
return read(addr) + X;
}
uint16_t Spc700::addr_plus_i_indexed() {
PC++;
uint16_t addr = read(PC) | (read(PC) << 8);
addr += X;
return read(addr) | (read(addr + 1) << 8);
}
} // namespace emu
} // namespace app
} // namespace yaze

View File

@@ -0,0 +1,361 @@
#include "app/emu/audio/spc700.h"
namespace yaze {
namespace app {
namespace emu {
void Spc700::MOV(uint8_t& dest, uint8_t operand) {
dest = operand;
PSW.Z = (operand == 0);
PSW.N = (operand & 0x80);
}
void Spc700::MOV_ADDR(uint16_t address, uint8_t operand) {
write(address, operand);
PSW.Z = (operand == 0);
PSW.N = (operand & 0x80);
}
void Spc700::ADC(uint8_t& dest, uint8_t operand) {
uint16_t result = dest + operand + PSW.C;
PSW.V = ((A ^ result) & (operand ^ result) & 0x80);
PSW.C = (result > 0xFF);
PSW.Z = ((result & 0xFF) == 0);
PSW.N = (result & 0x80);
PSW.H = ((A ^ operand ^ result) & 0x10);
dest = result & 0xFF;
}
void Spc700::SBC(uint8_t& dest, uint8_t operand) {
uint16_t result = dest - operand - (1 - PSW.C);
PSW.V = ((dest ^ result) & (dest ^ operand) & 0x80);
PSW.C = (result < 0x100);
PSW.Z = ((result & 0xFF) == 0);
PSW.N = (result & 0x80);
PSW.H = ((dest ^ operand ^ result) & 0x10);
dest = result & 0xFF;
}
void Spc700::CMP(uint8_t& dest, uint8_t operand) {
uint16_t result = dest - operand;
PSW.C = (result < 0x100);
PSW.Z = ((result & 0xFF) == 0);
PSW.N = (result & 0x80);
}
void Spc700::AND(uint8_t& dest, uint8_t operand) {
dest &= operand;
PSW.Z = (dest == 0);
PSW.N = (dest & 0x80);
}
void Spc700::OR(uint8_t& dest, uint8_t operand) {
dest |= operand;
PSW.Z = (dest == 0);
PSW.N = (dest & 0x80);
}
void Spc700::EOR(uint8_t& dest, uint8_t operand) {
dest ^= operand;
PSW.Z = (dest == 0);
PSW.N = (dest & 0x80);
}
void Spc700::ASL(uint8_t operand) {
PSW.C = (operand & 0x80);
operand <<= 1;
PSW.Z = (operand == 0);
PSW.N = (operand & 0x80);
// A = value;
}
void Spc700::LSR(uint8_t& operand) {
PSW.C = (operand & 0x01);
operand >>= 1;
PSW.Z = (operand == 0);
PSW.N = (operand & 0x80);
}
void Spc700::ROL(uint8_t operand, bool isImmediate) {
uint8_t value = isImmediate ? imm() : operand;
uint8_t carry = PSW.C;
PSW.C = (value & 0x80);
value <<= 1;
value |= carry;
PSW.Z = (value == 0);
PSW.N = (value & 0x80);
// operand = value;
}
void Spc700::XCN(uint8_t operand, bool isImmediate) {
uint8_t value = isImmediate ? imm() : operand;
value = ((value & 0xF0) >> 4) | ((value & 0x0F) << 4);
PSW.Z = (value == 0);
PSW.N = (value & 0x80);
// operand = value;
}
void Spc700::INC(uint8_t& operand) {
operand++;
PSW.Z = (operand == 0);
PSW.N = (operand & 0x80);
}
void Spc700::DEC(uint8_t& operand) {
operand--;
PSW.Z = (operand == 0);
PSW.N = (operand & 0x80);
}
void Spc700::MOVW(uint16_t& dest, uint16_t operand) {
dest = operand;
PSW.Z = (operand == 0);
PSW.N = (operand & 0x8000);
}
void Spc700::INCW(uint16_t& operand) {
operand++;
PSW.Z = (operand == 0);
PSW.N = (operand & 0x8000);
}
void Spc700::DECW(uint16_t& operand) {
operand--;
PSW.Z = (operand == 0);
PSW.N = (operand & 0x8000);
}
void Spc700::ADDW(uint16_t& dest, uint16_t operand) {
uint32_t result = dest + operand;
PSW.C = (result > 0xFFFF);
PSW.Z = ((result & 0xFFFF) == 0);
PSW.N = (result & 0x8000);
PSW.V = ((dest ^ result) & (operand ^ result) & 0x8000);
dest = result & 0xFFFF;
}
void Spc700::SUBW(uint16_t& dest, uint16_t operand) {
uint32_t result = dest - operand;
PSW.C = (result < 0x10000);
PSW.Z = ((result & 0xFFFF) == 0);
PSW.N = (result & 0x8000);
PSW.V = ((dest ^ result) & (dest ^ operand) & 0x8000);
dest = result & 0xFFFF;
}
void Spc700::CMPW(uint16_t operand) {
uint32_t result = YA - operand;
PSW.C = (result < 0x10000);
PSW.Z = ((result & 0xFFFF) == 0);
PSW.N = (result & 0x8000);
}
void Spc700::MUL(uint8_t operand) {
uint16_t result = A * operand;
YA = result;
PSW.Z = (result == 0);
PSW.N = (result & 0x8000);
}
void Spc700::DIV(uint8_t operand) {
if (operand == 0) {
// Handle divide by zero error
return;
}
uint8_t quotient = A / operand;
uint8_t remainder = A % operand;
A = quotient;
Y = remainder;
PSW.Z = (quotient == 0);
PSW.N = (quotient & 0x80);
}
void Spc700::BRA(int8_t offset) { PC += offset; }
void Spc700::BEQ(int8_t offset) {
if (PSW.Z) {
PC += offset;
}
}
void Spc700::BNE(int8_t offset) {
if (!PSW.Z) {
PC += offset;
}
}
void Spc700::BCS(int8_t offset) {
if (PSW.C) {
PC += offset;
}
}
void Spc700::BCC(int8_t offset) {
if (!PSW.C) {
PC += offset;
}
}
void Spc700::BVS(int8_t offset) {
if (PSW.V) {
PC += offset;
}
}
void Spc700::BVC(int8_t offset) {
if (!PSW.V) {
PC += offset;
}
}
void Spc700::BMI(int8_t offset) {
if (PSW.N) {
PC += offset;
}
}
void Spc700::BPL(int8_t offset) {
if (!PSW.N) {
PC += offset;
}
}
void Spc700::BBS(uint8_t bit, uint8_t operand) {
if (operand & (1 << bit)) {
PC += rel();
}
}
void Spc700::BBC(uint8_t bit, uint8_t operand) {
if (!(operand & (1 << bit))) {
PC += rel();
}
}
// CBNE DBNZ
// JMP
void Spc700::JMP(uint16_t address) { PC = address; }
void Spc700::CALL(uint16_t address) {
uint16_t return_address = PC + 2;
write(SP, return_address & 0xFF);
write(SP - 1, (return_address >> 8) & 0xFF);
SP -= 2;
PC = address;
}
void Spc700::PCALL(uint8_t offset) {
uint16_t return_address = PC + 2;
write(SP, return_address & 0xFF);
write(SP - 1, (return_address >> 8) & 0xFF);
SP -= 2;
PC += offset;
}
void Spc700::TCALL(uint8_t offset) {
uint16_t return_address = PC + 2;
write(SP, return_address & 0xFF);
write(SP - 1, (return_address >> 8) & 0xFF);
SP -= 2;
PC = 0xFFDE + offset;
}
void Spc700::BRK() {
uint16_t return_address = PC + 2;
write(SP, return_address & 0xFF);
write(SP - 1, (return_address >> 8) & 0xFF);
SP -= 2;
PC = 0xFFDE;
}
void Spc700::RET() {
uint16_t return_address = read(SP) | (read(SP + 1) << 8);
SP += 2;
PC = return_address;
}
void Spc700::RETI() {
uint16_t return_address = read(SP) | (read(SP + 1) << 8);
SP += 2;
PC = return_address;
PSW.I = 1;
}
void Spc700::PUSH(uint8_t operand) {
write(SP, operand);
SP--;
}
void Spc700::POP(uint8_t& operand) {
SP++;
operand = read(SP);
}
void Spc700::SET1(uint8_t bit, uint8_t& operand) { operand |= (1 << bit); }
void Spc700::CLR1(uint8_t bit, uint8_t& operand) { operand &= ~(1 << bit); }
void Spc700::TSET1(uint8_t bit, uint8_t& operand) {
PSW.C = (operand & (1 << bit));
operand |= (1 << bit);
}
void Spc700::TCLR1(uint8_t bit, uint8_t& operand) {
PSW.C = (operand & (1 << bit));
operand &= ~(1 << bit);
}
void Spc700::AND1(uint8_t bit, uint8_t& operand) {
operand &= (1 << bit);
PSW.Z = (operand == 0);
PSW.N = (operand & 0x80);
}
void Spc700::OR1(uint8_t bit, uint8_t& operand) {
operand |= (1 << bit);
PSW.Z = (operand == 0);
PSW.N = (operand & 0x80);
}
void Spc700::EOR1(uint8_t bit, uint8_t& operand) {
operand ^= (1 << bit);
PSW.Z = (operand == 0);
PSW.N = (operand & 0x80);
}
void Spc700::NOT1(uint8_t bit, uint8_t& operand) {
operand ^= (1 << bit);
PSW.Z = (operand == 0);
PSW.N = (operand & 0x80);
}
void Spc700::MOV1(uint8_t bit, uint8_t& operand) {
PSW.C = (operand & (1 << bit));
operand |= (1 << bit);
}
void Spc700::CLRC() { PSW.C = 0; }
void Spc700::SETC() { PSW.C = 1; }
void Spc700::NOTC() { PSW.C = !PSW.C; }
void Spc700::CLRV() { PSW.V = 0; }
void Spc700::CLRP() { PSW.P = 0; }
void Spc700::SETP() { PSW.P = 1; }
void Spc700::EI() { PSW.I = 1; }
void Spc700::DI() { PSW.I = 0; }
void Spc700::NOP() { PC++; }
void Spc700::SLEEP() {}
void Spc700::STOP() {}
} // namespace emu
} // namespace app
} // namespace yaze

View File

@@ -0,0 +1,263 @@
#pragma once
#include <cstdint>
#include <string>
#include <unordered_map>
const std::unordered_map<uint8_t, std::string> spc_opcode_map = {
{0x00, "NOP"},
{0x01, "TCALL0"},
{0x02, "SET1 direct.0"},
{0x03, "BBS direct.0,rel"},
{0x04, "OR A,direct"},
{0x05, "OR A,abs"},
{0x06, "OR A,(X)"},
{0x07, "OR A,(direct+X)"},
{0x08, "OR A,#imm"},
{0x09, "OR direct,imm"},
{0x0A, "OR1 C,membit"},
{0x0B, "ASL direct"},
{0x0C, "ASL abs"},
{0x0D, "PUSH PSW"},
{0x0E, "TSET1 abs"},
{0x0F, "BRK"},
{0x10, "BPL rel"},
{0x11, "TCALL1"},
{0x12, "CLR1 direct.0"},
{0x13, "BBC direct.0,rel"},
{0x14, "OR A,direct+X"},
{0x15, "OR A,abs+X"},
{0x16, "OR A,abs+Y"},
{0x17, "OR A,(direct)+Y"},
{0x18, "OR direct,direct"},
{0x19, "OR (X),(Y)"},
{0x1A, "DECW direct"},
{0x1B, "ASL direct+X"},
{0x1C, "ASL A"},
{0x1D, "DEC X"},
{0x1E, "CMP X,abs"},
{0x1F, "JMP (abs+X)"},
{0x20, "CLRP"},
{0x21, "TCALL2"},
{0x22, "SET1 direct.1"},
{0x23, "BBS direct.1,rel"},
{0x24, "AND A,direct"},
{0x25, "AND A,abs"},
{0x26, "AND A,(X)"},
{0x27, "AND A,(direct+X)"},
{0x28, "AND A,#imm"},
{0x29, "AND direct,imm"},
{0x2A, "OR1 C,/membit"},
{0x2B, "ROL direct"},
{0x2C, "ROL abs"},
{0x2D, "PUSH A"},
{0x2E, "CBNE direct,rel"},
{0x2F, "BRA rel"},
{0x30, "BMI rel"},
{0x31, "TCALL3"},
{0x32, "CLR1 direct.1"},
{0x33, "BBC direct.1,rel"},
{0x34, "AND A,direct+X"},
{0x35, "AND A,abs+X"},
{0x36, "AND A,abs+Y"},
{0x37, "AND A,(direct)+Y"},
{0x38, "AND direct,direct"},
{0x39, "AND (X),(Y)"},
{0x3A, "INCW direct"},
{0x3B, "ROL direct+X"},
{0x3C, "ROL A"},
{0x3D, "INC X"},
{0x3E, "CMP X,direct"},
{0x3F, "CALL abs"},
{0x40, "SETP"},
{0x41, "TCALL4"},
{0x42, "SET1 direct.2"},
{0x43, "BBS direct.2,rel"},
{0x44, "EOR A,direct"},
{0x45, "EOR A,abs"},
{0x46, "EOR A,(X)"},
{0x47, "EOR A,(direct+X)"},
{0x48, "EOR A,#imm"},
{0x49, "EOR direct,imm"},
{0x4A, "AND1 C,membit"},
{0x4B, "LSR direct"},
{0x4C, "LSR abs"},
{0x4D, "PUSH X"},
{0x4E, "TCLR1 abs"},
{0x4F, "PCALL addr"},
{0x50, "BVC rel"},
{0x51, "TCALL5"},
{0x52, "CLR1 direct.2"},
{0x53, "BBC direct.2,rel"},
{0x54, "EOR A,direct+X"},
{0x55, "EOR A,abs+X"},
{0x56, "EOR A,abs+Y"},
{0x57, "EOR A,(direct)+Y"},
{0x58, "EOR direct,direct"},
{0x59, "EOR (X),(Y)"},
{0x5A, "CMPW YA,direct"},
{0x5B, "LSR direct+X"},
{0x5C, "LSR A"},
{0x5D, "MOV X,A"},
{0x5E, "CMP Y,abs"},
{0x5F, "JMP abs"},
{0x60, "CLRC"},
{0x61, "TCALL6"},
{0x62, "SET1 direct.3"},
{0x63, "BBS direct.3,rel"},
{0x64, "CMP A,direct"},
{0x65, "CMP A,abs"},
{0x66, "CMP A,(X)"},
{0x67, "CMP A,(direct+X)"},
{0x68, "CMP A,#imm"},
{0x69, "CMP direct,imm"},
{0x6A, "AND1 C,/membit"},
{0x6B, "ROR direct"},
{0x6C, "ROR abs"},
{0x6D, "PUSH Y"},
{0x6E, "DBNZ direct,rel"},
{0x6F, "RET"},
{0x70, "BVS rel"},
{0x71, "TCALL7"},
{0x72, "CLR1 direct.3"},
{0x73, "BBC direct.3,rel"},
{0x74, "CMP A,direct+X"},
{0x75, "CMP A,abs+X"},
{0x76, "CMP A,abs+Y"},
{0x77, "CMP A,(direct)+Y"},
{0x78, "CMP direct,direct"},
{0x79, "CMP (X),(Y)"},
{0x7A, "ADDW YA,direct"},
{0x7B, "ROR direct+X"},
{0x7C, "ROR A"},
{0x7D, "MOV A,X"},
{0x7E, "CMP Y,direct"},
{0x7F, "RETI"},
{0x80, "SETC"},
{0x81, "TCALL8"},
{0x82, "SET1 direct.4"},
{0x83, "BBS direct.4,rel"},
{0x84, "ADC A,direct"},
{0x85, "ADC A,abs"},
{0x86, "ADC A,(X)"},
{0x87, "ADC A,(direct+X)"},
{0x88, "ADC A,#imm"},
{0x89, "ADC direct,imm"},
{0x8A, "EOR1 C,membit"},
{0x8B, "DEC direct"},
{0x8C, "DEC abs"},
{0x8D, "MOV Y,#imm"},
{0x8E, "POP PSW"},
{0x8F, "MOV direct,#imm"},
{0x90, "BCC rel"},
{0x91, "TCALL9"},
{0x92, "CLR1 direct.4"},
{0x93, "BBC direct.4,rel"},
{0x94, "ADC A,direct+X"},
{0x95, "ADC A,abs+X"},
{0x96, "ADC A,abs+Y"},
{0x97, "ADC A,(direct)+Y"},
{0x98, "ADC direct,direct"},
{0x99, "ADC (X),(Y)"},
{0x9A, "SUBW YA,direct"},
{0x9B, "DEC direct+X"},
{0x9C, "DEC A"},
{0x9D, "MOV X,SP"},
{0x9E, "DIV YA,X"},
{0x9F, "XCN A"},
{0xA0, "EI"},
{0xA1, "TCALL10"},
{0xA2, "SET1 direct.5"},
{0xA3, "BBS direct.5,rel"},
{0xA4, "SBC A,direct"},
{0xA5, "SBC A,abs"},
{0xA6, "SBC A,(X)"},
{0xA7, "SBC A,(direct+X)"},
{0xA8, "SBC A,#imm"},
{0xA9, "SBC direct,imm"},
{0xAA, "MOV1 C,membit"},
{0xAB, "INC direct"},
{0xAC, "INC abs"},
{0xAD, "CMP Y,#imm"},
{0xAE, "POP A"},
{0xAF, "MOV (X)+,A"},
{0xB0, "BCS rel"},
{0xB1, "TCALL11"},
{0xB2, "CLR1 direct.5"},
{0xB3, "BBC direct.5,rel"},
{0xB4, "SBC A,direct+X"},
{0xB5, "SBC A,abs+X"},
{0xB6, "SBC A,abs+Y"},
{0xB7, "SBC A,(direct)+Y"},
{0xB8, "SBC direct,direct"},
{0xB9, "SBC (X),(Y)"},
{0xBA, "MOVW YA,direct"},
{0xBB, "INC direct+X"},
{0xBC, "INC A"},
{0xBD, "MOV SP,X"},
{0xBE, "DAS"},
{0xBF, "MOV A,(X)+"},
{0xC0, "DI"},
{0xC1, "TCALL12"},
{0xC2, "SET1 direct.6"},
{0xC3, "BBS direct.6,rel"},
{0xC4, "MOV direct,A"},
{0xC5, "MOV abs,A"},
{0xC6, "MOV (X),A"},
{0xC7, "MOV (direct+X),A"},
{0xC8, "CMP X,#imm"},
{0xC9, "MOV abs,X"},
{0xCA, "MOV1 membit,C"},
{0xCB, "MOV direct,Y"},
{0xCC, "MOV abs,Y"},
{0xCD, "MOV X,#imm"},
{0xCE, "POP X"},
{0xCF, "MUL YA"},
{0xD0, "BNE rel"},
{0xD1, "TCALL13"},
{0xD2, "CLR1 direct.6"},
{0xD3, "BBC direct.6,rel"},
{0xD4, "MOV direct+X,A"},
{0xD5, "MOV abs+X,A"},
{0xD6, "MOV abs+Y,A"},
{0xD7, "MOV (direct)+Y,A"},
{0xD8, "MOV direct,X"},
{0xD9, "MOV direct+Y,X"},
{0xDA, "MOVW direct,YA"},
{0xDB, "MOV direct+X,Y"},
{0xDC, "DEC Y"},
{0xDD, "MOV A,Y"},
{0xDE, "CBNE direct+X,rel"},
{0xDF, "DAA"},
{0xE0, "CLRV"},
{0xE1, "TCALL14"},
{0xE2, "SET1 direct.7"},
{0xE3, "BBS direct.7,rel"},
{0xE4, "MOV A,direct"},
{0xE5, "MOV A,abs"},
{0xE6, "MOV A,(X)"},
{0xE7, "MOV A,(direct+X)"},
{0xE8, "MOV A,#imm"},
{0xE9, "MOV X,abs"},
{0xEA, "NOT1 membit"},
{0xEB, "MOV Y,direct"},
{0xEC, "MOV Y,abs"},
{0xED, "NOTC"},
{0xEE, "POP Y"},
{0xEF, "SLEEP"},
{0xF0, "BEQ rel"},
{0xF1, "TCALL15"},
{0xF2, "CLR1 direct.7"},
{0xF3, "BBC direct.7,rel"},
{0xF4, "MOV A,direct+X"},
{0xF5, "MOV A,abs+X"},
{0xF6, "MOV A,abs+Y"},
{0xF7, "MOV A,(direct)+Y"},
{0xF8, "MOV X,direct"},
{0xF9, "MOV X,direct+Y"},
{0xFA, "MOV direct,S"},
{0xFB, "MOV Y,direct+X"},
{0xFC, "INC Y"},
{0xFD, "MOV Y,A"},
{0xFE, "DBNZ Y,rel"},
{0xFF, "STOP"}};

957
src/app/emu/audio/spc700.cc Normal file
View File

@@ -0,0 +1,957 @@
#include "app/emu/audio/spc700.h"
#include <iomanip>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include "app/emu/audio/internal/opcodes.h"
namespace yaze {
namespace app {
namespace emu {
void Spc700::Reset() {
PC = 0;
A = 0;
X = 0;
Y = 0;
SP = 0xFF;
PSW = ByteToFlags(0x00);
aram_.reset();
}
void Spc700::BootIplRom() {
PC = 0xFFC0;
A = 0;
X = 0;
Y = 0;
int i = 0;
while (PC != 0xFFC0 + 0x3F) {
uint8_t opcode = read(PC);
ExecuteInstructions(opcode);
PC++;
i++;
if (i > 1000) {
break;
}
}
}
void Spc700::ExecuteInstructions(uint8_t opcode) {
uint16_t initialPC = PC;
switch (opcode) {
// 8-bit Move Memory to Register
case 0xE8: // MOV A, #imm
{
MOV(A, imm());
break;
}
case 0xE6: // MOV A, (X)
{
MOV(A, X);
break;
}
case 0xBF: // MOV A, (X)+
{
MOV(A, X);
X++;
break;
}
case 0xE4: // MOV A, dp
{
MOV(A, dp());
break;
}
case 0xF4: // MOV A, dp+X
{
MOV(A, dp_plus_x());
break;
}
case 0xE5: // MOV A, !abs
{
MOV(A, read(abs()));
break;
}
case 0xF5: // MOV A, !abs+X
{
MOV(A, abs() + X);
break;
}
case 0xF6: // MOV A, !abs+Y
{
MOV(A, abs() + Y);
break;
}
case 0xE7: // MOV A, [dp+X]
{
MOV(A, read(dp_plus_x_indirect()));
break;
}
case 0xF7: // MOV A, [dp]+Y
{
MOV(A, read(dp_indirect_plus_y()));
break;
}
case 0xCD: // MOV X, #imm
{
MOV(X, imm());
break;
}
case 0xF8: // MOV X, dp
{
MOV(X, dp());
break;
}
case 0xF9: // MOV X, dp+Y
{
MOV(X, dp_plus_y());
break;
}
case 0xE9: // MOV X, !abs
{
MOV(X, abs());
break;
}
case 0x8D: // MOV Y, #imm
{
MOV(Y, imm());
break;
}
case 0xEB: // MOV Y, dp
{
MOV(Y, dp());
break;
}
case 0xFB: // MOV Y, dp+X
{
MOV(Y, dp_plus_x());
break;
}
case 0xEC: // MOV Y, !abs
{
MOV(Y, abs());
break;
}
// 8-bit move register to memory
case 0xC6: // MOV (X), A
{
MOV_ADDR(X, A);
break;
}
case 0xAF: // MOV (X)+, A
{
MOV_ADDR(X, A);
break;
}
case 0xC4: // MOV dp, A
{
MOV_ADDR(get_dp_addr(), A);
break;
}
case 0xD4: // MOV dp+X, A
{
MOV_ADDR(get_dp_addr() + X, A);
break;
}
case 0xC5: // MOV !abs, A
{
MOV_ADDR(abs(), A);
break;
}
case 0xD5: // MOV !abs+X, A
{
MOV_ADDR(abs() + X, A);
break;
}
case 0xD6: // MOV !abs+Y, A
{
MOV_ADDR(abs() + Y, A);
break;
}
case 0xC7: // MOV [dp+X], A
{
MOV_ADDR(dp_plus_x_indirect(), A);
break;
}
case 0xD7: // MOV [dp]+Y, A
{
MOV_ADDR(dp_indirect_plus_y(), A);
break;
}
case 0xD8: // MOV dp, X
{
MOV_ADDR(get_dp_addr(), X);
break;
}
case 0xD9: // MOV dp+Y, X
{
MOV_ADDR(get_dp_addr() + Y, X);
break;
}
case 0xC9: // MOV !abs, X
{
MOV_ADDR(abs(), X);
break;
}
case 0xCB: // MOV dp, Y
{
MOV_ADDR(get_dp_addr(), Y);
break;
}
case 0xDB: // MOV dp+X, Y
{
MOV_ADDR(get_dp_addr() + X, Y);
break;
}
case 0xCC: // MOV !abs, Y
{
MOV_ADDR(abs(), Y);
break;
}
// . 8-bit move register to register / special direct page moves
case 0x7D: // MOV A, X
{
MOV(A, X);
break;
}
case 0xDD: // MOV A, Y
{
MOV(A, Y);
break;
}
case 0x5D: // MOV X, A
{
MOV(X, A);
break;
}
case 0xFD: // MOV Y, A
{
MOV(Y, A);
break;
}
case 0x9D: // MOV X, SP
{
MOV(X, SP);
break;
}
case 0xBD: // MOV SP, X
{
MOV(SP, X);
break;
}
case 0xFA: // MOV dp, dp
{
MOV_ADDR(get_dp_addr(), dp());
break;
}
case 0x8F: // MOV dp, #imm
{
MOV_ADDR(get_dp_addr(), imm());
break;
}
// . 8-bit arithmetic
case 0x88: // ADC A, #imm
{
ADC(A, imm());
break;
}
case 0x86: // ADC A, (X)
{
ADC(A, X);
break;
}
case 0x84: // ADC A, dp
{
ADC(A, dp());
break;
}
case 0x94: // ADC A, dp+X
{
ADC(A, dp_plus_x());
break;
}
case 0x85: // ADC A, !abs
{
ADC(A, abs());
break;
}
case 0x95: // ADC A, !abs+X
{
ADC(A, abs() + X);
break;
}
case 0x96: // ADC A, !abs+Y
{
ADC(A, abs() + Y);
break;
}
case 0x87: // ADC A, [dp+X]
{
ADC(A, dp_plus_x_indirect());
break;
}
case 0x97: // ADC A, [dp]+Y
{
ADC(A, dp_indirect_plus_y());
break;
}
case 0x99: // ADC (X), (Y)
break;
case 0x89: // ADC dp, dp
{
ADC(mutable_dp(), dp());
break;
}
case 0x98: // ADC dp, #imm
{
ADC(mutable_dp(), imm());
break;
}
case 0xA8: // SBC A, #imm
{
SBC(A, imm());
break;
}
case 0xA6: // SBC A, (X)
{
SBC(A, mutable_read(X));
break;
}
case 0xA4: // SBC A, dp
{
SBC(A, dp());
break;
}
case 0xB4: // SBC A, dp+X
{
SBC(A, dp_plus_x());
break;
}
case 0xA5: // SBC A, !abs
{
SBC(A, abs());
break;
}
case 0xB5: // SBC A, !abs+X
{
SBC(A, abs() + X);
break;
}
case 0xB6: // SBC A, !abs+Y
{
SBC(A, abs() + Y);
break;
}
case 0xA7: // SBC A, [dp+X]
{
SBC(A, dp_plus_x_indirect());
break;
}
case 0xB7: // SBC A, [dp]+Y
{
SBC(A, dp_indirect_plus_y());
break;
}
case 0xB9: // SBC (X), (Y)
{
SBC(mutable_read(X), mutable_read(Y));
break;
}
case 0xA9: // SBC dp, dp
{
SBC(mutable_dp(), dp());
break;
}
case 0xB8: // SBC dp, #imm
{
SBC(mutable_dp(), imm());
break;
}
case 0x68: // CMP A, #imm
{
CMP(A, imm());
break;
}
case 0x66: // CMP A, (X)
{
CMP(A, read(X));
break;
}
case 0x64: // CMP A, dp
{
CMP(A, dp());
break;
}
case 0x74: // CMP A, dp+X
{
CMP(A, dp_plus_x());
break;
}
case 0x65: // CMP A, !abs
{
CMP(A, abs());
break;
}
case 0x75: // CMP A, !abs+X
{
CMP(A, abs() + X);
break;
}
case 0x76: // CMP A, !abs+Y
{
CMP(A, abs() + Y);
break;
}
case 0x67: // CMP A, [dp+X]
break;
case 0x77: // CMP A, [dp]+Y
break;
case 0x79: // CMP (X), (Y)
break;
case 0x69: // CMP dp, dp
{
CMP(mutable_dp(), dp());
break;
}
case 0x78: // CMP dp, #imm
{
CMP(mutable_dp(), imm());
break;
}
case 0xC8: // CMP X, #imm
{
CMP(X, imm());
break;
}
case 0x3E: // CMP X, dp
{
CMP(X, dp());
break;
}
case 0x1E: // CMP X, !abs
{
CMP(X, abs());
break;
}
case 0xAD: // CMP Y, #imm
{
CMP(Y, imm());
break;
}
case 0x7E: // CMP Y, dp
{
CMP(Y, dp());
break;
}
case 0x5E: // CMP Y, !abs
{
CMP(Y, abs());
break;
}
// 8-bit boolean logic
case 0x28: // AND A, #imm
{
AND(A, imm());
break;
}
case 0x26: // AND A, (X)
{
AND(A, mutable_read(X));
break;
}
case 0x24: // AND A, dp
{
AND(A, dp());
break;
}
case 0x34: // AND A, dp+X
{
AND(A, dp_plus_x());
break;
}
case 0x25: // AND A, !abs
{
AND(A, abs());
break;
}
case 0x35: // AND A, !abs+X
{
AND(A, abs() + X);
break;
}
case 0x36: // AND A, !abs+Y
{
AND(A, abs() + Y);
break;
}
case 0x27: // AND A, [dp+X]
{
AND(A, dp_plus_x_indirect());
break;
}
case 0x37: // AND A, [dp]+Y
{
AND(A, dp_indirect_plus_y());
break;
}
case 0x39: // AND (X), (Y)
{
AND(mutable_read(X), mutable_read(Y));
break;
}
case 0x29: // AND dp, dp
{
AND(mutable_dp(), dp());
break;
}
case 0x38: // AND dp, #imm
{
AND(mutable_dp(), imm());
break;
}
case 0x08: // OR A, #imm
{
OR(A, imm());
break;
}
case 0x06: // OR A, (X)
{
OR(A, mutable_read(X));
break;
}
case 0x04: // OR A, dp
{
OR(A, dp());
break;
}
case 0x14: // OR A, dp+X
{
OR(A, dp_plus_x());
break;
}
case 0x05: // OR A, !abs
{
OR(A, abs());
break;
}
case 0x15: // OR A, !abs+X
{
OR(A, abs() + X);
break;
}
case 0x16: // OR A, !abs+Y
{
OR(A, abs() + Y);
break;
}
case 0x07: // OR A, [dp+X]
{
OR(A, dp_plus_x_indirect());
break;
}
case 0x17: // OR A, [dp]+Y
{
OR(A, dp_indirect_plus_y());
break;
}
case 0x19: // OR (X), (Y)
OR(mutable_read(X), mutable_read(Y));
break;
case 0x09: // OR dp, dp
OR(mutable_dp(), dp());
break;
case 0x18: // OR dp, #imm
OR(mutable_dp(), imm());
break;
case 0x48: // EOR A, #imm
EOR(A, imm());
break;
case 0x46: // EOR A, (X)
EOR(A, mutable_read(X));
break;
case 0x44: // EOR A, dp
EOR(A, dp());
break;
case 0x54: // EOR A, dp+X
EOR(A, dp_plus_x());
break;
case 0x45: // EOR A, !abs
EOR(A, abs());
break;
case 0x55: // EOR A, !abs+X
EOR(A, abs() + X);
break;
case 0x56: // EOR A, !abs+Y
EOR(A, abs() + Y);
break;
case 0x47: // EOR A, [dp+X]
EOR(A, dp_plus_x_indirect());
break;
case 0x57: // EOR A, [dp]+Y
EOR(A, dp_indirect_plus_y());
break;
case 0x59: // EOR (X), (Y)
EOR(mutable_read(X), mutable_read(Y));
break;
case 0x49: // EOR dp, dp
EOR(mutable_dp(), dp());
break;
case 0x58: // EOR dp, #imm
EOR(mutable_dp(), imm());
break;
// . 8-bit increment / decrement
case 0xBC: // INC A
INC(A);
break;
case 0xAB: // INC dp
INC(mutable_dp());
break;
case 0xBB: // INC dp+X
INC(mutable_read((PSW.P << 8) + dp_plus_x()));
break;
case 0xAC: // INC !abs
INC(mutable_read(abs()));
break;
case 0x3D: // INC X
INC(X);
break;
case 0xFC: // INC Y
INC(Y);
break;
case 0x9C: // DEC A
DEC(A);
break;
case 0x8B: // DEC dp
DEC(mutable_dp());
break;
case 0x9B: // DEC dp+X
DEC(mutable_read((PSW.P << 8) + dp_plus_x()));
break;
case 0x8C: // DEC !abs
DEC(mutable_read(abs()));
break;
case 0x1D: // DEC X
DEC(X);
break;
case 0xDC: // DEC Y
DEC(Y);
break;
// 8-bit shift / rotation
case 0x1C: // ASL A
ASL(A);
break;
case 0x0B: // ASL dp
ASL(dp());
break;
case 0x1B: // ASL dp+X
ASL(dp_plus_x());
break;
case 0x0C: // ASL !abs
ASL(abs());
break;
case 0x5C: // LSR A
LSR(A);
break;
case 0x4B: // LSR dp
LSR(mutable_dp());
break;
case 0x5B: // LSR dp+X
LSR(mutable_read((PSW.P << 8) + dp_plus_x()));
break;
case 0x4C: // LSR !abs
LSR(mutable_read(abs()));
break;
case 0x3C: // ROL A
ROL(A);
break;
case 0x2B: // ROL dp
ROL(dp());
break;
case 0x3B: // ROL dp+X
ROL(dp_plus_x());
break;
case 0x2C: // ROL !abs
ROL(abs());
break;
case 0x7C: // ROR A
// ROR(A);
break;
case 0x6B: // ROR dp
// ROR(dp());
break;
case 0x7B: // ROR dp+X
// ROR(dp_plus_x());
break;
case 0x6C: // ROR !abs
// ROR(abs());
break;
case 0x9F: // XCN A Exchange nibbles of A
XCN(A);
break;
// . 16-bit operations
case 0xBA: // MOVW YA, dp
MOVW(YA, dp());
break;
case 0xDA: // MOVW dp, YA
MOVW(mutable_read_16(dp()), YA);
break;
case 0x3A: // INCW dp
INCW(mutable_read_16(dp()));
break;
case 0x1A: // DECW dp
DECW(mutable_read_16(dp()));
break;
case 0x7A: // ADDW YA, dp
ADDW(YA, dp());
break;
case 0x9A: // SUBW YA, dp
SUBW(YA, dp());
break;
case 0x5A: // CMPW YA, dp
// CMPW(YA, dp());
break;
case 0xCF: // MUL YA
MUL(YA);
break;
case 0x9E: // DIV YA, X
// DIV(YA, X);
break;
// . decimal adjust
case 0xDF: // DAA A
break;
case 0xBE: // DAS A
break;
// . branching
case 0x2F: // BRA rel
BRA(rel());
break;
case 0xF0: // BEQ rel
BEQ(rel());
break;
case 0xD0: // BNE rel
BNE(rel());
break;
case 0xB0: // BCS rel
BCS(rel());
break;
case 0x90: // BCC rel
BCC(rel());
break;
case 0x70: // BVS rel
BVS(rel());
break;
case 0x50: // BVC rel
BVC(rel());
break;
case 0x30: // BMI rel
BMI(rel());
break;
case 0x10: // BPL rel
BPL(rel());
break;
case 0x2E: // CBNE dp, rel
break;
case 0xDE: // CBNE dp+X, rel
break;
case 0x6E: // DBNZ dp, rel
break;
case 0xFE: // DBNZ Y, rel
break;
case 0x5F: // JMP !abs
JMP(abs());
break;
case 0x1F: // JMP [!abs+X]
// JMP_INDIRECT(abs() + X);
break;
// . subroutines
case 0x3F: // CALL !abs
{
CALL(abs());
break;
}
case 0x4F: // PCALL up
{
PCALL(imm());
break;
}
case 0x6F: // RET
{
RET();
break;
}
case 0x7F: // RETI
{
RETI();
break;
}
// . stack
case 0x2D: // PUSH A
{
PUSH(A);
break;
}
case 0x4D: // PUSH X
{
PUSH(X);
break;
}
case 0x6D: // PUSH Y
{
PUSH(Y);
break;
}
case 0x0D: // PUSH PSW
{
PUSH(FlagsToByte(PSW));
break;
}
case 0xAE: // POP A
{
POP(A);
break;
}
case 0xCE: // POP X
{
POP(X);
break;
}
case 0xEE: // POP Y
{
POP(Y);
break;
}
case 0x8E: // POP PSW
{
uint8_t flags_byte;
POP(flags_byte);
PSW = ByteToFlags(flags_byte);
break;
}
// . memory bit operations
case 0xEA: // NOT1 abs, bit
// NOT1(abs(), bit());
break;
case 0xAA: // MOV1 C, abs, bit
break;
case 0xCA: // MOV1 abs, bit, C
break;
case 0x4A: // AND1 C, abs, bit
break;
case 0x6A: // AND1 C, /abs, bit
break;
case 0x0A: // OR1 C, abs, bit
break;
case 0x2A: // OR1 C, /abs, bit
break;
case 0x8A: // EOR1 C, abs, bit
break;
// . status flags
case 0x60: // CLRC
CLRC();
break;
case 0x80: // SETC
SETC();
break;
case 0xED: // NOTC
NOTC();
break;
case 0xE0: // CLRV
CLRV();
break;
case 0x20: // CLRP
CLRP();
break;
case 0x40: // SETP
SETP();
break;
case 0xA0: // EI
EI();
break;
case 0xC0: // DI
DI();
break;
// .no-operation and haltF
case 0x00: // NOP
{
NOP();
break;
}
case 0xEF: // SLEEP
{
SLEEP();
break;
}
case 0x0F: // STOP
{
STOP();
break;
}
default:
std::cout << "Unknown opcode: " << std::hex << opcode << std::endl;
break;
}
LogInstruction(initialPC, opcode);
}
void Spc700::LogInstruction(uint16_t initial_pc, uint8_t opcode) {
std::string mnemonic = spc_opcode_map.at(opcode);
std::stringstream log_entry_stream;
log_entry_stream << "\033[1;36m$" << std::hex << std::setw(4)
<< std::setfill('0') << initial_pc << "\033[0m";
log_entry_stream << " \033[1;32m" << std::hex << std::setw(2)
<< std::setfill('0') << static_cast<int>(opcode) << "\033[0m"
<< " \033[1;35m" << std::setw(18) << std::left
<< std::setfill(' ') << mnemonic << "\033[0m";
log_entry_stream << " \033[1;33mA: " << std::hex << std::setw(2)
<< std::setfill('0') << std::right << static_cast<int>(A)
<< "\033[0m";
log_entry_stream << " \033[1;33mX: " << std::hex << std::setw(2)
<< std::setfill('0') << std::right << static_cast<int>(X)
<< "\033[0m";
log_entry_stream << " \033[1;33mY: " << std::hex << std::setw(2)
<< std::setfill('0') << std::right << static_cast<int>(Y)
<< "\033[0m";
std::string log_entry = log_entry_stream.str();
std::cerr << log_entry << std::endl;
// Append the log entry to the log
log_.push_back(log_entry);
}
} // namespace emu
} // namespace app
} // namespace yaze

267
src/app/emu/audio/spc700.h Normal file
View File

@@ -0,0 +1,267 @@
#ifndef YAZE_APP_EMU_SPC700_H
#define YAZE_APP_EMU_SPC700_H
#include <cstdint>
#include <iostream>
#include <unordered_map>
#include <vector>
namespace yaze {
namespace app {
namespace emu {
class AudioRam {
public:
virtual ~AudioRam() = default;
virtual void reset() = 0;
virtual uint8_t read(uint16_t address) const = 0;
virtual uint8_t& mutable_read(uint16_t address) = 0;
virtual void write(uint16_t address, uint8_t value) = 0;
};
class AudioRamImpl : public AudioRam {
static const int ARAM_SIZE = 0x10000;
std::vector<uint8_t> ram = std::vector<uint8_t>(ARAM_SIZE, 0);
public:
AudioRamImpl() = default;
void reset() override { ram = std::vector<uint8_t>(ARAM_SIZE, 0); }
uint8_t read(uint16_t address) const override {
return ram[address % ARAM_SIZE];
}
uint8_t& mutable_read(uint16_t address) override {
return ram.at(address % ARAM_SIZE);
}
void write(uint16_t address, uint8_t value) override {
ram[address % ARAM_SIZE] = value;
}
};
class Spc700 {
private:
AudioRam& aram_;
std::vector<std::string> log_;
const uint8_t ipl_rom_[64]{
0xCD, 0xEF, 0xBD, 0xE8, 0x00, 0xC6, 0x1D, 0xD0, 0xFC, 0x8F, 0xAA,
0xF4, 0x8F, 0xBB, 0xF5, 0x78, 0xCC, 0xF4, 0xD0, 0xFB, 0x2F, 0x19,
0xEB, 0xF4, 0xD0, 0xFC, 0x7E, 0xF4, 0xD0, 0x0B, 0xE4, 0xF5, 0xCB,
0xF4, 0xD7, 0x00, 0xFC, 0xD0, 0xF3, 0xAB, 0x01, 0x10, 0xEF, 0x7E,
0xF4, 0x10, 0xEB, 0xBA, 0xF6, 0xDA, 0x00, 0xBA, 0xF4, 0xC4, 0xF4,
0xDD, 0x5D, 0xD0, 0xDB, 0x1F, 0x00, 0x00, 0xC0, 0xFF};
public:
explicit Spc700(AudioRam& aram) : aram_(aram) {}
// Registers
uint8_t A = 0x00; // 8-bit accumulator
uint8_t X = 0x00; // 8-bit index
uint8_t Y = 0x00; // 8-bit index
uint16_t YA = 0x00; // 16-bit pair of A (lsb) and Y (msb)
uint16_t PC = 0xFFC0; // program counter
uint8_t SP = 0x00; // stack pointer
struct Flags {
uint8_t N : 1; // Negative flag
uint8_t V : 1; // Overflow flag
uint8_t P : 1; // Direct page flag
uint8_t B : 1; // Break flag
uint8_t H : 1; // Half-carry flag
uint8_t I : 1; // Interrupt enable
uint8_t Z : 1; // Zero flag
uint8_t C : 1; // Carry flag
};
Flags PSW; // Processor status word
uint8_t FlagsToByte(Flags flags) {
return (flags.N << 7) | (flags.V << 6) | (flags.P << 5) | (flags.B << 4) |
(flags.H << 3) | (flags.I << 2) | (flags.Z << 1) | (flags.C);
}
Flags ByteToFlags(uint8_t byte) {
Flags flags;
flags.N = (byte & 0x80) >> 7;
flags.V = (byte & 0x40) >> 6;
flags.P = (byte & 0x20) >> 5;
flags.B = (byte & 0x10) >> 4;
flags.H = (byte & 0x08) >> 3;
flags.I = (byte & 0x04) >> 2;
flags.Z = (byte & 0x02) >> 1;
flags.C = (byte & 0x01);
return flags;
}
void Reset();
void BootIplRom();
void ExecuteInstructions(uint8_t opcode);
void LogInstruction(uint16_t initial_pc, uint8_t opcode);
// Read a byte from the memory-mapped registers
uint8_t read(uint16_t address) {
if (address < 0xFFC0) {
return aram_.read(address);
} else {
// Check if register is set to unmap the IPL ROM
if (read(0xF1) & 0x80) {
return aram_.read(address);
}
return ipl_rom_[address - 0xFFC0];
}
}
uint8_t& mutable_read(uint16_t address) {
if (address < 0xFFC0) {
return aram_.mutable_read(address);
} else {
// NOTE: Mutable access to IPL ROM is not allowed
return aram_.mutable_read(address);
}
}
uint16_t& mutable_read_16(uint16_t address) {
if (address < 0xFFC0) {
return *reinterpret_cast<uint16_t*>(&aram_.mutable_read(address));
} else {
// NOTE: Mutable access to IPL ROM is not allowed
return *reinterpret_cast<uint16_t*>(&aram_.mutable_read(address));
}
}
uint16_t read_16(uint16_t address) {
if (address < 0xFFC0) {
return (aram_.read(address) | (aram_.read(address + 1) << 8));
} else {
// Check if register is set to unmap the IPL ROM
if (read(0xF1) & 0x80) {
return aram_.read(address);
}
return ipl_rom_[address - 0xFFC0];
}
}
// Write a byte to the memory-mapped registers
void write(uint16_t address, uint8_t value) {
if (address < 0xFFC0) {
aram_.write(address, value);
} else {
// Check if register is set to unmap the IPL ROM
if (read(0xF1) & 0x80) {
aram_.write(address, value);
}
}
}
// ======================================================
// Addressing modes
// Immediate
uint8_t imm();
// Direct page
uint8_t dp();
uint8_t& mutable_dp();
uint8_t get_dp_addr();
// Direct page indexed by X
uint8_t dp_plus_x();
// Direct page indexed by Y
uint8_t dp_plus_y();
// Indexed indirect (add index before 16-bit lookup).
uint16_t dp_plus_x_indirect();
// Indirect indexed (add index after 16-bit lookup).
uint16_t dp_indirect_plus_y();
uint16_t abs();
int8_t rel();
uint8_t i();
uint8_t i_postinc();
uint16_t addr_plus_i();
uint16_t addr_plus_i_indexed();
// ==========================================================================
// Instructions
void MOV(uint8_t& dest, uint8_t operand);
void MOV_ADDR(uint16_t address, uint8_t operand);
void ADC(uint8_t& dest, uint8_t operand);
void SBC(uint8_t& dest, uint8_t operand);
void CMP(uint8_t& dest, uint8_t operand);
void AND(uint8_t& dest, uint8_t operand);
void OR(uint8_t& dest, uint8_t operand);
void EOR(uint8_t& dest, uint8_t operand);
void ASL(uint8_t operand);
void LSR(uint8_t& operand);
void ROL(uint8_t operand, bool isImmediate = false);
void XCN(uint8_t operand, bool isImmediate = false);
void INC(uint8_t& operand);
void DEC(uint8_t& operand);
void MOVW(uint16_t& dest, uint16_t operand);
void INCW(uint16_t& operand);
void DECW(uint16_t& operand);
void ADDW(uint16_t& dest, uint16_t operand);
void SUBW(uint16_t& dest, uint16_t operand);
void CMPW(uint16_t operand);
void MUL(uint8_t operand);
void DIV(uint8_t operand);
void BRA(int8_t offset);
void BEQ(int8_t offset);
void BNE(int8_t offset);
void BCS(int8_t offset);
void BCC(int8_t offset);
void BVS(int8_t offset);
void BVC(int8_t offset);
void BMI(int8_t offset);
void BPL(int8_t offset);
void BBS(uint8_t bit, uint8_t operand);
void BBC(uint8_t bit, uint8_t operand);
void JMP(uint16_t address);
void CALL(uint16_t address);
void PCALL(uint8_t offset);
void TCALL(uint8_t offset);
void BRK();
void RET();
void RETI();
void PUSH(uint8_t operand);
void POP(uint8_t& operand);
void SET1(uint8_t bit, uint8_t& operand);
void CLR1(uint8_t bit, uint8_t& operand);
void TSET1(uint8_t bit, uint8_t& operand);
void TCLR1(uint8_t bit, uint8_t& operand);
void AND1(uint8_t bit, uint8_t& operand);
void OR1(uint8_t bit, uint8_t& operand);
void EOR1(uint8_t bit, uint8_t& operand);
void NOT1(uint8_t bit, uint8_t& operand);
void MOV1(uint8_t bit, uint8_t& operand);
void CLRC();
void SETC();
void NOTC();
void CLRV();
void CLRP();
void SETP();
void EI();
void DI();
void NOP();
void SLEEP();
void STOP();
// CBNE DBNZ
};
} // namespace emu
} // namespace app
} // namespace yaze
#endif // YAZE_APP_EMU_SPC700_H

63
src/app/emu/cpu/clock.h Normal file
View File

@@ -0,0 +1,63 @@
#ifndef YAZE_APP_EMU_CLOCK_H_
#define YAZE_APP_EMU_CLOCK_H_
#include <cstdint>
namespace yaze {
namespace app {
namespace emu {
class Clock {
public:
virtual ~Clock() = default;
virtual void UpdateClock(double delta) = 0;
virtual unsigned long long GetCycleCount() const = 0;
virtual void ResetAccumulatedTime() = 0;
virtual void SetFrequency(float new_frequency) = 0;
virtual float GetFrequency() const = 0;
};
class ClockImpl : public Clock {
public:
ClockImpl() = default;
virtual ~ClockImpl() = default;
void UpdateCycleCount(double deltaTime) {
accumulatedTime += deltaTime;
double cycleTime = 1.0 / frequency;
while (accumulatedTime >= cycleTime) {
Cycle();
accumulatedTime -= cycleTime;
}
}
void Cycle() {
cycle++;
cycleCount++;
}
void UpdateClock(double delta) override {
UpdateCycleCount(delta);
ResetAccumulatedTime();
}
void ResetAccumulatedTime() override { accumulatedTime = 0.0; }
unsigned long long GetCycleCount() const override { return cycleCount; }
float GetFrequency() const override { return frequency; }
void SetFrequency(float new_frequency) override {
this->frequency = new_frequency;
}
private:
uint64_t cycle = 0; // Current cycle
float frequency = 0.0; // Frequency of the clock in Hz
unsigned long long cycleCount = 0; // Total number of cycles executed
double accumulatedTime = 0.0; // Accumulated time since the last cycle update
};
} // namespace emu
} // namespace app
} // namespace yaze
#endif // YAZE_APP_EMU_CLOCK_H_

1995
src/app/emu/cpu/cpu.cc Normal file

File diff suppressed because it is too large Load Diff

726
src/app/emu/cpu/cpu.h Normal file
View File

@@ -0,0 +1,726 @@
#ifndef YAZE_APP_EMU_CPU_H_
#define YAZE_APP_EMU_CPU_H_
#include <algorithm>
#include <cstdint>
#include <iostream>
#include <unordered_map>
#include <vector>
#include "app/core/common.h"
#include "app/emu/cpu/clock.h"
#include "app/emu/cpu/internal/opcodes.h"
#include "app/emu/debug/log.h"
#include "app/emu/memory/memory.h"
namespace yaze {
namespace app {
namespace emu {
class InstructionEntry {
public:
// Constructor
InstructionEntry(uint32_t addr, uint8_t op, const std::string& ops,
const std::string& instr)
: address(addr), opcode(op), operands(ops), instruction(instr) {}
// Getters for the class members
uint32_t GetAddress() const { return address; }
uint8_t GetOpcode() const { return opcode; }
const std::string& GetOperands() const { return operands; }
const std::string& GetInstruction() const { return instruction; }
uint32_t address; // Memory address of the instruction
uint8_t opcode; // Opcode of the instruction
std::string operands; // Operand(s) of the instruction, if any
std::string instruction; // Human-readable instruction text
};
const int kCpuClockSpeed = 21477272; // 21.477272 MHz
class CPU : public Memory, public Loggable, public core::ExperimentFlags {
public:
explicit CPU(Memory& mem, Clock& vclock) : memory(mem), clock(vclock) {}
enum class UpdateMode { Run, Step, Pause };
void Init(bool verbose = false) { clock.SetFrequency(kCpuClockSpeed); }
void Update(UpdateMode mode = UpdateMode::Run, int stepCount = 1);
void ExecuteInstruction(uint8_t opcode);
void LogInstructions(uint16_t PC, uint8_t opcode, uint16_t operand,
bool immediate, bool accumulator_mode);
void UpdatePC(uint8_t instruction_length) { PC += instruction_length; }
uint8_t GetInstructionLength(uint8_t opcode);
uint16_t SP() const override { return memory.SP(); }
void SetSP(uint16_t value) override { memory.SetSP(value); }
void set_next_pc(uint16_t value) { next_pc_ = value; }
void UpdateClock(int delta_time) { clock.UpdateClock(delta_time); }
bool IsBreakpoint(uint32_t address) {
return std::find(breakpoints_.begin(), breakpoints_.end(), address) !=
breakpoints_.end();
}
void SetBreakpoint(uint32_t address) { breakpoints_.push_back(address); }
void ClearBreakpoint(uint32_t address) {
breakpoints_.erase(
std::remove(breakpoints_.begin(), breakpoints_.end(), address),
breakpoints_.end());
}
void ClearBreakpoints() {
breakpoints_.clear();
breakpoints_.shrink_to_fit();
}
auto GetBreakpoints() { return breakpoints_; }
std::vector<uint32_t> breakpoints_;
std::vector<InstructionEntry> instruction_log_;
// ======================================================
// Interrupt Vectors
// Emulation mode, e = 1 Native mode, e = 0
//
// 0xFFFE,FF - IRQ/BRK 0xFFEE,EF - IRQ
// 0xFFFC,FD - RESET
// 0xFFFA,FB - NMI 0xFFEA,EB - NMI
// 0xFFF8,F9 - ABORT 0xFFE8,E9 - ABORT
// 0xFFE6,E7 - BRK
// 0xFFF4,F5 - COP 0xFFE4,E5 - COP
void HandleInterrupts();
// ======================================================
// Registers
uint16_t A = 0; // Accumulator
uint16_t X = 0; // X index register
uint16_t Y = 0; // Y index register
uint16_t D = 0; // Direct Page register
uint8_t DB = 0; // Data Bank register
uint8_t PB = 0; // Program Bank register
uint16_t PC = 0; // Program Counter
uint8_t E = 1; // Emulation mode flag
uint8_t status = 0b00110000; // Processor Status (P)
// Mnemonic Value Binary Description
// N #$80 10000000 Negative
// V #$40 01000000 Overflow
// M #$20 00100000 Accumulator size (0 = 16-bit, 1 = 8-bit)
// X #$10 00010000 Index size (0 = 16-bit, 1 = 8-bit)
// D #$08 00001000 Decimal
// I #$04 00000100 IRQ disable
// Z #$02 00000010 Zero
// C #$01 00000001 Carry
// E 6502 emulation mode
// B #$10 00010000 Break (emulation mode only)
// Setting flags in the status register
bool m() { return GetAccumulatorSize() ? 1 : 0; }
int GetAccumulatorSize() const { return status & 0x20; }
int GetIndexSize() const { return status & 0x10; }
void set_16_bit_mode() {
SetAccumulatorSize(true);
SetIndexSize(true);
}
void set_8_bit_mode() {
SetAccumulatorSize(false);
SetIndexSize(false);
}
void SetAccumulatorSize(bool set) { SetFlag(0x20, set); }
void SetIndexSize(bool set) { SetFlag(0x10, set); }
// Set individual flags
void SetNegativeFlag(bool set) { SetFlag(0x80, set); }
void SetOverflowFlag(bool set) { SetFlag(0x40, set); }
void SetBreakFlag(bool set) { SetFlag(0x10, set); }
void SetDecimalFlag(bool set) { SetFlag(0x08, set); }
void SetInterruptFlag(bool set) { SetFlag(0x04, set); }
void SetZeroFlag(bool set) { SetFlag(0x02, set); }
void SetCarryFlag(bool set) { SetFlag(0x01, set); }
// Get individual flags
bool GetNegativeFlag() const { return GetFlag(0x80); }
bool GetOverflowFlag() const { return GetFlag(0x40); }
bool GetBreakFlag() const { return GetFlag(0x10); }
bool GetDecimalFlag() const { return GetFlag(0x08); }
bool GetInterruptFlag() const { return GetFlag(0x04); }
bool GetZeroFlag() const { return GetFlag(0x02); }
bool GetCarryFlag() const { return GetFlag(0x01); }
enum class AccessType { Control, Data };
// ==========================================================================
// Addressing Modes
// Effective Address:
// Bank: Data Bank Register if locating data
// Program Bank Register if transferring control
// High: Second operand byte
// Low: First operand byte
//
// LDA addr
uint32_t Absolute(AccessType access_type = AccessType::Data);
// Effective Address:
// The Data Bank Register is concatened with the 16-bit operand
// the 24-bit result is added to the X Index Register
// based on the emulation mode (16:X=0, 8:X=1)
//
// LDA addr, X
uint32_t AbsoluteIndexedX();
// Effective Address:
// The Data Bank Register is concatened with the 16-bit operand
// the 24-bit result is added to the Y Index Register
// based on the emulation mode (16:Y=0, 8:Y=1)
//
// LDA addr, Y
uint32_t AbsoluteIndexedY();
// Effective Address:
// Bank: Program Bank Register (PBR)
// High/low: The Indirect Address
// Indirect Address: Located in the Program Bank at the sum of
// the operand double byte and X based on the
// emulation mode
// JMP (addr, X)
uint16_t AbsoluteIndexedIndirect();
// Effective Address:
// Bank: Program Bank Register (PBR)
// High/low: The Indirect Address
// Indirect Address: Located in Bank Zero, at the operand double byte
//
// JMP (addr)
uint16_t AbsoluteIndirect();
// Effective Address:
// Bank/High/Low: The 24-bit Indirect Address
// Indirect Address: Located in Bank Zero, at the operand double byte
//
// JMP [addr]
uint32_t AbsoluteIndirectLong();
// Effective Address:
// Bank: Third operand byte
// High: Second operand byte
// Low: First operand byte
//
// LDA long
uint32_t AbsoluteLong();
// Effective Address:
// The 24-bit operand is added to X based on the emulation mode
//
// LDA long, X
uint32_t AbsoluteLongIndexedX();
// Source Effective Address:
// Bank: Second operand byte
// High/Low: The 16-bit value in X, if X is 8-bit high byte is 0
//
// Destination Effective Address:
// Bank: First operand byte
// High/Low: The 16-bit value in Y, if Y is 8-bit high byte is 0
//
// Length:
// The number of bytes to be moved: 16-bit value in Acculumator C plus 1.
//
// MVN src, dst
void BlockMove(uint16_t source, uint16_t dest, uint16_t length);
// Effective Address:
// Bank: Zero
// High/low: Direct Page Register plus operand byte
//
// LDA dp
uint16_t DirectPage();
// Effective Address:
// Bank: Zero
// High/low: Direct Page Register plus operand byte plus X
// based on the emulation mode
//
// LDA dp, X
uint16_t DirectPageIndexedX();
// Effective Address:
// Bank: Zero
// High/low: Direct Page Register plus operand byte plus Y
// based on the emulation mode
// LDA dp, Y
uint16_t DirectPageIndexedY();
// Effective Address:
// Bank: Data bank register
// High/low: The indirect address
// Indirect Address: Located in the direct page at the sum of the direct page
// register, the operand byte, and X based on the emulation mode in bank zero.
//
// LDA (dp, X)
uint16_t DirectPageIndexedIndirectX();
// Effective Address:
// Bank: Data bank register
// High/low: The 16-bit indirect address
// Indirect Address: The operand byte plus the direct page register in bank
// zero.
//
// LDA (dp)
uint16_t DirectPageIndirect();
// Effective Address:
// Bank/High/Low: The 24-bit indirect address
// Indirect address: The operand byte plus the direct page
// register in bank zero.
//
// LDA [dp]
uint32_t DirectPageIndirectLong();
// Effective Address:
// Found by concatenating the data bank to the double-byte
// indirect address, then adding Y based on the emulation mode.
//
// Indirect Address: Located in the Direct Page at the sum of the direct page
// register and the operand byte, in bank zero.
//
// LDA (dp), Y
uint16_t DirectPageIndirectIndexedY();
// Effective Address:
// Found by adding to the triple-byte indirect address Y based on the
// emulation mode. Indrect Address: Located in the Direct Page at the sum
// of the direct page register and the operand byte in bank zero.
// Indirect Address:
// Located in the Direct Page at the sum of the direct page register and
// the operand byte in bank zero.
//
// LDA (dp), Y
uint32_t DirectPageIndirectLongIndexedY();
// 8-bit data: Data Operand Byte
// 16-bit data 65816 native mode m or x = 0
// Data High: Second Operand Byte
// Data Low: First Operand Byte
//
// LDA #const
uint16_t Immediate(bool index_size = false);
uint16_t StackRelative();
// Effective Address:
// The Data Bank Register is concatenated to the Indirect Address;
// the 24-bit result is added to Y (16 bits if x = 0; else 8 bits)
// Indirect Address:
// Located at the 16-bit sum of the 8-bit operand and the 16-bit stack
// pointer
//
// LDA (sr, S), Y
uint32_t StackRelativeIndirectIndexedY();
// Memory access routines
uint8_t ReadByte(uint32_t address) const override {
return memory.ReadByte(address);
}
uint16_t ReadWord(uint32_t address) const override {
return memory.ReadWord(address);
}
uint32_t ReadWordLong(uint32_t address) const override {
return memory.ReadWordLong(address);
}
std::vector<uint8_t> ReadByteVector(uint32_t address,
uint16_t size) const override {
return memory.ReadByteVector(address, size);
}
void WriteByte(uint32_t address, uint8_t value) override {
memory.WriteByte(address, value);
}
void WriteWord(uint32_t address, uint16_t value) override {
memory.WriteWord(address, value);
}
void WriteLong(uint32_t address, uint32_t value) override {
memory.WriteLong(address, value);
}
uint8_t FetchByte() {
uint32_t address = (PB << 16) | PC + 1;
uint8_t byte = memory.ReadByte(address);
return byte;
}
uint16_t FetchWord() {
uint32_t address = (PB << 16) | PC + 1;
uint16_t value = memory.ReadWord(address);
return value;
}
uint32_t FetchLong() {
uint32_t value = memory.ReadWordLong((PB << 16) | PC + 1);
return value;
}
int8_t FetchSignedByte() { return static_cast<int8_t>(FetchByte()); }
int16_t FetchSignedWord() {
auto offset = static_cast<int16_t>(FetchWord());
return offset;
}
uint8_t FetchByteDirectPage(uint8_t operand) {
uint16_t distance = D * 0x100;
// Calculate the effective address in the Direct Page
uint16_t effectiveAddress = operand + distance;
// Fetch the byte from memory
uint8_t fetchedByte = memory.ReadByte(effectiveAddress);
next_pc_ = PC + 1;
return fetchedByte;
}
uint16_t ReadByteOrWord(uint32_t address) {
if (GetAccumulatorSize()) {
// 8-bit mode
return memory.ReadByte(address) & 0xFF;
} else {
// 16-bit mode
return memory.ReadWord(address);
}
}
// ======================================================
// Instructions
// ADC: Add with carry
void ADC(uint16_t operand);
// AND: Logical AND
void AND(uint32_t address, bool immediate = false);
void ANDAbsoluteLong(uint32_t address);
// ASL: Arithmetic shift left
void ASL(uint16_t address);
// BCC: Branch if carry clear
void BCC(int8_t offset);
// BCS: Branch if carry set
void BCS(int8_t offset);
// BEQ: Branch if equal
void BEQ(int8_t offset);
// BIT: Bit test
void BIT(uint16_t address);
// BMI: Branch if minus
void BMI(int8_t offset);
// BNE: Branch if not equal
void BNE(int8_t offset);
// BPL: Branch if plus
void BPL(int8_t offset);
// BRA: Branch always
void BRA(int8_t offset);
// BRK: Force interrupt
void BRK();
// BRL: Branch always long
void BRL(int16_t offset);
// BVC: Branch if overflow clear
void BVC(int8_t offset);
// BVS: Branch if overflow set
void BVS(int8_t offset);
// CLC: Clear carry flag
void CLC();
// CLD: Clear decimal mode
void CLD();
// CLI: Clear interrupt disable bit
void CLI();
// CLV: Clear overflow flag
void CLV();
// CMP: Compare
void CMP(uint32_t address, bool immediate = false);
// COP: Coprocessor enable
void COP();
// CPX: Compare X register
void CPX(uint32_t address, bool immediate = false);
// CPY: Compare Y register
void CPY(uint32_t address, bool immediate = false);
// DEC: Decrement memory
void DEC(uint32_t address, bool accumulator = false);
// DEX: Decrement X register
void DEX();
// DEY: Decrement Y register
void DEY();
// EOR: Exclusive OR
void EOR(uint32_t address, bool immediate = false);
// INC: Increment memory
void INC(uint32_t address, bool accumulator = false);
// INX: Increment X register
void INX();
// INY: Increment Y register
void INY();
// JMP: Jump
void JMP(uint16_t address);
// JML: Jump long
void JML(uint32_t address);
// JSR: Jump to subroutine
void JSR(uint16_t address);
// JSL: Jump to subroutine long
void JSL(uint32_t address);
// LDA: Load accumulator
void LDA(uint16_t address, bool immediate = false, bool direct_page = false,
bool data_bank = false);
// LDX: Load X register
void LDX(uint16_t address, bool immediate = false);
// LDY: Load Y register
void LDY(uint16_t address, bool immediate = false);
// LSR: Logical shift right
void LSR(uint16_t address, bool accumulator = false);
// MVN: Block move next
void MVN(uint16_t source, uint16_t dest, uint16_t length);
// MVP: Block move previous
void MVP(uint16_t source, uint16_t dest, uint16_t length);
// NOP: No operation
void NOP();
// ORA: Logical inclusive OR
void ORA(uint16_t address, bool immediate = false);
// PEA: Push effective absolute address
void PEA();
// PEI: Push effective indirect address
void PEI();
// PER: Push effective relative address
void PER();
// PHA: Push accumulator
void PHA();
// PHB: Push data bank register
void PHB();
// PHD: Push direct page register
void PHD();
// PHK: Push program bank register
void PHK();
// PHP: Push processor status (flags)
void PHP();
// PHX: Push X register
void PHX();
// PHY: Push Y register
void PHY();
// PLA: Pull accumulator
void PLA();
// PLB: Pull data bank register
void PLB();
// PLD: Pull direct page register
void PLD();
// PLP: Pull processor status (flags)
void PLP();
// PLX: Pull X register
void PLX();
// PLY: Pull Y register
void PLY();
// REP: Reset processor status bits
void REP();
// ROL: Rotate left
void ROL(uint32_t address, bool accumulator = false);
// ROR: Rotate right
void ROR(uint32_t address, bool accumulator = false);
// RTI: Return from interrupt
void RTI();
// RTL: Return from subroutine long
void RTL();
// RTS: Return from subroutine
void RTS();
// SBC: Subtract with carry
void SBC(uint32_t operand, bool immediate = false);
// SEC: Set carry flag
void SEC();
// SED: Set decimal mode
void SED();
// SEI: Set interrupt disable status
void SEI();
// SEP: Set processor status bits
void SEP();
// STA: Store accumulator
void STA(uint32_t address);
// STP: Stop the processor
void STP();
// STX: Store X register
void STX(uint16_t address);
// STY: Store Y register
void STY(uint16_t address);
// STZ: Store zero
void STZ(uint16_t address);
// TAX: Transfer accumulator to X
void TAX();
// TAY: Transfer accumulator to Y
void TAY();
// TCD: Transfer 16-bit accumulator to direct page register
void TCD();
// TCS: Transfer 16-bit accumulator to stack pointer
void TCS();
// TDC: Transfer direct page register to 16-bit accumulator
void TDC();
// TRB: Test and reset bits
void TRB(uint16_t address);
// TSB: Test and set bits
void TSB(uint16_t address);
// TSC: Transfer stack pointer to 16-bit accumulator
void TSC();
// TSX: Transfer stack pointer to X
void TSX();
// TXA: Transfer X to accumulator
void TXA();
// TXS: Transfer X to stack pointer
void TXS();
// TXY: Transfer X to Y
void TXY();
// TYA: Transfer Y to accumulator
void TYA();
// TYX: Transfer Y to X
void TYX();
// WAI: Wait for interrupt
void WAI();
// WDM: Reserved for future expansion
void WDM();
// XBA: Exchange B and A
void XBA();
// XCE: Exchange carry and emulation bits
void XCE();
private:
void compare(uint16_t register_value, uint16_t memory_value) {
uint16_t result;
if (GetIndexSize()) {
// 8-bit mode
uint8_t result8 = static_cast<uint8_t>(register_value) -
static_cast<uint8_t>(memory_value);
result = result8;
SetNegativeFlag(result & 0x80); // Negative flag for 8-bit
} else {
// 16-bit mode
result = register_value - memory_value;
SetNegativeFlag(result & 0x8000); // Negative flag for 16-bit
}
SetZeroFlag(result == 0); // Zero flag
SetCarryFlag(register_value >= memory_value); // Carry flag
}
void SetFlag(uint8_t mask, bool set) {
if (set) {
status |= mask; // Set the bit
} else {
status &= ~mask; // Clear the bit
}
}
bool GetFlag(uint8_t mask) const { return (status & mask) != 0; }
void PushByte(uint8_t value) override { memory.PushByte(value); }
void PushWord(uint16_t value) override { memory.PushWord(value); }
uint8_t PopByte() override { return memory.PopByte(); }
uint16_t PopWord() override { return memory.PopWord(); }
void PushLong(uint32_t value) override { memory.PushLong(value); }
uint32_t PopLong() override { return memory.PopLong(); }
void ClearMemory() override { memory.ClearMemory(); }
uint8_t operator[](int i) const override { return 0; }
uint8_t at(int i) const override { return 0; }
uint16_t last_call_frame_;
uint16_t next_pc_;
Memory& memory;
Clock& clock;
};
} // namespace emu
} // namespace app
} // namespace yaze
#endif // YAZE_APP_EMU_CPU_H_

View File

@@ -0,0 +1,123 @@
#include "app/emu/cpu/cpu.h"
namespace yaze {
namespace app {
namespace emu {
uint32_t CPU::Absolute(CPU::AccessType access_type) {
auto operand = FetchWord();
uint32_t bank =
(access_type == CPU::AccessType::Data) ? (DB << 16) : (PB << 16);
return bank | (operand & 0xFFFF);
}
uint32_t CPU::AbsoluteIndexedX() {
uint16_t address = memory.ReadWord((PB << 16) | (PC + 1));
uint32_t effective_address = (DB << 16) | ((address + X) & 0xFFFF);
return effective_address;
}
uint32_t CPU::AbsoluteIndexedY() {
uint16_t address = memory.ReadWord((PB << 16) | (PC + 1));
uint32_t effective_address = (DB << 16) | address + Y;
return effective_address;
}
uint16_t CPU::AbsoluteIndexedIndirect() {
uint16_t address = FetchWord() + X;
return memory.ReadWord((DB << 16) | address & 0xFFFF);
}
uint16_t CPU::AbsoluteIndirect() {
uint16_t address = FetchWord();
return memory.ReadWord((PB << 16) | address);
}
uint32_t CPU::AbsoluteIndirectLong() {
uint16_t address = FetchWord();
return memory.ReadWordLong((PB << 16) | address);
}
uint32_t CPU::AbsoluteLong() { return FetchLong(); }
uint32_t CPU::AbsoluteLongIndexedX() { return FetchLong() + X; }
void CPU::BlockMove(uint16_t source, uint16_t dest, uint16_t length) {
for (int i = 0; i < length; i++) {
memory.WriteByte(dest + i, memory.ReadByte(source + i));
}
}
uint16_t CPU::DirectPage() {
uint8_t dp = FetchByte();
return D + dp;
}
uint16_t CPU::DirectPageIndexedX() {
uint8_t operand = FetchByte();
uint16_t x_by_mode = GetAccumulatorSize() ? X : X & 0xFF;
return D + operand + x_by_mode;
}
uint16_t CPU::DirectPageIndexedY() {
uint8_t operand = FetchByte();
return (operand + Y) & 0xFF;
}
uint16_t CPU::DirectPageIndexedIndirectX() {
uint8_t operand = FetchByte();
uint16_t indirect_address = D + operand + X;
uint16_t effective_address = memory.ReadWord(indirect_address & 0xFFFF);
return effective_address;
}
uint16_t CPU::DirectPageIndirect() {
uint8_t dp = FetchByte();
uint16_t effective_address = D + dp;
return memory.ReadWord(effective_address);
}
uint32_t CPU::DirectPageIndirectLong() {
uint8_t dp = FetchByte();
uint16_t effective_address = D + dp;
return memory.ReadWordLong((0x00 << 0x10) | effective_address);
}
uint16_t CPU::DirectPageIndirectIndexedY() {
uint8_t operand = FetchByte();
uint16_t indirect_address = D + operand;
return memory.ReadWord(indirect_address) + Y;
}
uint32_t CPU::DirectPageIndirectLongIndexedY() {
uint8_t operand = FetchByte();
uint16_t indirect_address = D + operand;
uint16_t y_by_mode = GetAccumulatorSize() ? Y : Y & 0xFF;
uint32_t effective_address =
memory.ReadWordLong(indirect_address) + y_by_mode;
return effective_address;
}
uint16_t CPU::Immediate(bool index_size) {
bool bit_mode = index_size ? GetIndexSize() : GetAccumulatorSize();
if (bit_mode) {
return memory.ReadByte((PB << 16) | PC + 1);
} else {
return memory.ReadWord((PB << 16) | PC + 1);
}
}
uint16_t CPU::StackRelative() {
uint8_t sr = FetchByte();
uint16_t effective_address = SP() + sr;
return effective_address;
}
uint32_t CPU::StackRelativeIndirectIndexedY() {
uint8_t sr = FetchByte();
return (DB << 0x10) | (memory.ReadWord(SP() + sr) + Y);
}
} // namespace emu
} // namespace app
} // namespace yaze

View File

@@ -0,0 +1,820 @@
#include <iostream>
#include <string>
#include <vector>
#include "app/emu/cpu/cpu.h"
namespace yaze {
namespace app {
namespace emu {
/**
* 65816 Instruction Set
*
* TODO: STP, WDM
*/
void CPU::ADC(uint16_t operand) {
bool C = GetCarryFlag();
if (GetAccumulatorSize()) { // 8-bit mode
uint16_t result = static_cast<uint16_t>(A & 0xFF) +
static_cast<uint16_t>(operand) + (C ? 1 : 0);
SetCarryFlag(result > 0xFF); // Update the carry flag
// Update the overflow flag
bool overflow = (~(A ^ operand) & (A ^ result) & 0x80) != 0;
SetOverflowFlag(overflow);
// Update the accumulator with proper wrap-around
A = (A & 0xFF00) | (result & 0xFF);
SetZeroFlag((A & 0xFF) == 0);
SetNegativeFlag(A & 0x80);
} else {
uint32_t result =
static_cast<uint32_t>(A) + static_cast<uint32_t>(operand) + (C ? 1 : 0);
SetCarryFlag(result > 0xFFFF); // Update the carry flag
// Update the overflow flag
bool overflow = (~(A ^ operand) & (A ^ result) & 0x8000) != 0;
SetOverflowFlag(overflow);
// Update the accumulator
A = result & 0xFFFF;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x8000);
}
}
void CPU::AND(uint32_t value, bool isImmediate) {
uint16_t operand;
if (GetAccumulatorSize()) { // 8-bit mode
operand = isImmediate ? value : memory.ReadByte(value);
A &= operand;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x80);
} else { // 16-bit mode
operand = isImmediate ? value : memory.ReadWord(value);
A &= operand;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x8000);
}
}
// New function for absolute long addressing mode
void CPU::ANDAbsoluteLong(uint32_t address) {
uint32_t operand32 = memory.ReadWordLong(address);
A &= operand32;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x8000);
}
void CPU::ASL(uint16_t address) {
uint8_t value = memory.ReadByte(address);
SetCarryFlag(!(value & 0x80)); // Set carry flag if bit 7 is set
value <<= 1; // Shift left
value &= 0xFE; // Clear bit 0
memory.WriteByte(address, value);
SetNegativeFlag(!value);
SetZeroFlag(value);
}
void CPU::BCC(int8_t offset) {
if (!GetCarryFlag()) { // If the carry flag is clear
next_pc_ = offset;
}
}
void CPU::BCS(int8_t offset) {
if (GetCarryFlag()) { // If the carry flag is set
next_pc_ = offset;
}
}
void CPU::BEQ(int8_t offset) {
if (GetZeroFlag()) { // If the zero flag is set
next_pc_ = offset;
}
}
void CPU::BIT(uint16_t address) {
uint8_t value = memory.ReadByte(address);
SetNegativeFlag(value & 0x80);
SetOverflowFlag(value & 0x40);
SetZeroFlag((A & value) == 0);
}
void CPU::BMI(int8_t offset) {
if (GetNegativeFlag()) { // If the negative flag is set
next_pc_ = offset;
}
}
void CPU::BNE(int8_t offset) {
if (!GetZeroFlag()) { // If the zero flag is clear
// PC += offset;
next_pc_ = offset;
}
}
void CPU::BPL(int8_t offset) {
if (!GetNegativeFlag()) { // If the negative flag is clear
next_pc_ = offset;
}
}
void CPU::BRA(int8_t offset) { next_pc_ = offset; }
void CPU::BRK() {
next_pc_ = PC + 2; // Increment the program counter by 2
memory.PushWord(next_pc_);
memory.PushByte(status);
SetInterruptFlag(true);
try {
next_pc_ = memory.ReadWord(0xFFFE);
} catch (const std::exception& e) {
std::cout << "BRK: " << e.what() << std::endl;
}
}
void CPU::BRL(int16_t offset) { next_pc_ = offset; }
void CPU::BVC(int8_t offset) {
if (!GetOverflowFlag()) { // If the overflow flag is clear
next_pc_ = offset;
}
}
void CPU::BVS(int8_t offset) {
if (GetOverflowFlag()) { // If the overflow flag is set
next_pc_ = offset;
}
}
void CPU::CLC() { status &= ~0x01; }
void CPU::CLD() { status &= ~0x08; }
void CPU::CLI() { status &= ~0x04; }
void CPU::CLV() { status &= ~0x40; }
// n Set if MSB of result is set; else cleared
// z Set if result is zero; else cleared
// c Set if no borrow; else cleared
void CPU::CMP(uint32_t value, bool isImmediate) {
if (GetAccumulatorSize()) { // 8-bit
uint8_t result;
if (isImmediate) {
result = A - (value & 0xFF);
} else {
uint8_t memory_value = memory.ReadByte(value);
result = A - memory_value;
}
SetZeroFlag(result == 0);
SetNegativeFlag(result & 0x80);
SetCarryFlag(A >= (value & 0xFF));
} else { // 16-bit
uint16_t result;
if (isImmediate) {
result = A - (value & 0xFFFF);
} else {
uint16_t memory_value = memory.ReadWord(value);
result = A - memory_value;
}
SetZeroFlag(result == 0);
SetNegativeFlag(result & 0x8000);
SetCarryFlag(A >= (value & 0xFFFF));
}
}
void CPU::COP() {
next_pc_ += 2; // Increment the program counter by 2
memory.PushWord(next_pc_);
memory.PushByte(status);
SetInterruptFlag(true);
if (E) {
next_pc_ = memory.ReadWord(0xFFF4);
} else {
next_pc_ = memory.ReadWord(0xFFE4);
}
SetDecimalFlag(false);
}
void CPU::CPX(uint32_t value, bool isImmediate) {
if (GetIndexSize()) { // 8-bit
uint8_t memory_value = isImmediate ? value : memory.ReadByte(value);
compare(X, memory_value);
} else { // 16-bit
uint16_t memory_value = isImmediate ? value : memory.ReadWord(value);
compare(X, memory_value);
}
}
void CPU::CPY(uint32_t value, bool isImmediate) {
if (GetIndexSize()) { // 8-bit
uint8_t memory_value = isImmediate ? value : memory.ReadByte(value);
compare(Y, memory_value);
} else { // 16-bit
uint16_t memory_value = isImmediate ? value : memory.ReadWord(value);
compare(Y, memory_value);
}
}
void CPU::DEC(uint32_t address, bool accumulator) {
if (accumulator) {
if (GetAccumulatorSize()) { // 8-bit
A = (A - 1) & 0xFF;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x80);
} else { // 16-bit
A = (A - 1) & 0xFFFF;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x8000);
}
return;
}
if (GetAccumulatorSize()) {
uint8_t value = memory.ReadByte(address);
value--;
memory.WriteByte(address, value);
SetZeroFlag(value == 0);
SetNegativeFlag(value & 0x80);
} else {
uint16_t value = memory.ReadWord(address);
value--;
memory.WriteWord(address, value);
SetZeroFlag(value == 0);
SetNegativeFlag(value & 0x8000);
}
}
void CPU::DEX() {
if (GetIndexSize()) { // 8-bit
X = static_cast<uint8_t>(X - 1);
SetZeroFlag(X == 0);
SetNegativeFlag(X & 0x80);
} else { // 16-bit
X = static_cast<uint16_t>(X - 1);
SetZeroFlag(X == 0);
SetNegativeFlag(X & 0x8000);
}
}
void CPU::DEY() {
if (GetIndexSize()) { // 8-bit
Y = static_cast<uint8_t>(Y - 1);
SetZeroFlag(Y == 0);
SetNegativeFlag(Y & 0x80);
} else { // 16-bit
Y = static_cast<uint16_t>(Y - 1);
SetZeroFlag(Y == 0);
SetNegativeFlag(Y & 0x8000);
}
}
void CPU::EOR(uint32_t address, bool isImmediate) {
if (GetAccumulatorSize()) {
A ^= isImmediate ? address : memory.ReadByte(address);
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x80);
} else {
A ^= isImmediate ? address : memory.ReadWord(address);
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x8000);
}
}
void CPU::INC(uint32_t address, bool accumulator) {
if (accumulator) {
if (GetAccumulatorSize()) { // 8-bit
A = (A + 1) & 0xFF;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x80);
} else { // 16-bit
A = (A + 1) & 0xFFFF;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x8000);
}
return;
}
if (GetAccumulatorSize()) {
uint8_t value = memory.ReadByte(address);
value++;
memory.WriteByte(address, value);
SetNegativeFlag(value & 0x80);
SetZeroFlag(value == 0);
} else {
uint16_t value = memory.ReadWord(address);
value++;
memory.WriteWord(address, value);
SetNegativeFlag(value & 0x8000);
SetZeroFlag(value == 0);
}
}
void CPU::INX() {
if (GetIndexSize()) { // 8-bit
X = static_cast<uint8_t>(X + 1);
SetZeroFlag(X == 0);
SetNegativeFlag(X & 0x80);
} else { // 16-bit
X = static_cast<uint16_t>(X + 1);
SetZeroFlag(X == 0);
SetNegativeFlag(X & 0x8000);
}
}
void CPU::INY() {
if (GetIndexSize()) { // 8-bit
Y = static_cast<uint8_t>(Y + 1);
SetZeroFlag(Y == 0);
SetNegativeFlag(Y & 0x80);
} else { // 16-bit
Y = static_cast<uint16_t>(Y + 1);
SetZeroFlag(Y == 0);
SetNegativeFlag(Y & 0x8000);
}
}
void CPU::JMP(uint16_t address) {
next_pc_ = address; // Set program counter to the new address
}
void CPU::JML(uint32_t address) {
next_pc_ = static_cast<uint16_t>(address & 0xFFFF);
// Set the PBR to the upper 8 bits of the address
PB = static_cast<uint8_t>((address >> 16) & 0xFF);
}
void CPU::JSR(uint16_t address) {
memory.PushWord(PC); // Push the program counter onto the stack
next_pc_ = address; // Set program counter to the new address
}
void CPU::JSL(uint32_t address) {
memory.PushLong(PC); // Push the program counter onto the stack as a long
// value (24 bits)
next_pc_ = address; // Set program counter to the new address
}
void CPU::LDA(uint16_t address, bool isImmediate, bool direct_page, bool data_bank) {
uint8_t bank = PB;
if (direct_page) {
bank = 0;
}
if (GetAccumulatorSize()) {
A = isImmediate ? address : memory.ReadByte((bank << 16) | address);
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x80);
} else {
A = isImmediate ? address : memory.ReadWord((bank << 16) | address);
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x8000);
}
}
void CPU::LDX(uint16_t address, bool isImmediate) {
if (GetIndexSize()) {
X = isImmediate ? address : memory.ReadByte(address);
SetZeroFlag(X == 0);
SetNegativeFlag(X & 0x80);
} else {
X = isImmediate ? address : memory.ReadWord(address);
SetZeroFlag(X == 0);
SetNegativeFlag(X & 0x8000);
}
}
void CPU::LDY(uint16_t address, bool isImmediate) {
if (GetIndexSize()) {
Y = isImmediate ? address : memory.ReadByte(address);
SetZeroFlag(Y == 0);
SetNegativeFlag(Y & 0x80);
} else {
Y = isImmediate ? address : memory.ReadWord(address);
SetZeroFlag(Y == 0);
SetNegativeFlag(Y & 0x8000);
}
}
void CPU::LSR(uint16_t address, bool accumulator) {
if (accumulator) {
if (GetAccumulatorSize()) { // 8-bit
SetCarryFlag(A & 0x01);
A >>= 1;
SetZeroFlag(A == 0);
SetNegativeFlag(false);
} else { // 16-bit
SetCarryFlag(A & 0x0001);
A >>= 1;
SetZeroFlag(A == 0);
SetNegativeFlag(false);
}
return;
}
uint8_t value = memory.ReadByte(address);
SetCarryFlag(value & 0x01);
value >>= 1;
memory.WriteByte(address, value);
SetNegativeFlag(false);
SetZeroFlag(value == 0);
}
void CPU::MVN(uint16_t source, uint16_t dest, uint16_t length) {
for (uint16_t i = 0; i < length; i++) {
memory.WriteByte(dest, memory.ReadByte(source));
source++;
dest++;
}
}
void CPU::MVP(uint16_t source, uint16_t dest, uint16_t length) {
for (uint16_t i = 0; i < length; i++) {
memory.WriteByte(dest, memory.ReadByte(source));
source--;
dest--;
}
}
void CPU::NOP() {
// Do nothing
}
void CPU::ORA(uint16_t address, bool isImmediate) {
if (GetAccumulatorSize()) {
A |= isImmediate ? address : memory.ReadByte(address);
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x80);
} else {
A |= isImmediate ? address : memory.ReadWord(address);
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x8000);
}
}
void CPU::PEA() {
uint16_t address = FetchWord();
memory.PushWord(address);
}
void CPU::PEI() {
uint16_t address = FetchWord();
memory.PushWord(memory.ReadWord(address));
}
void CPU::PER() {
uint16_t address = FetchWord();
memory.PushWord(PC + address);
}
void CPU::PHA() {
if (GetAccumulatorSize()) {
memory.PushByte(static_cast<uint8_t>(A));
} else {
memory.PushWord(A);
}
}
void CPU::PHB() { memory.PushByte(DB); }
void CPU::PHD() { memory.PushWord(D); }
void CPU::PHK() { memory.PushByte(PB); }
void CPU::PHP() { memory.PushByte(status); }
void CPU::PHX() {
if (GetIndexSize()) {
memory.PushByte(static_cast<uint8_t>(X));
} else {
memory.PushWord(X);
}
}
void CPU::PHY() {
if (GetIndexSize()) {
memory.PushByte(static_cast<uint8_t>(Y));
} else {
memory.PushWord(Y);
}
}
void CPU::PLA() {
if (GetAccumulatorSize()) {
A = memory.PopByte();
SetNegativeFlag((A & 0x80) != 0);
} else {
A = memory.PopWord();
SetNegativeFlag((A & 0x8000) != 0);
}
SetZeroFlag(A == 0);
}
void CPU::PLB() {
DB = memory.PopByte();
SetNegativeFlag((DB & 0x80) != 0);
SetZeroFlag(DB == 0);
}
// Pull Direct Page Register from Stack
void CPU::PLD() {
D = memory.PopWord();
SetNegativeFlag((D & 0x8000) != 0);
SetZeroFlag(D == 0);
}
// Pull Processor Status Register from Stack
void CPU::PLP() { status = memory.PopByte(); }
void CPU::PLX() {
if (GetIndexSize()) {
X = memory.PopByte();
SetNegativeFlag((A & 0x80) != 0);
} else {
X = memory.PopWord();
SetNegativeFlag((A & 0x8000) != 0);
}
SetZeroFlag(X == 0);
}
void CPU::PLY() {
if (GetIndexSize()) {
Y = memory.PopByte();
SetNegativeFlag((A & 0x80) != 0);
} else {
Y = memory.PopWord();
SetNegativeFlag((A & 0x8000) != 0);
}
SetZeroFlag(Y == 0);
}
void CPU::REP() {
auto byte = FetchByte();
status &= ~byte;
}
void CPU::ROL(uint32_t address, bool accumulator) {
if (accumulator) {
if (GetAccumulatorSize()) { // 8-bit
uint8_t carry = GetCarryFlag() ? 0x01 : 0x00;
SetCarryFlag(A & 0x80);
A <<= 1;
A |= carry;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x80);
} else { // 16-bit
uint8_t carry = GetCarryFlag() ? 0x01 : 0x00;
SetCarryFlag(A & 0x8000);
A <<= 1;
A |= carry;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x8000);
}
return;
}
uint8_t value = memory.ReadByte(address);
uint8_t carry = GetCarryFlag() ? 0x01 : 0x00;
SetCarryFlag(value & 0x80);
value <<= 1;
value |= carry;
memory.WriteByte(address, value);
SetNegativeFlag(value & 0x80);
SetZeroFlag(value == 0);
}
void CPU::ROR(uint32_t address, bool accumulator) {
if (accumulator) {
if (GetAccumulatorSize()) { // 8-bit
uint8_t carry = GetCarryFlag() ? 0x80 : 0x00;
SetCarryFlag(A & 0x01);
A >>= 1;
A |= carry;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x80);
} else { // 16-bit
uint8_t carry = GetCarryFlag() ? 0x8000 : 0x00;
SetCarryFlag(A & 0x0001);
A >>= 1;
A |= carry;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x8000);
}
return;
}
uint8_t value = memory.ReadByte(address);
uint8_t carry = GetCarryFlag() ? 0x80 : 0x00;
SetCarryFlag(value & 0x01);
value >>= 1;
value |= carry;
memory.WriteByte(address, value);
SetNegativeFlag(value & 0x80);
SetZeroFlag(value == 0);
}
void CPU::RTI() {
status = memory.PopByte();
PC = memory.PopWord();
}
void CPU::RTL() {
next_pc_ = memory.PopWord();
PB = memory.PopByte();
}
void CPU::RTS() {
last_call_frame_ = memory.PopWord();
}
void CPU::SBC(uint32_t value, bool isImmediate) {
uint16_t operand;
if (!GetAccumulatorSize()) { // 16-bit mode
operand = isImmediate ? value : memory.ReadWord(value);
uint16_t result = A - operand - (GetCarryFlag() ? 0 : 1);
SetCarryFlag(!(result > 0xFFFF)); // Update the carry flag
// Update the overflow flag
bool overflow = ((A ^ operand) & (A ^ result) & 0x8000) != 0;
SetOverflowFlag(overflow);
// Update the accumulator
A = result & 0xFFFF;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x8000);
} else { // 8-bit mode
operand = isImmediate ? value : memory.ReadByte(value);
uint8_t result = A - operand - (GetCarryFlag() ? 0 : 1);
SetCarryFlag(!(result > 0xFF)); // Update the carry flag
// Update the overflow flag
bool overflow = ((A ^ operand) & (A ^ result) & 0x80) != 0;
SetOverflowFlag(overflow);
// Update the accumulator
A = result & 0xFF;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x80);
}
}
void CPU::SEC() { status |= 0x01; }
void CPU::SED() { status |= 0x08; }
void CPU::SEI() { status |= 0x04; }
void CPU::SEP() {
auto byte = FetchByte();
status |= byte;
}
void CPU::STA(uint32_t address) {
if (GetAccumulatorSize()) {
memory.WriteByte(address, static_cast<uint8_t>(A));
} else {
memory.WriteWord(address, A);
}
}
// TODO: Make this work with the Clock class of the CPU
void CPU::STP() {
// During the next phase 2 clock cycle, stop the processors oscillator input
// The processor is effectively shut down until a reset occurs (RES` pin).
}
void CPU::STX(uint16_t address) {
if (GetIndexSize()) {
memory.WriteByte(address, static_cast<uint8_t>(X));
} else {
memory.WriteWord(address, X);
}
}
void CPU::STY(uint16_t address) {
if (GetIndexSize()) {
memory.WriteByte(address, static_cast<uint8_t>(Y));
} else {
memory.WriteWord(address, Y);
}
}
void CPU::STZ(uint16_t address) {
if (GetAccumulatorSize()) {
memory.WriteByte(address, 0x00);
} else {
memory.WriteWord(address, 0x0000);
}
}
void CPU::TAX() {
X = A;
SetZeroFlag(X == 0);
SetNegativeFlag(X & 0x80);
}
void CPU::TAY() {
Y = A;
SetZeroFlag(Y == 0);
SetNegativeFlag(Y & 0x80);
}
void CPU::TCD() {
D = A;
SetZeroFlag(D == 0);
SetNegativeFlag(D & 0x80);
}
void CPU::TCS() { memory.SetSP(A); }
void CPU::TDC() {
A = D;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x80);
}
void CPU::TRB(uint16_t address) {
uint8_t value = memory.ReadByte(address);
SetZeroFlag((A & value) == 0);
value &= ~A;
memory.WriteByte(address, value);
}
void CPU::TSB(uint16_t address) {
uint8_t value = memory.ReadByte(address);
SetZeroFlag((A & value) == 0);
value |= A;
memory.WriteByte(address, value);
}
void CPU::TSC() {
A = SP();
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x80);
}
void CPU::TSX() {
X = SP();
SetZeroFlag(X == 0);
SetNegativeFlag(X & 0x80);
}
void CPU::TXA() {
A = X;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x80);
}
void CPU::TXS() { memory.SetSP(X); }
void CPU::TXY() {
Y = X;
SetZeroFlag(X == 0);
SetNegativeFlag(X & 0x80);
}
void CPU::TYA() {
A = Y;
SetZeroFlag(A == 0);
SetNegativeFlag(A & 0x80);
}
void CPU::TYX() {
X = Y;
SetZeroFlag(Y == 0);
SetNegativeFlag(Y & 0x80);
}
// TODO: Make this communicate with the SNES class
void CPU::WAI() {
// Pull the RDY pin low
// Power consumption is reduced(?)
// RDY remains low until an external hardware interupt
// (NMI, IRQ, ABORT, or RESET) is received from the SNES class
}
void CPU::XBA() {
uint8_t lowByte = A & 0xFF;
uint8_t highByte = (A >> 8) & 0xFF;
A = (lowByte << 8) | highByte;
}
void CPU::XCE() {
uint8_t carry = status & 0x01;
status &= ~0x01;
status |= E;
E = carry;
}
} // namespace emu
} // namespace app
} // namespace yaze

View File

@@ -0,0 +1,61 @@
#pragma once
#include <cstdint>
#include <string>
#include <unordered_map>
const std::unordered_map<uint8_t, std::string> opcode_to_mnemonic = {
{0x00, "BRK"}, {0x01, "ORA"}, {0x02, "COP"}, {0x03, "ORA"}, {0x04, "TSB"},
{0x05, "ORA"}, {0x06, "ASL"}, {0x07, "ORA"}, {0x08, "PHP"}, {0x09, "ORA"},
{0x0A, "ASL"}, {0x0B, "PHD"}, {0x0C, "TSB"}, {0x0D, "ORA"}, {0x0E, "ASL"},
{0x0F, "ORA"}, {0x10, "BPL"}, {0x11, "ORA"}, {0x12, "ORA"}, {0x13, "ORA"},
{0x14, "TRB"}, {0x15, "ORA"}, {0x16, "ASL"}, {0x17, "ORA"}, {0x18, "CLC"},
{0x19, "ORA"}, {0x1A, "INC"}, {0x1B, "TCS"}, {0x1C, "TRB"}, {0x1D, "ORA"},
{0x1E, "ASL"}, {0x1F, "ORA"}, {0x20, "JSR"}, {0x21, "AND"}, {0x22, "JSL"},
{0x23, "AND"}, {0x24, "BIT"}, {0x25, "AND"}, {0x26, "ROL"}, {0x27, "AND"},
{0x28, "PLP"}, {0x29, "AND"}, {0x2A, "ROL"}, {0x2B, "PLD"}, {0x2C, "BIT"},
{0x2D, "AND"}, {0x2E, "ROL"}, {0x2F, "AND"}, {0x30, "BMI"}, {0x31, "AND"},
{0x32, "AND"}, {0x33, "AND"}, {0x34, "BIT"}, {0x35, "AND"}, {0x36, "ROL"},
{0x37, "AND"}, {0x38, "SEC"}, {0x39, "AND"}, {0x3A, "DEC"}, {0x3B, "TSC"},
{0x3C, "BIT"}, {0x3D, "AND"}, {0x3E, "ROL"}, {0x3F, "AND"}, {0x40, "RTI"},
{0x41, "EOR"}, {0x42, "WDM"}, {0x43, "EOR"}, {0x44, "MVP"}, {0x45, "EOR"},
{0x46, "LSR"}, {0x47, "EOR"}, {0x48, "PHA"}, {0x49, "EOR"}, {0x4A, "LSR"},
{0x4B, "PHK"}, {0x4C, "JMP"}, {0x4D, "EOR"}, {0x4E, "LSR"}, {0x4F, "EOR"},
{0x50, "BVC"}, {0x51, "EOR"}, {0x52, "EOR"}, {0x53, "EOR"}, {0x54, "MVN"},
{0x55, "EOR"}, {0x56, "LSR"}, {0x57, "EOR"}, {0x58, "CLI"}, {0x59, "EOR"},
{0x5A, "PHY"}, {0x5B, "TCD"}, {0x5C, "JMP"}, {0x5D, "EOR"}, {0x5E, "LSR"},
{0x5F, "EOR"}, {0x60, "RTS"}, {0x61, "ADC"}, {0x62, "PER"}, {0x63, "ADC"},
{0x64, "STZ"}, {0x65, "ADC"}, {0x66, "ROR"}, {0x67, "ADC"}, {0x68, "PLA"},
{0x69, "ADC"}, {0x6A, "ROR"}, {0x6B, "RTL"}, {0x6C, "JMP"}, {0x6D, "ADC"},
{0x6E, "ROR"}, {0x6F, "ADC"}, {0x70, "BVS"}, {0x71, "ADC"}, {0x72, "ADC"},
{0x73, "ADC"}, {0x74, "STZ"}, {0x75, "ADC"}, {0x76, "ROR"}, {0x77, "ADC"},
{0x78, "SEI"}, {0x79, "ADC"}, {0x7A, "PLY"}, {0x7B, "TDC"}, {0x7C, "JMP"},
{0x7D, "ADC"}, {0x7E, "ROR"}, {0x7F, "ADC"}, {0x80, "BRA"}, {0x81, "STA"},
{0x82, "BRL"}, {0x83, "STA"}, {0x84, "STY"}, {0x85, "STA"}, {0x86, "STX"},
{0x87, "STA"}, {0x88, "DEY"}, {0x89, "BIT"}, {0x8A, "TXA"}, {0x8B, "PHB"},
{0x8C, "STY"}, {0x8D, "STA"}, {0x8E, "STX"}, {0x8F, "STA"}, {0x90, "BCC"},
{0x91, "STA"}, {0x92, "STA"}, {0x93, "STA"}, {0x94, "STY"}, {0x95, "STA"},
{0x96, "STX"}, {0x97, "STA"}, {0x98, "TYA"}, {0x99, "STA"}, {0x9A, "TXS"},
{0x9B, "TXY"}, {0x9C, "STZ"}, {0x9D, "STA"}, {0x9E, "STZ"}, {0x9F, "STA"},
{0xA0, "LDY"}, {0xA1, "LDA"}, {0xA2, "LDX"}, {0xA3, "LDA"}, {0xA4, "LDY"},
{0xA5, "LDA"}, {0xA6, "LDX"}, {0xA7, "LDA"}, {0xA8, "TAY"}, {0xA9, "LDA"},
{0xAA, "TAX"}, {0xAB, "PLB"}, {0xAC, "LDY"}, {0xAD, "LDA"}, {0xAE, "LDX"},
{0xAF, "LDA"}, {0xB0, "BCS"}, {0xB1, "LDA"}, {0xB2, "LDA"}, {0xB3, "LDA"},
{0xB4, "LDY"}, {0xB5, "LDA"}, {0xB6, "LDX"}, {0xB7, "LDA"}, {0xB8, "CLV"},
{0xB9, "LDA"}, {0xBA, "TSX"}, {0xBB, "TYX"}, {0xBC, "LDY"}, {0xBD, "LDA"},
{0xBE, "LDX"}, {0xBF, "LDA"}, {0xC0, "CPY"}, {0xC1, "CMP"}, {0xC2, "REP"},
{0xC3, "CMP"}, {0xC4, "CPY"}, {0xC5, "CMP"}, {0xC6, "DEC"}, {0xC7, "CMP"},
{0xC8, "INY"}, {0xC9, "CMP"}, {0xCA, "DEX"}, {0xCB, "WAI"}, {0xCC, "CPY"},
{0xCD, "CMP"}, {0xCE, "DEC"}, {0xCF, "CMP"}, {0xD0, "BNE"}, {0xD1, "CMP"},
{0xD2, "CMP"}, {0xD3, "CMP"}, {0xD4, "PEI"}, {0xD5, "CMP"}, {0xD6, "DEC"},
{0xD7, "CMP"}, {0xD8, "CLD"}, {0xD9, "CMP"}, {0xDA, "PHX"}, {0xDB, "STP"},
{0xDC, "JMP"}, {0xDD, "CMP"}, {0xDE, "DEC"}, {0xDF, "CMP"}, {0xE0, "CPX"},
{0xE1, "SBC"}, {0xE2, "SEP"}, {0xE3, "SBC"}, {0xE4, "CPX"}, {0xE5, "SBC"},
{0xE6, "INC"}, {0xE7, "SBC"}, {0xE8, "INX"}, {0xE9, "SBC"}, {0xEA, "NOP"},
{0xEB, "XBA"}, {0xEC, "CPX"}, {0xED, "SBC"}, {0xEE, "INC"}, {0xEF, "SBC"},
{0xF0, "BEQ"}, {0xF1, "SBC"}, {0xF2, "SBC"}, {0xF3, "SBC"}, {0xF4, "PEA"},
{0xF5, "SBC"}, {0xF6, "INC"}, {0xF7, "SBC"}, {0xF8, "SED"}, {0xF9, "SBC"},
{0xFA, "PLX"}, {0xFB, "XCE"}, {0xFC, "JSR"}, {0xFD, "SBC"}, {0xFE, "INC"},
{0xFF, "SBC"}
};

View File

@@ -0,0 +1,118 @@
#pragma once
#include <cstdint>
#include <regex>
#include <sstream>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <vector>
#include "app/emu/cpu/internal/opcodes.h"
namespace yaze {
namespace app {
namespace emu {
class AsmParser {
public:
std::vector<uint8_t> Parse(const std::string& instruction) {
std::smatch match;
if (!std::regex_match(instruction, match, instruction_regex_)) {
throw std::runtime_error("Invalid instruction format: " + instruction);
}
std::string mnemonic = match[1];
std::string addressing_mode = match[2];
std::string operand = match[3];
std::string lookup_string = mnemonic.substr(0, 3);
auto opcode_entry = mnemonic_to_opcode_.find(mnemonic);
if (opcode_entry == mnemonic_to_opcode_.end()) {
throw std::runtime_error(
"Unknown mnemonic or addressing mode: " + mnemonic + addressing_mode);
}
std::vector<uint8_t> bytes = {opcode_entry->second};
// AppendOperandBytes(bytes, operand, addressing_mode);
return bytes;
}
void CreateInternalOpcodeMap() {
for (const auto& opcode_entry : opcode_to_mnemonic) {
std::string name = opcode_entry.second;
uint8_t opcode = opcode_entry.first;
mnemonic_to_opcode_[name] = opcode;
}
}
private:
void AppendOperandBytes(std::vector<uint8_t>& bytes,
const std::string& operand,
const std::string& addressing_mode) {
if (addressing_mode == ".b") {
bytes.push_back(static_cast<uint8_t>(std::stoi(operand, nullptr, 16)));
} else if (addressing_mode == ".w") {
uint16_t word_operand =
static_cast<uint16_t>(std::stoi(operand, nullptr, 16));
bytes.push_back(static_cast<uint8_t>(word_operand & 0xFF));
bytes.push_back(static_cast<uint8_t>((word_operand >> 8) & 0xFF));
} else if (addressing_mode == ".l") {
uint32_t long_operand =
static_cast<uint32_t>(std::stoul(operand, nullptr, 16));
bytes.push_back(static_cast<uint8_t>(long_operand & 0xFF));
bytes.push_back(static_cast<uint8_t>((long_operand >> 8) & 0xFF));
bytes.push_back(static_cast<uint8_t>((long_operand >> 16) & 0xFF));
}
}
enum class AddressingMode {
kAbsolute,
kAbsoluteLong,
kAbsoluteIndexedIndirect,
kAbsoluteIndexedX,
kAbsoluteIndexedY,
kAbsoluteIndirect,
kAbsoluteIndirectLong,
kAbsoluteLongIndexedX,
kAccumulator,
kBlockMove,
kDirectPage,
kDirectPageIndexedX,
kDirectPageIndexedY,
kDirectPageIndirect,
kDirectPageIndirectIndexedY,
kDirectPageIndirectLong,
kDirectPageIndirectLongIndexedY,
kDirectPageIndirectIndexedX,
kDirectPageIndirectLongIndexedX,
kImmediate,
kImplied,
kProgramCounterRelative,
kProgramCounterRelativeLong,
kStackRelative,
kStackRelativeIndirectIndexedY,
kStackRelativeIndirectIndexedYLong,
kStack,
kStackRelativeIndexedY,
};
AddressingMode InferAddressingModeFromOperand(const std::string& operand) {
if (operand[0] == '$') {
return AddressingMode::kAbsolute;
} else if (operand[0] == '#') {
return AddressingMode::kImmediate;
} else {
return AddressingMode::kImplied;
}
}
const std::regex instruction_regex_{R"((\w+)\s*(\.\w)?\s*(\$\w+|\#\w+|\w+))"};
std::unordered_map<std::string, uint8_t> mnemonic_to_opcode_;
};
} // namespace emu
} // namespace app
} // namespace yaze

View File

@@ -0,0 +1,56 @@
#ifndef YAZE_APP_EMU_DEBUG_DEBUGGER_H_
#define YAZE_APP_EMU_DEBUG_DEBUGGER_H_
#include "app/emu/audio/apu.h"
#include "app/emu/cpu/cpu.h"
#include "app/emu/video/ppu.h"
namespace yaze {
namespace app {
namespace emu {
class Debugger {
public:
Debugger() = default;
// Attach the debugger to the emulator
// Debugger(CPU &cpu, PPU &ppu, APU &apu);
// Set a breakpoint
void SetBreakpoint(uint16_t address);
// Remove a breakpoint
void RemoveBreakpoint(uint16_t address);
// Step through the code
void Step();
// Inspect memory
uint8_t InspectMemory(uint16_t address);
// Modify memory
void ModifyMemory(uint16_t address, uint8_t value);
// Inspect registers
uint8_t InspectRegister(uint8_t reg);
// Modify registers
void ModifyRegister(uint8_t reg, uint8_t value);
// Handle other debugger tasks
// ...
private:
// References to the emulator's components
// CPU &cpu;
// PPU &ppu;
// APU &apu;
// Breakpoints, watchpoints, etc.
// ...
};
} // namespace emu
} // namespace app
} // namespace yaze
#endif // YAZE_APP_EMU_DBG_H_

43
src/app/emu/debug/log.h Normal file
View File

@@ -0,0 +1,43 @@
#ifndef YAZE_APP_EMU_LOG_H_
#define YAZE_APP_EMU_LOG_H_
#include <iostream>
#include <string>
namespace yaze {
namespace app {
namespace emu {
// Logger.h
class Logger {
public:
static Logger& GetInstance() {
static Logger instance;
return instance;
}
void Log(const std::string& message) const {
// Write log messages to a file or console
std::cout << message << std::endl;
}
private:
Logger() = default;
Logger(const Logger&) = delete;
Logger& operator=(const Logger&) = delete;
};
// Loggable.h
class Loggable {
protected:
Logger& logger_ = Logger::GetInstance();
virtual ~Loggable() = default;
virtual void LogMessage(const std::string& message) { logger_.Log(message); }
};
} // namespace emu
} // namespace app
} // namespace yaze
#endif // YAZE_APP_EMU_LOG_H_

387
src/app/emu/emulator.cc Normal file
View File

@@ -0,0 +1,387 @@
#include "app/emu/emulator.h"
#include <imgui/imgui.h>
#include <imgui_memory_editor.h>
#include <cstdint>
#include <vector>
#include "app/core/constants.h"
#include "app/emu/snes.h"
#include "app/gui/icons.h"
#include "app/gui/input.h"
#include "app/rom.h"
namespace yaze {
namespace app {
namespace emu {
namespace {
bool ShouldDisplay(const InstructionEntry& entry, const char* filter,
bool showAll) {
// Implement logic to determine if the entry should be displayed based on the
// filter and showAll flag
return true;
}
} // namespace
using ImGui::NextColumn;
using ImGui::SameLine;
using ImGui::Separator;
using ImGui::TableNextColumn;
using ImGui::Text;
void Emulator::Run() {
if (!snes_.running() && rom()->isLoaded()) {
snes_.SetupMemory(*rom());
snes_.Init(*rom());
}
RenderNavBar();
if (running_) {
HandleEvents();
if (!step_) {
snes_.Run();
}
}
RenderEmulator();
}
void Emulator::RenderNavBar() {
MENU_BAR()
if (ImGui::BeginMenu("Options")) {
MENU_ITEM("Input") {}
MENU_ITEM("Audio") {}
MENU_ITEM("Video") {}
ImGui::EndMenu();
}
END_MENU_BAR()
if (ImGui::Button(ICON_MD_PLAY_ARROW)) {
loading_ = true;
}
if (ImGui::IsItemHovered()) {
ImGui::SetTooltip("Start Emulation");
}
SameLine();
if (ImGui::Button(ICON_MD_PAUSE)) {
snes_.SetCpuMode(1);
}
if (ImGui::IsItemHovered()) {
ImGui::SetTooltip("Pause Emulation");
}
SameLine();
if (ImGui::Button(ICON_MD_SKIP_NEXT)) {
// Step through Code logic
snes_.StepRun();
}
if (ImGui::IsItemHovered()) {
ImGui::SetTooltip("Step Through Code");
}
SameLine();
if (ImGui::Button(ICON_MD_REFRESH)) {
// Reset Emulator logic
}
if (ImGui::IsItemHovered()) {
ImGui::SetTooltip("Reset Emulator");
}
SameLine();
if (ImGui::Button(ICON_MD_STOP)) {
// Stop Emulation logic
running_ = false;
}
if (ImGui::IsItemHovered()) {
ImGui::SetTooltip("Stop Emulation");
}
SameLine();
if (ImGui::Button(ICON_MD_SAVE)) {
// Save State logic
}
if (ImGui::IsItemHovered()) {
ImGui::SetTooltip("Save State");
}
SameLine();
if (ImGui::Button(ICON_MD_SYSTEM_UPDATE_ALT)) {
}
if (ImGui::IsItemHovered()) {
ImGui::SetTooltip("Load State");
}
// Additional elements
SameLine();
if (ImGui::Button(ICON_MD_SETTINGS)) {
// Settings logic
}
if (ImGui::IsItemHovered()) {
ImGui::SetTooltip("Settings");
}
SameLine();
if (ImGui::Button(ICON_MD_INFO)) {
if (ImGui::IsItemHovered()) {
ImGui::SetTooltip("About Debugger");
}
// About Debugger logic
}
static bool show_memory_viewer = false;
SameLine();
if (ImGui::Button(ICON_MD_MEMORY)) {
show_memory_viewer = !show_memory_viewer;
}
if (ImGui::IsItemHovered()) {
ImGui::SetTooltip("Memory Viewer");
}
if (show_memory_viewer) {
ImGui::Begin("Memory Viewer", &show_memory_viewer);
RenderMemoryViewer();
ImGui::End();
}
}
void Emulator::HandleEvents() {
// Handle user input events
// ...
}
void Emulator::RenderEmulator() {
if (ImGui::BeginTable("##Emulator", 3,
ImGuiTableFlags_Resizable | ImGuiTableFlags_ScrollY)) {
ImGui::TableSetupColumn("CPU");
ImGui::TableSetupColumn("PPU");
ImGui::TableHeadersRow();
TableNextColumn();
RenderCpuInstructionLog(snes_.cpu().instruction_log_);
TableNextColumn();
RenderSnesPpu();
RenderBreakpointList();
TableNextColumn();
ImGui::BeginChild("##", ImVec2(0, 0), true,
ImGuiWindowFlags_NoMove | ImGuiWindowFlags_NoScrollbar);
RenderCpuState(snes_.cpu());
ImGui::EndChild();
ImGui::EndTable();
}
}
void Emulator::RenderSnesPpu() {
ImVec2 size = ImVec2(320, 240);
if (snes_.running()) {
ImGui::BeginChild("EmulatorOutput", ImVec2(0, 240), true,
ImGuiWindowFlags_NoMove | ImGuiWindowFlags_NoScrollbar);
ImGui::SetCursorPosX((ImGui::GetWindowSize().x - size.x) * 0.5f);
ImGui::SetCursorPosY((ImGui::GetWindowSize().y - size.y) * 0.5f);
ImGui::Image((void*)snes_.ppu().GetScreen()->texture(), size, ImVec2(0, 0),
ImVec2(1, 1));
ImGui::EndChild();
} else {
ImGui::Text("Emulator output not available.");
ImGui::BeginChild("EmulatorOutput", ImVec2(0, 240), true,
ImGuiWindowFlags_NoMove | ImGuiWindowFlags_NoScrollbar);
ImGui::SetCursorPosX(((ImGui::GetWindowSize().x * 0.5f) - size.x) * 0.5f);
ImGui::SetCursorPosY(((ImGui::GetWindowSize().y * 0.5f) - size.y) * 0.5f);
ImGui::Dummy(size);
ImGui::EndChild();
}
ImGui::Separator();
}
void Emulator::RenderBreakpointList() {
Text("Breakpoints");
Separator();
static char breakpoint_input[10] = "";
static int current_memory_mode = 0;
static bool read_mode = false;
static bool write_mode = false;
static bool execute_mode = false;
if (ImGui::Combo("##TypeOfMemory", &current_memory_mode, "PRG\0RAM\0")) {
}
ImGui::Checkbox("Read", &read_mode);
SameLine();
ImGui::Checkbox("Write", &write_mode);
SameLine();
ImGui::Checkbox("Execute", &execute_mode);
// Breakpoint input fields and buttons
if (ImGui::InputText("##BreakpointInput", breakpoint_input, 10,
ImGuiInputTextFlags_EnterReturnsTrue)) {
int breakpoint = std::stoi(breakpoint_input, nullptr, 16);
snes_.cpu().SetBreakpoint(breakpoint);
memset(breakpoint_input, 0, sizeof(breakpoint_input));
}
SameLine();
if (ImGui::Button("Add")) {
int breakpoint = std::stoi(breakpoint_input, nullptr, 16);
snes_.cpu().SetBreakpoint(breakpoint);
memset(breakpoint_input, 0, sizeof(breakpoint_input));
}
SameLine();
if (ImGui::Button("Clear")) {
snes_.cpu().ClearBreakpoints();
}
Separator();
auto breakpoints = snes_.cpu().GetBreakpoints();
if (!breakpoints.empty()) {
Text("Breakpoints:");
ImGui::BeginChild("BreakpointsList", ImVec2(0, 100), true);
for (auto breakpoint : breakpoints) {
if (ImGui::Selectable(absl::StrFormat("0x%04X", breakpoint).c_str())) {
// Jump to breakpoint
// snes_.Cpu().JumpToBreakpoint(breakpoint);
}
}
ImGui::EndChild();
}
Separator();
gui::InputHexByte("PB", &manual_pb_, 1, 25.f);
gui::InputHexWord("PC", &manual_pc_, 25.f);
if (ImGui::Button("Set Current Address")) {
snes_.cpu().PC = manual_pc_;
snes_.cpu().PB = manual_pb_;
}
}
void Emulator::RenderCpuState(CPU& cpu) {
if (ImGui::CollapsingHeader("Register Values",
ImGuiTreeNodeFlags_DefaultOpen)) {
ImGui::Columns(2, "RegistersColumns");
Separator();
Text("A: 0x%04X", cpu.A);
NextColumn();
Text("D: 0x%04X", cpu.D);
NextColumn();
Text("X: 0x%04X", cpu.X);
NextColumn();
Text("DB: 0x%02X", cpu.DB);
NextColumn();
Text("Y: 0x%04X", cpu.Y);
NextColumn();
Text("PB: 0x%02X", cpu.PB);
NextColumn();
Text("PC: 0x%04X", cpu.PC);
NextColumn();
Text("E: %d", cpu.E);
NextColumn();
ImGui::Columns(1);
Separator();
}
// Call Stack
if (ImGui::CollapsingHeader("Call Stack", ImGuiTreeNodeFlags_DefaultOpen)) {
// For each return address in the call stack:
Text("Return Address: 0x%08X", 0xFFFFFF); // Placeholder
}
snes_.SetCpuMode(0);
}
void Emulator::RenderMemoryViewer() {
static MemoryEditor mem_edit;
if (ImGui::Button("RAM")) {
mem_edit.GotoAddrAndHighlight(0x7E0000, 0x7E0001);
}
if (ImGui::BeginTable("MemoryViewerTable", 2,
ImGuiTableFlags_Resizable | ImGuiTableFlags_ScrollY)) {
ImGui::TableSetupColumn("Bookmarks");
ImGui::TableSetupColumn("Memory");
ImGui::TableHeadersRow();
TableNextColumn();
if (ImGui::CollapsingHeader("Bookmarks", ImGuiTreeNodeFlags_DefaultOpen)) {
// Input for adding a new bookmark
static char nameBuf[256];
static uint64_t uint64StringBuf;
ImGui::InputText("Name", nameBuf, IM_ARRAYSIZE(nameBuf));
gui::InputHex("Address", &uint64StringBuf);
if (ImGui::Button("Add Bookmark")) {
bookmarks.push_back({nameBuf, uint64StringBuf});
memset(nameBuf, 0, sizeof(nameBuf));
uint64StringBuf = 0;
}
// Tree view of bookmarks
for (const auto& bookmark : bookmarks) {
if (ImGui::TreeNode(bookmark.name.c_str(), ICON_MD_STAR)) {
auto bookmark_string = absl::StrFormat(
"%s: 0x%08X", bookmark.name.c_str(), bookmark.value);
if (ImGui::Selectable(bookmark_string.c_str())) {
mem_edit.GotoAddrAndHighlight(static_cast<ImU64>(bookmark.value),
1);
}
SameLine();
if (ImGui::Button("Delete")) {
// Logic to delete the bookmark
bookmarks.erase(std::remove_if(bookmarks.begin(), bookmarks.end(),
[&](const Bookmark& b) {
return b.name == bookmark.name &&
b.value == bookmark.value;
}),
bookmarks.end());
}
ImGui::TreePop();
}
}
}
TableNextColumn();
mem_edit.DrawContents((void*)snes_.Memory()->data(),
snes_.Memory()->size());
ImGui::EndTable();
}
}
void Emulator::RenderCpuInstructionLog(
const std::vector<InstructionEntry>& instructionLog) {
if (ImGui::CollapsingHeader("CPU Instruction Log")) {
// Filtering options
static char filterBuf[256];
ImGui::InputText("Filter", filterBuf, IM_ARRAYSIZE(filterBuf));
SameLine();
if (ImGui::Button("Clear")) { /* Clear filter logic */
}
// Toggle for showing all opcodes
static bool showAllOpcodes = true;
ImGui::Checkbox("Show All Opcodes", &showAllOpcodes);
// Instruction list
ImGui::BeginChild("InstructionList", ImVec2(0, 0),
ImGuiChildFlags_None);
for (const auto& entry : instructionLog) {
if (ShouldDisplay(entry, filterBuf, showAllOpcodes)) {
if (ImGui::Selectable(
absl::StrFormat("%06X: %s %s", entry.address,
opcode_to_mnemonic.at(entry.opcode),
entry.operands)
.c_str())) {
// Logic to handle click (e.g., jump to address, set breakpoint)
}
}
}
ImGui::EndChild();
}
}
} // namespace emu
} // namespace app
} // namespace yaze

53
src/app/emu/emulator.h Normal file
View File

@@ -0,0 +1,53 @@
#ifndef YAZE_APP_CORE_EMULATOR_H
#define YAZE_APP_CORE_EMULATOR_H
#include <imgui/imgui.h>
#include <cstdint>
#include <vector>
#include "app/emu/snes.h"
#include "app/rom.h"
namespace yaze {
namespace app {
namespace emu {
class Emulator : public SharedROM {
public:
void Run();
private:
void RenderNavBar();
void HandleEvents();
void RenderEmulator();
void RenderSnesPpu();
void RenderBreakpointList();
void RenderCpuState(CPU& cpu);
void RenderMemoryViewer();
struct Bookmark {
std::string name;
uint64_t value;
};
std::vector<Bookmark> bookmarks;
void RenderCpuInstructionLog(
const std::vector<InstructionEntry>& instructionLog);
SNES snes_;
uint16_t manual_pc_ = 0;
uint8_t manual_pb_ = 0;
bool power_ = false;
bool loading_ = false;
bool running_ = false;
bool step_ = true;
};
} // namespace emu
} // namespace app
} // namespace yaze
#endif // YAZE_APP_CORE_EMULATOR_H

75
src/app/emu/memory/dma.cc Normal file
View File

@@ -0,0 +1,75 @@
#include "app/emu/memory/dma.h"
#include <iostream>
namespace yaze {
namespace app {
namespace emu {
void DMA::StartDMATransfer(uint8_t channelMask) {
for (int i = 0; i < 8; ++i) {
if ((channelMask & (1 << i)) != 0) {
Channel& ch = channels[i];
// Validate channel parameters (e.g., DMAPn, BBADn, A1Tn, DASn)
// ...
// Determine the transfer direction based on the DMAPn register
bool fromMemory = (ch.DMAPn & 0x80) != 0;
// Determine the transfer size based on the DMAPn register
bool transferTwoBytes = (ch.DMAPn & 0x40) != 0;
// Perform the DMA transfer based on the channel parameters
std::cout << "Starting DMA transfer for channel " << i << std::endl;
for (uint16_t j = 0; j < ch.DASn; ++j) {
// Read a byte or two bytes from memory based on the transfer size
// ...
// Write the data to the B-bus address (BBADn) if transferring from
// memory
// ...
// Update the A1Tn register based on the transfer direction
if (fromMemory) {
ch.A1Tn += transferTwoBytes ? 2 : 1;
} else {
ch.A1Tn -= transferTwoBytes ? 2 : 1;
}
}
// Update the channel registers after the transfer (e.g., A1Tn, DASn)
// ...
}
}
MDMAEN = channelMask; // Set the MDMAEN register to the channel mask
}
void DMA::EnableHDMATransfers(uint8_t channelMask) {
for (int i = 0; i < 8; ++i) {
if ((channelMask & (1 << i)) != 0) {
Channel& ch = channels[i];
// Validate channel parameters (e.g., DMAPn, BBADn, A1Tn, A2An, NLTRn)
// ...
// Perform the HDMA setup based on the channel parameters
std::cout << "Enabling HDMA transfer for channel " << i << std::endl;
// Read the HDMA table from memory starting at A1Tn
// ...
// Update the A2An register based on the HDMA table
// ...
// Update the NLTRn register based on the HDMA table
// ...
}
}
HDMAEN = channelMask; // Set the HDMAEN register to the channel mask
}
} // namespace emu
} // namespace app
} // namespace yaze

59
src/app/emu/memory/dma.h Normal file
View File

@@ -0,0 +1,59 @@
#ifndef YAZE_APP_EMU_MEMORY_DMA_H
#define YAZE_APP_EMU_MEMORY_DMA_H
#include <cstdint>
namespace yaze {
namespace app {
namespace emu {
// Direct Memory Address
class DMA {
public:
DMA() {
// Initialize DMA and HDMA channels
for (int i = 0; i < 8; ++i) {
channels[i].DMAPn = 0;
channels[i].BBADn = 0;
channels[i].UNUSEDn = 0;
channels[i].A1Tn = 0xFFFFFF;
channels[i].DASn = 0xFFFF;
channels[i].A2An = 0xFFFF;
channels[i].NLTRn = 0xFF;
}
}
// DMA Transfer Modes
enum class DMA_TRANSFER_TYPE {
OAM,
PPUDATA,
CGDATA,
FILL_VRAM,
CLEAR_VRAM,
RESET_VRAM
};
// Functions for handling DMA and HDMA transfers
void StartDMATransfer(uint8_t channels);
void EnableHDMATransfers(uint8_t channels);
// Structure for DMA and HDMA channel registers
struct Channel {
uint8_t DMAPn; // DMA/HDMA parameters
uint8_t BBADn; // B-bus address
uint8_t UNUSEDn; // Unused byte
uint32_t A1Tn; // DMA Current Address / HDMA Table Start Address
uint16_t DASn; // DMA Byte-Counter / HDMA indirect table address
uint16_t A2An; // HDMA Table Current Address
uint8_t NLTRn; // HDMA Line-Counter
};
Channel channels[8];
uint8_t MDMAEN = 0; // Start DMA transfer
uint8_t HDMAEN = 0; // Enable HDMA transfers
};
} // namespace emu
} // namespace app
} // namespace yaze
#endif // YAZE_APP_EMU_MEMORY_DMA_H

View File

@@ -0,0 +1,82 @@
#include "app/emu/memory/memory.h"
#include <imgui/imgui.h>
#include <cstdint>
#include <iostream>
#include <string>
#include <vector>
#include "app/emu/debug/log.h"
namespace yaze {
namespace app {
namespace emu {
void DrawSnesMemoryMapping(const MemoryImpl& memory) {
// Using those as a base value to create width/height that are factor of the
// size of our font
const float TEXT_BASE_WIDTH = ImGui::CalcTextSize("A").x;
const float TEXT_BASE_HEIGHT = ImGui::GetTextLineHeightWithSpacing();
const char* column_names[] = {
"Offset", "0x00", "0x01", "0x02", "0x03", "0x04", "0x05", "0x06", "0x07",
"0x08", "0x09", "0x0A", "0x0B", "0x0C", "0x0D", "0x0E", "0x0F", "0x10",
"0x11", "0x12", "0x13", "0x14", "0x15", "0x16", "0x17", "0x18", "0x19",
"0x1A", "0x1B", "0x1C", "0x1D", "0x1E", "0x1F"};
const int columns_count = IM_ARRAYSIZE(column_names);
const int rows_count = 16;
static ImGuiTableFlags table_flags =
ImGuiTableFlags_SizingFixedFit | ImGuiTableFlags_ScrollX |
ImGuiTableFlags_ScrollY | ImGuiTableFlags_BordersOuter |
ImGuiTableFlags_BordersInnerH | ImGuiTableFlags_Hideable |
ImGuiTableFlags_Resizable | ImGuiTableFlags_Reorderable |
ImGuiTableFlags_HighlightHoveredColumn;
static bool bools[columns_count * rows_count] = {};
static int frozen_cols = 1;
static int frozen_rows = 2;
ImGui::CheckboxFlags("_ScrollX", &table_flags, ImGuiTableFlags_ScrollX);
ImGui::CheckboxFlags("_ScrollY", &table_flags, ImGuiTableFlags_ScrollY);
ImGui::CheckboxFlags("_NoBordersInBody", &table_flags,
ImGuiTableFlags_NoBordersInBody);
ImGui::CheckboxFlags("_HighlightHoveredColumn", &table_flags,
ImGuiTableFlags_HighlightHoveredColumn);
ImGui::SetNextItemWidth(ImGui::GetFontSize() * 8);
ImGui::SliderInt("Frozen columns", &frozen_cols, 0, 2);
ImGui::SetNextItemWidth(ImGui::GetFontSize() * 8);
ImGui::SliderInt("Frozen rows", &frozen_rows, 0, 2);
if (ImGui::BeginTable("table_angled_headers", columns_count, table_flags,
ImVec2(0.0f, TEXT_BASE_HEIGHT * 12))) {
ImGui::TableSetupColumn(
column_names[0],
ImGuiTableColumnFlags_NoHide | ImGuiTableColumnFlags_NoReorder);
for (int n = 1; n < columns_count; n++)
ImGui::TableSetupColumn(column_names[n],
ImGuiTableColumnFlags_AngledHeader |
ImGuiTableColumnFlags_WidthFixed);
ImGui::TableSetupScrollFreeze(frozen_cols, frozen_rows);
ImGui::TableAngledHeadersRow();
ImGui::TableHeadersRow();
for (int row = 0; row < rows_count; row++) {
ImGui::PushID(row);
ImGui::TableNextRow();
ImGui::TableSetColumnIndex(0);
ImGui::AlignTextToFramePadding();
ImGui::Text("Offset 0x%04X", row);
for (int column = 1; column < columns_count; column++)
if (ImGui::TableSetColumnIndex(column)) {
ImGui::PushID(column);
ImGui::Checkbox("", &bools[row * columns_count + column]);
ImGui::PopID();
}
ImGui::PopID();
}
ImGui::EndTable();
}
}
} // namespace emu
} // namespace app
} // namespace yaze

403
src/app/emu/memory/memory.h Normal file
View File

@@ -0,0 +1,403 @@
#ifndef MEM_H
#define MEM_H
#include <cstdint>
#include <iostream>
#include <string>
#include <vector>
#include "app/emu/debug/log.h"
// LoROM (Mode 20):
// Banks Offset Purpose
// 00-3F 0000-1FFF LowRAM (shadowed from 7E)
// 2000-2FFF PPU1, APU
// 3000-3FFF SFX, DSP, etc.
// 4000-41FF Controller
// 4200-5FFF PPU2, DMA, etc.
// 6000-7FFF Expansion RAM (reserved)
// 8000-FFFF 32k ROM Chunk
// 40-7C 0000-7FFF 32k ROM Chunk
// 8000-FFFF 32k ROM Chunk
// 7D 0000-FFFF SRAM
// 7E 0000-1FFF LowRAM
// 2000-FFFF System RAM
// 7F 0000-FFFF System RAM
namespace yaze {
namespace app {
namespace emu {
enum ROMSpeed { SLOW_ROM = 0x00, FAST_ROM = 0x07 };
enum BankSize { LOW_ROM = 0x00, HI_ROM = 0x01 };
enum ROMType {
ROM_DEFAULT = 0x00,
ROM_RAM = 0x01,
ROM_SRAM = 0x02,
ROM_DSP1 = 0x03,
ROM_DSP1_RAM = 0x04,
ROM_DSP1_SRAM = 0x05,
FX = 0x06
};
enum ROMSize {
SIZE_2_MBIT = 0x08,
SIZE_4_MBIT = 0x09,
SIZE_8_MBIT = 0x0A,
SIZE_16_MBIT = 0x0B,
SIZE_32_MBIT = 0x0C
};
enum SRAMSize {
NO_SRAM = 0x00,
SRAM_16_KBIT = 0x01,
SRAM_32_KBIT = 0x02,
SRAM_64_KBIT = 0x03
};
enum CountryCode {
JAPAN = 0x00,
USA = 0x01,
EUROPE_OCEANIA_ASIA = 0x02,
// ... and other countries
};
enum License {
INVALID = 0,
NINTENDO = 1,
ZAMUSE = 5,
CAPCOM = 8,
// ... and other licenses
};
class ROMInfo {
public:
std::string title;
ROMSpeed romSpeed;
BankSize bankSize;
ROMType romType;
ROMSize romSize;
SRAMSize sramSize;
CountryCode countryCode;
License license;
uint8_t version;
uint16_t checksumComplement;
uint16_t checksum;
uint16_t nmiVblVector;
uint16_t resetVector;
};
class Observer {
public:
virtual ~Observer() = default;
virtual void Notify(uint32_t address, uint8_t data) = 0;
};
constexpr uint32_t kROMStart = 0x008000;
constexpr uint32_t kROMSize = 0x200000;
constexpr uint32_t kRAMStart = 0x7E0000;
constexpr uint32_t kRAMSize = 0x20000;
constexpr uint32_t kVRAMStart = 0x210000;
constexpr uint32_t kVRAMSize = 0x10000;
constexpr uint32_t kOAMStart = 0x218000;
constexpr uint32_t kOAMSize = 0x220;
// memory.h
class Memory {
public:
virtual ~Memory() = default;
virtual uint8_t ReadByte(uint32_t address) const = 0;
virtual uint16_t ReadWord(uint32_t address) const = 0;
virtual uint32_t ReadWordLong(uint32_t address) const = 0;
virtual std::vector<uint8_t> ReadByteVector(uint32_t address,
uint16_t length) const = 0;
virtual void WriteByte(uint32_t address, uint8_t value) = 0;
virtual void WriteWord(uint32_t address, uint16_t value) = 0;
virtual void WriteLong(uint32_t address, uint32_t value) = 0;
virtual void PushByte(uint8_t value) = 0;
virtual uint8_t PopByte() = 0;
virtual void PushWord(uint16_t value) = 0;
virtual uint16_t PopWord() = 0;
virtual void PushLong(uint32_t value) = 0;
virtual uint32_t PopLong() = 0;
virtual uint16_t SP() const = 0;
virtual void SetSP(uint16_t value) = 0;
virtual void ClearMemory() = 0;
virtual uint8_t operator[](int i) const = 0;
virtual uint8_t at(int i) const = 0;
};
enum class MemoryMapping { SNES_LOROM = 0, PC_ADDRESS = 1 };
class MemoryImpl : public Memory, public Loggable {
public:
void Initialize(const std::vector<uint8_t>& romData, bool verbose = false,
MemoryMapping mapping = MemoryMapping::SNES_LOROM) {
verbose_ = verbose;
mapping_ = mapping;
if (mapping == MemoryMapping::PC_ADDRESS) {
memory_.resize(romData.size());
std::copy(romData.begin(), romData.end(), memory_.begin());
return;
}
memory_.resize(0x1000000); // 16 MB
const size_t ROM_CHUNK_SIZE = 0x8000; // 32 KB
const size_t SRAM_SIZE = 0x10000; // 64 KB
const size_t SYSTEM_RAM_SIZE = 0x20000; // 128 KB
const size_t EXPANSION_RAM_SIZE = 0x2000; // 8 KB
const size_t HARDWARE_REGISTERS_SIZE = 0x4000; // 16 KB
// Clear memory
std::fill(memory_.begin(), memory_.end(), 0);
// Load ROM data into memory based on LoROM mapping
size_t romSize = romData.size();
size_t romAddress = 0;
for (size_t bank = 0x00; bank <= 0x3F; ++bank) {
for (size_t offset = 0x8000; offset <= 0xFFFF; offset += ROM_CHUNK_SIZE) {
if (romAddress < romSize) {
std::copy(romData.begin() + romAddress,
romData.begin() + romAddress + ROM_CHUNK_SIZE,
memory_.begin() + (bank << 16) + offset);
romAddress += ROM_CHUNK_SIZE;
}
}
}
// Initialize SRAM at banks 0x7D and 0xFD
std::fill(memory_.begin() + (0x7D << 16), memory_.begin() + (0x7E << 16),
0);
std::fill(memory_.begin() + (0xFD << 16), memory_.begin() + (0xFE << 16),
0);
// Initialize System RAM at banks 0x7E and 0x7F
std::fill(memory_.begin() + (0x7E << 16),
memory_.begin() + (0x7E << 16) + SYSTEM_RAM_SIZE, 0);
// Initialize Shadow RAM at banks 0x00-0x3F and 0x80-0xBF
for (size_t bank = 0x00; bank <= 0xBF; bank += 0x80) {
std::fill(memory_.begin() + (bank << 16),
memory_.begin() + (bank << 16) + 0x2000, 0);
}
// Initialize Hardware Registers at banks 0x00-0x3F and 0x80-0xBF
for (size_t bank = 0x00; bank <= 0xBF; bank += 0x80) {
std::fill(
memory_.begin() + (bank << 16) + 0x2000,
memory_.begin() + (bank << 16) + 0x2000 + HARDWARE_REGISTERS_SIZE, 0);
}
// Initialize Expansion RAM at banks 0x00-0x3F and 0x80-0xBF
for (size_t bank = 0x00; bank <= 0xBF; bank += 0x80) {
std::fill(memory_.begin() + (bank << 16) + 0x6000,
memory_.begin() + (bank << 16) + 0x6000 + EXPANSION_RAM_SIZE,
0);
}
// Initialize Reset and NMI Vectors at bank 0xFF
std::fill(memory_.begin() + (0xFF << 16) + 0xFF00,
memory_.begin() + (0xFF << 16) + 0xFFFF + 1, 0);
// Copy data into rom_ vector
rom_.resize(kROMSize);
std::copy(memory_.begin() + kROMStart,
memory_.begin() + kROMStart + kROMSize, rom_.begin());
// Copy data into ram_ vector
ram_.resize(kRAMSize);
std::copy(memory_.begin() + kRAMStart,
memory_.begin() + kRAMStart + kRAMSize, ram_.begin());
// Copy data into vram_ vector
vram_.resize(kVRAMSize);
std::copy(memory_.begin() + kVRAMStart,
memory_.begin() + kVRAMStart + kVRAMSize, vram_.begin());
// Copy data into oam_ vector
oam_.resize(kOAMSize);
std::copy(memory_.begin() + kOAMStart,
memory_.begin() + kOAMStart + kOAMSize, oam_.begin());
}
uint8_t ReadByte(uint32_t address) const override {
uint32_t mapped_address = GetMappedAddress(address);
NotifyObservers(mapped_address, /*data=*/0);
return memory_.at(mapped_address);
}
uint16_t ReadWord(uint32_t address) const override {
uint32_t mapped_address = GetMappedAddress(address);
NotifyObservers(mapped_address, /*data=*/0);
return static_cast<uint16_t>(memory_.at(mapped_address)) |
(static_cast<uint16_t>(memory_.at(mapped_address + 1)) << 8);
}
uint32_t ReadWordLong(uint32_t address) const override {
uint32_t mapped_address = GetMappedAddress(address);
NotifyObservers(mapped_address, /*data=*/0);
return static_cast<uint32_t>(memory_.at(mapped_address)) |
(static_cast<uint32_t>(memory_.at(mapped_address + 1)) << 8) |
(static_cast<uint32_t>(memory_.at(mapped_address + 2)) << 16);
}
std::vector<uint8_t> ReadByteVector(uint32_t address,
uint16_t length) const override {
uint32_t mapped_address = GetMappedAddress(address);
NotifyObservers(mapped_address, /*data=*/0);
return std::vector<uint8_t>(memory_.begin() + mapped_address,
memory_.begin() + mapped_address + length);
}
void WriteByte(uint32_t address, uint8_t value) override {
uint32_t mapped_address = GetMappedAddress(address);
memory_[mapped_address] = value;
}
void WriteWord(uint32_t address, uint16_t value) override {
uint32_t mapped_address = GetMappedAddress(address);
memory_.at(mapped_address) = value & 0xFF;
memory_.at(mapped_address + 1) = (value >> 8) & 0xFF;
}
void WriteLong(uint32_t address, uint32_t value) override {
uint32_t mapped_address = GetMappedAddress(address);
memory_.at(mapped_address) = value & 0xFF;
memory_.at(mapped_address + 1) = (value >> 8) & 0xFF;
memory_.at(mapped_address + 2) = (value >> 16) & 0xFF;
}
// Stack operations
void PushByte(uint8_t value) override {
if (SP_ > 0x0100) {
memory_.at(SP_--) = value;
} else {
// Handle stack underflow
std::cout << "Stack underflow!" << std::endl;
throw std::runtime_error("Stack underflow!");
}
}
uint8_t PopByte() override {
if (SP_ < 0x1FF) {
return memory_.at(++SP_);
} else {
// Handle stack overflow
std::cout << "Stack overflow!" << std::endl;
throw std::runtime_error("Stack overflow!");
}
}
void PushWord(uint16_t value) override {
PushByte(value >> 8);
PushByte(value & 0xFF);
}
uint16_t PopWord() override {
uint8_t low = PopByte();
uint8_t high = PopByte();
return (static_cast<uint16_t>(high) << 8) | low;
}
void PushLong(uint32_t value) override {
PushByte(value >> 16);
PushByte(value >> 8);
PushByte(value & 0xFF);
}
uint32_t PopLong() override {
uint8_t low = PopByte();
uint8_t mid = PopByte();
uint8_t high = PopByte();
return (static_cast<uint32_t>(high) << 16) |
(static_cast<uint32_t>(mid) << 8) | low;
}
void AddObserver(Observer* observer) { observers_.push_back(observer); }
// Stack Pointer access.
uint16_t SP() const override { return SP_; }
void SetSP(uint16_t value) override { SP_ = value; }
void ClearMemory() override { std::fill(memory_.begin(), memory_.end(), 0); }
uint8_t at(int i) const override { return memory_[i]; }
uint8_t operator[](int i) const override {
if (i > memory_.size()) {
std::cout << i << " out of bounds \n";
return memory_[0];
}
return memory_[i];
}
auto size() const { return memory_.size(); }
auto begin() const { return memory_.begin(); }
auto end() const { return memory_.end(); }
auto data() const { return memory_.data(); }
// Define memory regions
std::vector<uint8_t> rom_;
std::vector<uint8_t> ram_;
std::vector<uint8_t> vram_;
std::vector<uint8_t> oam_;
private:
uint32_t GetMappedAddress(uint32_t address) const {
uint8_t bank = address >> 16;
uint32_t offset = address & 0xFFFF;
if (mapping_ == MemoryMapping::PC_ADDRESS) {
return address;
}
if (bank <= 0x3F) {
if (address <= 0x1FFF) {
return (0x7E << 16) + offset; // Shadow RAM
} else if (address <= 0x5FFF) {
return (bank << 16) + (offset - 0x2000) + 0x2000; // Hardware Registers
} else if (address <= 0x7FFF) {
return offset - 0x6000 + 0x6000; // Expansion RAM
} else {
// Return lorom mapping
return (bank << 16) + (offset - 0x8000) + 0x8000; // ROM
}
} else if (bank == 0x7D) {
return offset + 0x7D0000; // SRAM
} else if (bank == 0x7E || bank == 0x7F) {
return offset + 0x7E0000; // System RAM
} else if (bank >= 0x80) {
// Handle HiROM and mirrored areas
}
return address; // Return the original address if no mapping is defined
}
void NotifyObservers(uint32_t address, uint8_t data) const {
for (auto observer : observers_) {
observer->Notify(address, data);
}
}
bool verbose_ = false;
std::vector<Observer*> observers_;
// Memory (64KB)
std::vector<uint8_t> memory_;
// Stack Pointer
uint16_t SP_ = 0x01FF;
MemoryMapping mapping_ = MemoryMapping::SNES_LOROM;
};
void DrawSnesMemoryMapping(const MemoryImpl& memory);
} // namespace emu
} // namespace app
} // namespace yaze
#endif // MEM_H

View File

@@ -0,0 +1,189 @@
#ifndef YAZE_TEST_MOCK_MOCK_MEMORY_H
#define YAZE_TEST_MOCK_MOCK_MEMORY_H
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "app/emu/cpu/clock.h"
#include "app/emu/cpu/cpu.h"
#include "app/emu/memory/memory.h"
using yaze::app::emu::Clock;
using yaze::app::emu::CPU;
using yaze::app::emu::Memory;
class MockClock : public Clock {
public:
MOCK_METHOD(void, UpdateClock, (double delta), (override));
MOCK_METHOD(unsigned long long, GetCycleCount, (), (const, override));
MOCK_METHOD(void, ResetAccumulatedTime, (), (override));
MOCK_METHOD(void, SetFrequency, (float new_frequency), (override));
MOCK_METHOD(float, GetFrequency, (), (const, override));
};
// 0x1000000 is 16 MB, simplifying the memory layout for testing
// 2 MB is = 0x200000
class MockMemory : public Memory {
public:
MOCK_CONST_METHOD1(ReadByte, uint8_t(uint32_t address));
MOCK_CONST_METHOD1(ReadWord, uint16_t(uint32_t address));
MOCK_CONST_METHOD1(ReadWordLong, uint32_t(uint32_t address));
MOCK_METHOD(std::vector<uint8_t>, ReadByteVector,
(uint32_t address, uint16_t length), (const, override));
MOCK_METHOD2(WriteByte, void(uint32_t address, uint8_t value));
MOCK_METHOD2(WriteWord, void(uint32_t address, uint16_t value));
MOCK_METHOD2(WriteLong, void(uint32_t address, uint32_t value));
MOCK_METHOD1(PushByte, void(uint8_t value));
MOCK_METHOD0(PopByte, uint8_t());
MOCK_METHOD1(PushWord, void(uint16_t value));
MOCK_METHOD0(PopWord, uint16_t());
MOCK_METHOD1(PushLong, void(uint32_t value));
MOCK_METHOD0(PopLong, uint32_t());
MOCK_CONST_METHOD0(SP, uint16_t());
MOCK_METHOD1(SetSP, void(uint16_t value));
MOCK_METHOD1(SetMemory, void(const std::vector<uint8_t>& data));
MOCK_METHOD1(LoadData, void(const std::vector<uint8_t>& data));
MOCK_METHOD0(ClearMemory, void());
MOCK_CONST_METHOD1(at, uint8_t(int i));
uint8_t operator[](int i) const override { return memory_[i]; }
void SetMemoryContents(const std::vector<uint8_t>& data) {
if (data.size() > memory_.size()) {
memory_.resize(data.size());
}
std::copy(data.begin(), data.end(), memory_.begin());
}
void SetMemoryContents(const std::vector<uint16_t>& data) {
if (data.size() > memory_.size()) {
memory_.resize(data.size());
}
int i = 0;
for (const auto& each : data) {
memory_[i] = each & 0xFF;
memory_[i + 1] = (each >> 8) & 0xFF;
i += 2;
}
}
void InsertMemory(const uint64_t address, const std::vector<uint8_t>& data) {
if (address > memory_.size()) {
memory_.resize(address + data.size());
}
int i = 0;
for (const auto& each : data) {
memory_[address + i] = each;
i++;
}
}
void Initialize(const std::vector<uint8_t>& romData) {
// 16 MB, simplifying the memory layout for testing
memory_.resize(0x1000000);
// Clear memory
std::fill(memory_.begin(), memory_.end(), 0);
// Load ROM data into mock memory
size_t romSize = romData.size();
size_t romAddress = 0;
const size_t ROM_CHUNK_SIZE = 0x8000; // 32 KB
for (size_t bank = 0x00; bank <= 0xBF; bank += 0x80) {
for (size_t offset = 0x8000; offset <= 0xFFFF; offset += ROM_CHUNK_SIZE) {
if (romAddress < romSize) {
std::copy(romData.begin() + romAddress,
romData.begin() + romAddress + ROM_CHUNK_SIZE,
memory_.begin() + (bank << 16) + offset);
romAddress += ROM_CHUNK_SIZE;
}
}
}
}
void Init() {
ON_CALL(*this, ReadByte(::testing::_))
.WillByDefault(
[this](uint32_t address) { return memory_.at(address); });
ON_CALL(*this, ReadWord(::testing::_))
.WillByDefault([this](uint32_t address) {
return static_cast<uint16_t>(memory_.at(address)) |
(static_cast<uint16_t>(memory_.at(address + 1)) << 8);
});
ON_CALL(*this, ReadWordLong(::testing::_))
.WillByDefault([this](uint32_t address) {
return static_cast<uint32_t>(memory_.at(address)) |
(static_cast<uint32_t>(memory_.at(address + 1)) << 8) |
(static_cast<uint32_t>(memory_.at(address + 2)) << 16);
});
ON_CALL(*this, ReadByteVector(::testing::_, ::testing::_))
.WillByDefault([this](uint32_t address, uint16_t length) {
std::vector<uint8_t> data;
for (int i = 0; i < length; i++) {
data.push_back(memory_.at(address + i));
}
return data;
});
ON_CALL(*this, WriteByte(::testing::_, ::testing::_))
.WillByDefault([this](uint32_t address, uint8_t value) {
memory_[address] = value;
});
ON_CALL(*this, WriteWord(::testing::_, ::testing::_))
.WillByDefault([this](uint32_t address, uint16_t value) {
memory_[address] = value & 0xFF;
memory_[address + 1] = (value >> 8) & 0xFF;
});
ON_CALL(*this, PushByte(::testing::_)).WillByDefault([this](uint8_t value) {
memory_.at(SP_--) = value;
});
ON_CALL(*this, PopByte()).WillByDefault([this]() {
uint8_t value = memory_.at(SP_);
this->SetSP(SP_ + 1);
return value;
});
ON_CALL(*this, PushWord(::testing::_))
.WillByDefault([this](uint16_t value) {
memory_.at(SP_) = value & 0xFF;
memory_.at(SP_ + 1) = (value >> 8) & 0xFF;
this->SetSP(SP_ - 2);
});
ON_CALL(*this, PopWord()).WillByDefault([this]() {
uint16_t value = static_cast<uint16_t>(memory_.at(SP_)) |
(static_cast<uint16_t>(memory_.at(SP_ + 1)) << 8);
this->SetSP(SP_ + 2);
return value;
});
ON_CALL(*this, PushLong(::testing::_))
.WillByDefault([this](uint32_t value) {
memory_.at(SP_) = value & 0xFF;
memory_.at(SP_ + 1) = (value >> 8) & 0xFF;
memory_.at(SP_ + 2) = (value >> 16) & 0xFF;
});
ON_CALL(*this, PopLong()).WillByDefault([this]() {
uint32_t value = static_cast<uint32_t>(memory_.at(SP_)) |
(static_cast<uint32_t>(memory_.at(SP_ + 1)) << 8) |
(static_cast<uint32_t>(memory_.at(SP_ + 2)) << 16);
this->SetSP(SP_ + 3);
return value;
});
ON_CALL(*this, SP()).WillByDefault([this]() { return SP_; });
ON_CALL(*this, SetSP(::testing::_)).WillByDefault([this](uint16_t value) {
SP_ = value;
});
ON_CALL(*this, ClearMemory()).WillByDefault([this]() {
memory_.resize(64000, 0x00);
});
}
std::vector<uint8_t> memory_;
uint16_t SP_ = 0x01FF;
};
#endif // YAZE_TEST_MOCK_MOCK_MEMORY_H

376
src/app/emu/snes.cc Normal file
View File

@@ -0,0 +1,376 @@
#include "app/emu/snes.h"
#include <SDL_mixer.h>
#include <cstdint>
#include <memory>
#include <string>
#include <thread>
#include "app/emu/audio/apu.h"
#include "app/emu/audio/spc700.h"
#include "app/emu/cpu/clock.h"
#include "app/emu/cpu/cpu.h"
#include "app/emu/debug/debugger.h"
#include "app/emu/memory/memory.h"
#include "app/emu/video/ppu.h"
#include "app/rom.h"
namespace yaze {
namespace app {
namespace emu {
namespace {
uint16_t GetHeaderOffset(const Memory& memory) {
uint8_t mapMode = memory[(0x00 << 16) + 0xFFD5];
uint16_t offset;
switch (mapMode & 0x07) {
case 0: // LoROM
offset = 0x7FC0;
break;
case 1: // HiROM
offset = 0xFFC0;
break;
case 5: // ExHiROM
offset = 0x40;
break;
default:
throw std::invalid_argument(
"Unable to locate supported ROM mapping mode in the provided ROM "
"file. Please try another ROM file.");
}
return offset;
}
void audio_callback(void* userdata, uint8_t* stream, int len) {
auto* apu = static_cast<APU*>(userdata);
auto* buffer = reinterpret_cast<int16_t*>(stream);
for (int i = 0; i < len / 2; i++) { // Assuming 16-bit samples
buffer[i] = apu->GetNextSample(); // This function should be implemented in
// APU to fetch the next sample
}
}
} // namespace
ROMInfo SNES::ReadRomHeader(uint32_t offset) {
ROMInfo romInfo;
// Read cartridge title
char title[22];
for (int i = 0; i < 21; ++i) {
title[i] = cpu_.ReadByte(offset + i);
}
title[21] = '\0'; // Null-terminate the string
romInfo.title = std::string(title);
// Read ROM speed and memory map mode
uint8_t romSpeedAndMapMode = cpu_.ReadByte(offset + 0x15);
romInfo.romSpeed = (ROMSpeed)(romSpeedAndMapMode & 0x07);
romInfo.bankSize = (BankSize)((romSpeedAndMapMode >> 5) & 0x01);
// Read ROM type
romInfo.romType = (ROMType)cpu_.ReadByte(offset + 0x16);
// Read ROM size
romInfo.romSize = (ROMSize)cpu_.ReadByte(offset + 0x17);
// Read RAM size
romInfo.sramSize = (SRAMSize)cpu_.ReadByte(offset + 0x18);
// Read country code
romInfo.countryCode = (CountryCode)cpu_.ReadByte(offset + 0x19);
// Read license
romInfo.license = (License)cpu_.ReadByte(offset + 0x1A);
// Read ROM version
romInfo.version = cpu_.ReadByte(offset + 0x1B);
// Read checksum complement
romInfo.checksumComplement = cpu_.ReadWord(offset + 0x1E);
// Read checksum
romInfo.checksum = cpu_.ReadWord(offset + 0x1C);
// Read NMI VBL vector
romInfo.nmiVblVector = cpu_.ReadWord(offset + 0x3E);
// Read reset vector
romInfo.resetVector = cpu_.ReadWord(offset + 0x3C);
return romInfo;
}
void SNES::Init(ROM& rom) {
// Perform a long jump into a FastROM bank (if the ROM speed is FastROM)
// Disable the emulation flag (switch to 65816 native mode)
cpu_.E = 0;
// Initialize CPU
cpu_.Init();
// Read the ROM header
auto header_offset = GetHeaderOffset(memory_);
rom_info_ = ReadRomHeader((0x00 << 16) + header_offset);
cpu_.PB = 0x00;
cpu_.PC = 0x8000;
// Initialize PPU
ppu_.Init();
// Initialize APU
apu_.Init();
// Initialize SDL_Mixer to play the audio samples
// Mix_HookMusic(audio_callback, &apu);
// Disable interrupts and rendering
memory_.WriteByte(0x4200, 0x00); // NMITIMEN
memory_.WriteByte(0x420C, 0x00); // HDMAEN
// Disable screen
memory_.WriteByte(0x2100, 0x8F); // INIDISP
// Fill Work-RAM with zeros using two 64KiB fixed address DMA transfers to
// WMDATA
// TODO: Make this load from work ram, potentially in Memory class
std::memset((void*)memory_.ram_.data(), 0, sizeof(memory_.ram_));
// Reset PPU registers to a known good state
memory_.WriteByte(0x4201, 0xFF); // WRIO
// Objects
memory_.WriteByte(0x2101, 0x00); // OBSEL
memory_.WriteByte(0x2102, 0x00); // OAMADDL
memory_.WriteByte(0x2103, 0x00); // OAMADDH
// Backgrounds
memory_.WriteByte(0x2105, 0x00); // BGMODE
memory_.WriteByte(0x2106, 0x00); // MOSAIC
memory_.WriteByte(0x2107, 0x00); // BG1SC
memory_.WriteByte(0x2108, 0x00); // BG2SC
memory_.WriteByte(0x2109, 0x00); // BG3SC
memory_.WriteByte(0x210A, 0x00); // BG4SC
memory_.WriteByte(0x210B, 0x00); // BG12NBA
memory_.WriteByte(0x210C, 0x00); // BG34NBA
// Scroll Registers
memory_.WriteByte(0x210D, 0x00); // BG1HOFS
memory_.WriteByte(0x210E, 0xFF); // BG1VOFS
memory_.WriteByte(0x210F, 0x00); // BG2HOFS
memory_.WriteByte(0x2110, 0xFF); // BG2VOFS
memory_.WriteByte(0x2111, 0x00); // BG3HOFS
memory_.WriteByte(0x2112, 0xFF); // BG3VOFS
memory_.WriteByte(0x2113, 0x00); // BG4HOFS
memory_.WriteByte(0x2114, 0xFF); // BG4VOFS
// VRAM Registers
memory_.WriteByte(0x2115, 0x80); // VMAIN
// Mode 7
memory_.WriteByte(0x211A, 0x00); // M7SEL
memory_.WriteByte(0x211B, 0x01); // M7A
memory_.WriteByte(0x211C, 0x00); // M7B
memory_.WriteByte(0x211D, 0x00); // M7C
memory_.WriteByte(0x211E, 0x01); // M7D
memory_.WriteByte(0x211F, 0x00); // M7X
memory_.WriteByte(0x2120, 0x00); // M7Y
// Windows
memory_.WriteByte(0x2123, 0x00); // W12SEL
memory_.WriteByte(0x2124, 0x00); // W34SEL
memory_.WriteByte(0x2125, 0x00); // WOBJSEL
memory_.WriteByte(0x2126, 0x00); // WH0
memory_.WriteByte(0x2127, 0x00); // WH1
memory_.WriteByte(0x2128, 0x00); // WH2
memory_.WriteByte(0x2129, 0x00); // WH3
memory_.WriteByte(0x212A, 0x00); // WBGLOG
memory_.WriteByte(0x212B, 0x00); // WOBJLOG
// Layer Enable
memory_.WriteByte(0x212C, 0x00); // TM
memory_.WriteByte(0x212D, 0x00); // TS
memory_.WriteByte(0x212E, 0x00); // TMW
memory_.WriteByte(0x212F, 0x00); // TSW
// Color Math
memory_.WriteByte(0x2130, 0x30); // CGWSEL
memory_.WriteByte(0x2131, 0x00); // CGADSUB
memory_.WriteByte(0x2132, 0xE0); // COLDATA
// Misc
memory_.WriteByte(0x2133, 0x00); // SETINI
// Psuedo-Init
memory_.WriteWord(0x2140, 0xBBAA);
running_ = true;
scanline = 0;
}
void SNES::Run() {
const double targetFPS = 60.0; // 60 frames per second
const double frame_time = 1.0 / targetFPS;
double frame_accumulated_time = 0.0;
auto last_time = std::chrono::high_resolution_clock::now();
if (running_) {
auto current_time = std::chrono::high_resolution_clock::now();
double delta_time =
std::chrono::duration<double>(current_time - last_time).count();
last_time = current_time;
frame_accumulated_time += delta_time;
// Update the CPU
cpu_.UpdateClock(delta_time);
cpu_.Update(GetCpuMode());
// Update the PPU
ppu_.UpdateClock(delta_time);
ppu_.Update();
// Update the APU
apu_.UpdateClock(delta_time);
apu_.Update();
if (frame_accumulated_time >= frame_time) {
// renderer.Render();
frame_accumulated_time -= frame_time;
}
HandleInput();
}
}
void SNES::StepRun() {
// Update the CPU
cpu_.UpdateClock(0.0);
cpu_.Update(CPU::UpdateMode::Step);
// Update the PPU
ppu_.UpdateClock(0.0);
ppu_.Update();
// Update the APU
apu_.UpdateClock(0.0);
apu_.Update();
HandleInput();
}
// Enable NMI Interrupts
void SNES::EnableVBlankInterrupts() {
v_blank_flag_ = false;
// Clear the RDNMI VBlank flag
memory_.ReadByte(0x4210); // RDNMI
// Enable vblank NMI interrupts and Joypad auto-read
memory_.WriteByte(0x4200, 0x81); // NMITIMEN
}
// Wait until the VBlank routine has been processed
void SNES::WaitForVBlank() {
v_blank_flag_ = true;
// Loop until `v_blank_flag_` is clear
while (v_blank_flag_) {
std::this_thread::yield();
}
}
// NMI Interrupt Service Routine
void SNES::NmiIsr() {
// Switch to a FastROM bank (assuming NmiIsr is in bank 0x80)
// ...
// Push CPU registers to stack
cpu_.PHP();
// Reset DB and DP registers
cpu_.DB = 0x80; // Assuming bank 0x80, can be changed to 0x00
cpu_.D = 0;
if (v_blank_flag_) {
VBlankRoutine();
// Clear `v_blank_flag_`
v_blank_flag_ = false;
}
// Increment 32-bit frame_counter_
frame_counter_++;
// Restore CPU registers
cpu_.PHB();
}
// VBlank routine
void SNES::VBlankRoutine() {
// Read the joypad state
// ...
// Update the PPU
// ...
// Update the APU
// ...
}
void SNES::StartApuDataTransfer() {
// 2. Setting the starting address
const uint16_t startAddress = 0x0200;
memory_.WriteByte(0x2142, startAddress & 0xFF); // Lower byte
memory_.WriteByte(0x2143, startAddress >> 8); // Upper byte
memory_.WriteByte(0x2141, 0xCC); // Any non-zero value
memory_.WriteByte(0x2140, 0xCC); // Signal to start
const int DATA_SIZE = 0x1000; // 4 KiB
// 3. Sending data (simplified)
// Assuming a buffer `audioData` containing the audio program/data
uint8_t audioData[DATA_SIZE]; // Define DATA_SIZE and populate audioData as
// needed
for (int i = 0; i < DATA_SIZE; ++i) {
memory_.WriteByte(0x2141, audioData[i]);
memory_.WriteByte(0x2140, i & 0xFF);
while (memory_.ReadByte(0x2140) != (i & 0xFF))
; // Wait for acknowledgment
}
// 4. Running the SPC700 program
memory_.WriteByte(0x2142, startAddress & 0xFF); // Lower byte
memory_.WriteByte(0x2143, startAddress >> 8); // Upper byte
memory_.WriteByte(0x2141, 0x00); // Zero to start the program
memory_.WriteByte(0x2140, 0xCE); // Increment by 2
while (memory_.ReadByte(0x2140) != 0xCE)
; // Wait for acknowledgment
}
void SNES::HandleInput() {
// ...
}
void SNES::SaveState(const std::string& path) {
// ...
}
void SNES::LoadState(const std::string& path) {
// ...
}
} // namespace emu
} // namespace app
} // namespace yaze

120
src/app/emu/snes.h Normal file
View File

@@ -0,0 +1,120 @@
#ifndef YAZE_APP_EMU_SNES_H
#define YAZE_APP_EMU_SNES_H
#include <cstdint>
#include <memory>
#include <string>
#include <thread>
#include "app/emu/audio/apu.h"
#include "app/emu/audio/spc700.h"
#include "app/emu/cpu/clock.h"
#include "app/emu/cpu/cpu.h"
#include "app/emu/debug/debugger.h"
#include "app/emu/memory/dma.h"
#include "app/emu/memory/memory.h"
#include "app/emu/video/ppu.h"
#include "app/rom.h"
namespace yaze {
namespace app {
namespace emu {
class SNES : public DMA {
public:
SNES() = default;
~SNES() = default;
ROMInfo ReadRomHeader(uint32_t offset);
// Initialization
void Init(ROM& rom);
// Main emulation loop
void Run();
// Step through a single instruction
void StepRun();
// Enable NMI Interrupts
void EnableVBlankInterrupts();
// Wait until the VBlank routine has been processed
void WaitForVBlank();
// NMI Interrupt Service Routine
void NmiIsr();
// VBlank routine
void VBlankRoutine();
// Boot the APU with the IPL ROM
void BootApuWithIPL();
void StartApuDataTransfer();
// Controller input handling
void HandleInput();
// Save/Load game state
void SaveState(const std::string& path);
void LoadState(const std::string& path);
bool running() const { return running_; }
auto cpu() -> CPU& { return cpu_; }
auto ppu() -> Ppu& { return ppu_; }
auto Memory() -> MemoryImpl* { return &memory_; }
void SetCpuMode(int mode) { cpu_mode_ = mode; }
CPU::UpdateMode GetCpuMode() const {
return static_cast<CPU::UpdateMode>(cpu_mode_);
}
void SetupMemory(ROM& rom) {
// Setup observers for the memory space
memory_.AddObserver(&apu_);
memory_.AddObserver(&ppu_);
// Load the ROM into memory and set up the memory mapping
rom_data = rom.vector();
memory_.Initialize(rom_data);
}
private:
void WriteToRegister(uint16_t address, uint8_t value) {
memory_.WriteByte(address, value);
}
// Components of the SNES
MemoryImpl memory_;
ClockImpl clock_;
AudioRamImpl audio_ram_;
CPU cpu_{memory_, clock_};
Ppu ppu_{memory_, clock_};
APU apu_{memory_, audio_ram_, clock_};
// Helper classes
ROMInfo rom_info_;
Debugger debugger;
// Currently loaded ROM
std::vector<uint8_t> rom_data;
// Byte flag to indicate if the VBlank routine should be executed or not
std::atomic<bool> v_blank_flag_;
// 32-bit counter to track the number of NMI interrupts
std::atomic<uint32_t> frame_counter_;
// Other private member variables
bool running_ = false;
int scanline;
int cpu_mode_ = 0;
};
} // namespace emu
} // namespace app
} // namespace yaze
#endif // YAZE_APP_EMU_SNES_H

435
src/app/emu/video/ppu.cc Normal file
View File

@@ -0,0 +1,435 @@
#include "app/emu/video/ppu.h"
#include <cstdint>
#include <iostream>
#include <vector>
#include "app/emu/memory/memory.h"
namespace yaze {
namespace app {
namespace emu {
using namespace PpuRegisters;
void Ppu::Update() {
auto cycles_to_run = clock_.GetCycleCount();
UpdateInternalState(cycles_to_run);
// Render however many scanlines we're supposed to.
if (current_scanline_ < visibleScanlines) {
// Render the current scanline
RenderScanline();
// Increment the current scanline
current_scanline_++;
}
}
void Ppu::UpdateInternalState(int cycles) {
// Update the Ppu's internal state based on the number of cycles
cycle_count_ += cycles;
// Check if it's time to move to the next scanline
if (cycle_count_ >= cyclesPerScanline) {
current_scanline_++;
cycle_count_ -= cyclesPerScanline;
// If we've reached the end of the frame, reset to the first scanline
if (current_scanline_ >= totalScanlines) {
current_scanline_ = 0;
}
}
}
void Ppu::RenderScanline() {
for (int y = 0; y < 240; ++y) {
for (int x = 0; x < 256; ++x) {
// Calculate the color index based on the x and y coordinates
uint8_t color_index = (x + y) % 8;
// Set the pixel in the frame buffer to the calculated color index
frame_buffer_[y * 256 + x] = color_index;
}
}
// Fetch the tile data from VRAM, tile map data from memory, and palette data
// from CGRAM
// UpdateTileData(); // Fetches the tile data from VRAM and stores it in an
// internal buffer
UpdateTileMapData(); // Fetches the tile map data from memory and stores it
// in an internal buffer
UpdatePaletteData(); // Fetches the palette data from CGRAM and stores it in
// an internal buffer
// Render the background layers, taking into account the current mode and
// layer priorities
for (int layer = 1; layer <= 4; ++layer) {
RenderBackground(layer); // Renders the specified background layer into an
// internal layer buffer
}
// Render the sprite layer, taking into account sprite priorities and
// transparency
RenderSprites(); // Renders the sprite layer into an internal sprite buffer
// Apply effects to the layers, such as scaling, rotation, and blending
ApplyEffects(); // Applies effects to the layers based on the current mode
// and register settings
// Combine the layers into a single image and store it in the frame buffer
ComposeLayers(); // Combines the layers into a single image and stores it in
// the frame buffer
// Display the frame buffer on the screen
DisplayFrameBuffer();
}
void Ppu::Notify(uint32_t address, uint8_t data) {
// Handle communication in the Ppu.
if (address >= 0x2100 && address <= 0x213F) {
// Handle register notification
switch (address) {
case INIDISP:
enable_forced_blanking_ = (data >> 7) & 0x01;
break;
case OBJSEL:
oam_size_.base_selection = (data >> 2) & 0x03;
oam_size_.name_selection = (data >> 4) & 0x07;
oam_size_.object_size = data & 0x03;
break;
case OAMADDL:
oam_address_.oam_address_low = data;
break;
case OAMADDH:
oam_address_.oam_address_msb = data & 0x01;
oam_address_.oam_priority_rotation = (data >> 1) & 0x01;
break;
case OAMDATA:
// Write the data to OAM
break;
case BGMODE:
// Update the Ppu mode settings
UpdateModeSettings();
break;
case MOSAIC:
mosaic_.bg_enable = (data >> 7) & 0x01;
mosaic_.mosaic_size = data & 0x0F;
break;
case BG1SC:
bgsc_[0] = BGSC(data);
break;
case BG2SC:
bgsc_[1] = BGSC(data);
break;
case BG3SC:
bgsc_[2] = BGSC(data);
break;
case BG4SC:
bgsc_[3] = BGSC(data);
break;
case BG12NBA:
bgnba_[0] = BGNBA(data);
break;
case BG34NBA:
bgnba_[1] = BGNBA(data);
break;
case BG1HOFS:
bghofs_[0].horizontal_scroll = data;
break;
case BG2HOFS:
bghofs_[1].horizontal_scroll = data;
break;
case BG3HOFS:
bghofs_[2].horizontal_scroll = data;
break;
case BG4HOFS:
bghofs_[3].horizontal_scroll = data;
break;
case BG1VOFS:
bgvofs_[0].vertical_scroll = data;
break;
case BG2VOFS:
bgvofs_[1].vertical_scroll = data;
break;
case BG3VOFS:
bgvofs_[2].vertical_scroll = data;
break;
case BG4VOFS:
bgvofs_[3].vertical_scroll = data;
break;
case VMAIN:
vmain_.increment_size = data & 0x03;
vmain_.remapping = (data >> 2) & 0x03;
vmain_.address_increment_mode = (data >> 4) & 0x01;
break;
case VMADDL:
vmaddl_.address_low = data;
break;
case VMADDH:
vmaddh_.address_high = data;
break;
case M7SEL:
m7sel_.flip_horizontal = data & 0x01;
m7sel_.flip_vertical = (data >> 1) & 0x01;
m7sel_.fill = (data >> 2) & 0x01;
m7sel_.tilemap_repeat = (data >> 3) & 0x01;
break;
case M7A:
m7a_.matrix_a = data;
break;
case M7B:
m7b_.matrix_b = data;
break;
case M7C:
m7c_.matrix_c = data;
break;
case M7D:
m7d_.matrix_d = data;
break;
case M7X:
m7x_.center_x = data;
break;
case M7Y:
m7y_.center_y = data;
break;
case CGADD:
cgadd_.address = data;
break;
case CGDATA:
// Write the data to CGRAM
break;
case W12SEL:
w12sel_.enable_bg1_a = data & 0x01;
w12sel_.invert_bg1_a = (data >> 1) & 0x01;
w12sel_.enable_bg1_b = (data >> 2) & 0x01;
w12sel_.invert_bg1_b = (data >> 3) & 0x01;
w12sel_.enable_bg2_c = (data >> 4) & 0x01;
w12sel_.invert_bg2_c = (data >> 5) & 0x01;
w12sel_.enable_bg2_d = (data >> 6) & 0x01;
w12sel_.invert_bg2_d = (data >> 7) & 0x01;
break;
case W34SEL:
w34sel_.enable_bg3_e = data & 0x01;
w34sel_.invert_bg3_e = (data >> 1) & 0x01;
w34sel_.enable_bg3_f = (data >> 2) & 0x01;
w34sel_.invert_bg3_f = (data >> 3) & 0x01;
w34sel_.enable_bg4_g = (data >> 4) & 0x01;
w34sel_.invert_bg4_g = (data >> 5) & 0x01;
w34sel_.enable_bg4_h = (data >> 6) & 0x01;
w34sel_.invert_bg4_h = (data >> 7) & 0x01;
break;
case WOBJSEL:
wobjsel_.enable_obj_i = data & 0x01;
wobjsel_.invert_obj_i = (data >> 1) & 0x01;
wobjsel_.enable_obj_j = (data >> 2) & 0x01;
wobjsel_.invert_obj_j = (data >> 3) & 0x01;
wobjsel_.enable_color_k = (data >> 4) & 0x01;
wobjsel_.invert_color_k = (data >> 5) & 0x01;
wobjsel_.enable_color_l = (data >> 6) & 0x01;
wobjsel_.invert_color_l = (data >> 7) & 0x01;
break;
case WH0:
wh0_.left_position = data;
break;
case WH1:
wh1_.right_position = data;
break;
case WH2:
wh2_.left_position = data;
break;
case WH3:
wh3_.right_position = data;
break;
case TM:
tm_.enable_layer = (data >> 5) & 0x01; //
break;
case TS:
ts_.enable_layer = (data >> 5) & 0x01;
break;
case TMW:
tmw_.enable_window = (data >> 5) & 0x01;
break;
case TSW:
tsw_.enable_window = (data >> 5) & 0x01;
break;
}
}
}
void Ppu::UpdateModeSettings() {
// Read the Ppu mode settings from the Ppu registers
uint8_t modeRegister = memory_.ReadByte(PpuRegisters::INIDISP);
// Mode is stored in the lower 3 bits
auto mode = static_cast<BackgroundMode>(modeRegister & 0x07);
// Update the tilemap, tile data, and palette settings
switch (mode) {
case BackgroundMode::Mode0:
// Mode 0: 4 layers, each 2bpp (4 colors)
break;
case BackgroundMode::Mode1:
// Mode 1: 2 layers, 4bpp (16 colors), 1 layer, 2bpp (4 colors)
break;
case BackgroundMode::Mode2:
// Mode 2: 2 layers, 4bpp (16 colors), 1 layer for offset-per-tile
break;
case BackgroundMode::Mode3:
// Mode 3: 1 layer, 8bpp (256 colors), 1 layer, 4bpp (16 colors)
break;
case BackgroundMode::Mode4:
// Mode 4: 1 layer, 8bpp (256 colors), 1 layer, 2bpp (4 colors)
break;
case BackgroundMode::Mode5:
// Mode 5: 1 layer, 4bpp (16 colors), 1 layer, 2bpp (4 colors) hi-res
break;
case BackgroundMode::Mode6:
// Mode 6: 1 layer, 4bpp (16 colors), 1 layer for offset-per-tile, hi-res
break;
case BackgroundMode::Mode7:
// Mode 7: 1 layer, 8bpp (256 colors), rotation/scaling
break;
default:
// Invalid mode setting, handle the error or set default settings
// ...
break;
}
// Update the internal state of the Ppu based on the mode settings
// Update tile data, tilemaps, sprites, and palette based on the mode settings
UpdateTileData();
UpdatePaletteData();
}
// Internal methods to handle Ppu rendering and operations
void Ppu::UpdateTileData() {
// Fetch tile data from VRAM and store it in the internal buffer
for (uint16_t address = 0; address < tile_data_size_; ++address) {
tile_data_[address] = memory_.ReadByte(vram_base_address_ + address);
}
// Update the tilemap entries based on the fetched tile data
for (uint16_t entryIndex = 0; entryIndex < tilemap_.entries.size();
++entryIndex) {
uint16_t tilemapAddress =
tilemap_base_address_ + entryIndex * sizeof(TilemapEntry);
// Assume ReadWord reads a 16-bit value from VRAM
uint16_t tileData = memory_.ReadWord(tilemapAddress);
// Extract tilemap entry attributes from the tile data
TilemapEntry entry;
// Tile number is stored in the lower 10 bits
entry.tileNumber = tileData & 0x03FF;
// Palette is stored in bits 10-12
entry.palette = (tileData >> 10) & 0x07;
// Priority is stored in bit 13
entry.priority = (tileData >> 13) & 0x01;
// Horizontal flip is stored in bit 14
entry.hFlip = (tileData >> 14) & 0x01;
// Vertical flip is stored in bit 15
entry.vFlip = (tileData >> 15) & 0x01;
tilemap_.entries[entryIndex] = entry;
}
// Update the sprites based on the fetched tile data
for (uint16_t spriteIndex = 0; spriteIndex < sprites_.size(); ++spriteIndex) {
uint16_t spriteAddress = spriteIndex * sizeof(SpriteAttributes);
uint16_t spriteData = memory_.ReadWord(spriteAddress);
// Extract sprite attributes from the sprite data
SpriteAttributes sprite;
sprite.x = memory_.ReadByte(spriteAddress);
sprite.y = memory_.ReadByte(spriteAddress + 1);
// Tile number is stored in the lower 9
sprite.tile = spriteData & 0x01FF;
// bits Palette is stored in bits 9-11
sprite.palette = (spriteData >> 9) & 0x07;
// Priority is stored in bits 12-13
sprite.priority = (spriteData >> 12) & 0x03;
// Horizontal flip is stored in bit 14
sprite.hFlip = (spriteData >> 14) & 0x01;
// Vertical flip is stored in bit 15
sprite.vFlip = (spriteData >> 15) & 0x01;
sprites_[spriteIndex] = sprite;
}
}
void Ppu::UpdateTileMapData() {}
void Ppu::RenderBackground(int layer) {
auto bg1_tilemap_info = BGSC(0);
auto bg1_chr_data = BGNBA(0);
auto bg2_tilemap_info = BGSC(0);
auto bg2_chr_data = BGNBA(0);
auto bg3_tilemap_info = BGSC(0);
auto bg3_chr_data = BGNBA(0);
auto bg4_tilemap_info = BGSC(0);
auto bg4_chr_data = BGNBA(0);
switch (layer) {
case 1:
// Render the first background layer
bg1_tilemap_info = BGSC(memory_.ReadByte(BG1SC));
bg1_chr_data = BGNBA(memory_.ReadByte(BG12NBA));
break;
case 2:
// Render the second background layer
bg2_tilemap_info = BGSC(memory_.ReadByte(BG2SC));
bg2_chr_data = BGNBA(memory_.ReadByte(BG12NBA));
break;
case 3:
// Render the third background layer
bg3_tilemap_info = BGSC(memory_.ReadByte(BG3SC));
bg3_chr_data = BGNBA(memory_.ReadByte(BG34NBA));
break;
case 4:
// Render the fourth background layer
bg4_tilemap_info = BGSC(memory_.ReadByte(BG4SC));
bg4_chr_data = BGNBA(memory_.ReadByte(BG34NBA));
break;
default:
// Invalid layer, do nothing
break;
}
}
void Ppu::RenderSprites() {}
void Ppu::UpdatePaletteData() {}
void Ppu::ApplyEffects() {}
void Ppu::ComposeLayers() {}
void Ppu::DisplayFrameBuffer() {
if (!screen_->IsActive()) {
screen_->Create(256, 240, 24, frame_buffer_);
rom()->RenderBitmap(screen_.get());
}
}
} // namespace emu
} // namespace app
} // namespace yaze

393
src/app/emu/video/ppu.h Normal file
View File

@@ -0,0 +1,393 @@
#ifndef YAZE_APP_EMU_PPU_H
#define YAZE_APP_EMU_PPU_H
#include <array>
#include <cstdint>
#include <vector>
#include "app/emu/cpu/clock.h"
#include "app/emu/memory/memory.h"
#include "app/emu/video/ppu_registers.h"
#include "app/rom.h"
namespace yaze {
namespace app {
namespace emu {
using namespace yaze::app::emu::PpuRegisters;
class PpuInterface {
public:
virtual ~PpuInterface() = default;
// Memory Interactions
virtual void Write(uint16_t address, uint8_t data) = 0;
virtual uint8_t Read(uint16_t address) const = 0;
// Rendering Controls
virtual void RenderFrame() = 0;
virtual void RenderScanline() = 0;
virtual void RenderBackground(int layer) = 0;
virtual void RenderSprites() = 0;
// State Management
virtual void Init() = 0;
virtual void Reset() = 0;
virtual void Update(double deltaTime) = 0;
virtual void UpdateClock(double deltaTime) = 0;
virtual void UpdateInternalState(int cycles) = 0;
// Data Access
virtual const std::vector<uint8_t>& GetFrameBuffer() const = 0;
virtual std::shared_ptr<gfx::Bitmap> GetScreen() const = 0;
// Mode and Setting Updates
virtual void UpdateModeSettings() = 0;
virtual void UpdateTileData() = 0;
virtual void UpdateTileMapData() = 0;
virtual void UpdatePaletteData() = 0;
// Layer Composition
virtual void ApplyEffects() = 0;
virtual void ComposeLayers() = 0;
// Display Output
virtual void DisplayFrameBuffer() = 0;
// Notification (Observer pattern)
virtual void Notify(uint32_t address, uint8_t data) = 0;
};
// Enum representing different background modes
enum class BackgroundMode {
Mode0, // 4 layers, each 2bpp (4 colors)
Mode1, // 2 layers, 4bpp (16 colors), 1 layer, 2bpp (4 colors)
Mode2, // 2 layers, 4bpp (16 colors), 1 layer for offset-per-tile
Mode3, // 1 layer, 8bpp (256 colors), 1 layer, 4bpp (16 colors)
Mode4, // 1 layer, 8bpp (256 colors), 1 layer, 2bpp (4 colors)
// 1 layer for offset-per-tile
Mode5, // 1 layer, 4bpp (16 colors), 1 layer, 2bpp (4 colors) hi-res
Mode6, // 1 layer, 4bpp (16 colors), 1 layer for offset-per-tile, hi-res
Mode7, // 1 layer, 8bpp (256 colors), rotation/scaling
};
// Enum representing sprite sizes
enum class SpriteSize { Size8x8, Size16x16, Size32x32, Size64x64 };
// Struct representing a sprite's attributes
struct SpriteAttributes {
uint8_t x; // X position of the sprite
uint8_t y; // Y position of the sprite
uint16_t tile; // Tile number for the sprite
uint8_t palette; // Palette number for the sprite
uint8_t priority; // Priority for the sprite
bool hFlip; // Horizontal flip flag
bool vFlip; // Vertical flip flag
};
// Struct representing a tilemap entry
struct TilemapEntry {
uint16_t tileNumber; // Tile number for the tile
uint8_t palette; // Palette number for the tile
uint8_t priority; // Priority for the tile
bool hFlip; // Horizontal flip flag
bool vFlip; // Vertical flip flag
};
// Struct representing a tilemap
struct Tilemap {
std::vector<TilemapEntry> entries; // Entries for the tilemap
};
// Struct representing a color
struct Color {
uint8_t r; // Red component
uint8_t g; // Green component
uint8_t b; // Blue component
};
// Registers
struct OAMSize {
uint8_t base_selection : 3;
uint8_t name_selection : 2;
uint8_t object_size : 3;
};
struct OAMAddress {
uint8_t oam_address_low : 8;
uint8_t oam_address_msb : 1;
uint8_t oam_priority_rotation : 1;
uint8_t unused : 6;
};
struct TileMapLocation {
uint8_t SC_size : 2;
uint8_t tile_map_address : 5;
uint8_t unused : 1;
};
struct CharacterLocation {
uint8_t BG1_address : 4;
uint8_t BG2_address : 4;
uint8_t BG3_address : 4;
uint8_t BG4_address : 4;
};
struct VideoPortControl {
uint8_t increment_rate : 2;
uint8_t full_graphic : 2;
uint8_t increment_mode : 1;
uint8_t unused : 3;
};
struct ScreenDisplay {
uint8_t brightness : 4;
uint8_t disable_screen : 1;
uint8_t unused : 3;
};
struct ScreenMode {
uint8_t general_screen_mode : 3;
uint8_t priority : 1;
uint8_t BG1_tile_size : 1;
uint8_t BG2_tile_size : 1;
uint8_t BG3_tile_size : 1;
uint8_t BG4_tile_size : 1;
};
struct ScrollRegister {
uint8_t offset : 8;
uint8_t mode7_bits : 3;
uint8_t unused : 5;
};
struct MainSubScreenDesignation {
uint8_t BG1_enable : 1;
uint8_t BG2_enable : 1;
uint8_t BG3_enable : 1;
uint8_t BG4_enable : 1;
uint8_t sprites_enable : 1;
uint8_t unused : 3;
};
struct WindowMaskSettings {
uint8_t BG1_clip_in_out : 1;
uint8_t BG1_enable : 1;
uint8_t BG2_clip_in_out : 1;
uint8_t BG2_enable : 1;
uint8_t BG3_clip_in_out : 1;
uint8_t BG3_enable : 1;
uint8_t BG4_clip_in_out : 1;
uint8_t BG4_enable : 1;
};
struct WindowMaskSettings2 {
uint8_t sprites_clip_in_out : 1;
uint8_t sprites_enable : 1;
uint8_t color_windows_clip_in_out : 1;
uint8_t color_windows_enable : 1;
uint8_t unused : 4;
};
struct WindowPosition {
uint8_t position : 8;
};
struct MaskLogicSettings {
uint8_t BG1_mask_logic : 2;
uint8_t BG2_mask_logic : 2;
uint8_t BG3_mask_logic : 2;
uint8_t BG4_mask_logic : 2;
};
// Counter/IRQ/NMI Registers
struct CounterIrqNmiRegisters {
uint8_t softwareLatchHvCounter; // Register $2137
uint16_t horizontalScanLocation; // Register $213C
uint16_t verticalScanLocation; // Register $213D
uint8_t counterEnable; // Register $4200
uint16_t horizontalIrqTrigger; // Register $4207/$4208
uint16_t verticalIrqTrigger; // Register $4209/$420A
uint8_t nmiRegister; // Register $4210
uint8_t irqRegister; // Register $4211
uint8_t statusRegisterIrq; // Register $4212
};
// Joypad Registers
struct JoypadRegisters {
uint16_t joypadData[4]; // Register $4218 to $421F
uint8_t oldStyleJoypadRegisters[2]; // Registers $4016/$4217
};
// DMA Registers
struct DmaRegisters {
uint8_t startDmaTransfer; // Register $420B
uint8_t enableHDmaTransfer; // Register $420C
uint8_t dmacontrol_register_ister[8]; // Register $43?0
uint8_t dmaDestinationAddress[8]; // Register $43?1
uint32_t dmaSourceAddress[8]; // Register $43?2/$43?3/$43?4
uint16_t bytesToTransfer[8]; // Register $43?5/$43?6/$43?7
uint16_t hdmaCountPointer[8]; // Register $43?8/$43?9
uint8_t scanlinesLeft[8]; // Register $43?A
};
// WRAM access Registers
struct WramAccessRegisters {
uint8_t dataByte; // Register $2180
uint32_t address; // Register $2181/$2182/$2183
};
struct Tile {
uint16_t index; // Index of the tile in VRAM
uint8_t palette; // Palette number used for this tile
bool flip_x; // Horizontal flip flag
bool flip_y; // Vertical flip flag
uint8_t priority; // Priority of this tile
};
struct BackgroundLayer {
enum class Size { SIZE_32x32, SIZE_64x32, SIZE_32x64, SIZE_64x64 };
enum class ColorDepth { BPP_2, BPP_4, BPP_8 };
Size size; // Size of the background layer
ColorDepth color_depth; // Color depth of the background layer
std::vector<Tile> tilemap; // Tilemap data
std::vector<uint8_t> tile_data; // Tile data in VRAM
uint16_t tilemap_base_address; // Base address of the tilemap in VRAM
uint16_t tile_data_base_address; // Base address of the tile data in VRAM
uint8_t scroll_x; // Horizontal scroll offset
uint8_t scroll_y; // Vertical scroll offset
bool enabled; // Whether the background layer is enabled
};
const int kPpuClockSpeed = 5369318; // 5.369318 MHz
class Ppu : public Observer, public SharedROM {
public:
// Initializes the PPU with the necessary resources and dependencies
Ppu(Memory& memory, Clock& clock) : memory_(memory), clock_(clock) {}
// Initialize the frame buffer
void Init() {
clock_.SetFrequency(kPpuClockSpeed);
frame_buffer_.resize(256 * 240, 0);
screen_ = std::make_shared<gfx::Bitmap>(256, 240, 8, 0x100);
screen_->SetActive(false);
}
// Resets the PPU to its initial state
void Reset() { std::fill(frame_buffer_.begin(), frame_buffer_.end(), 0); }
// Runs the PPU for one frame.
void Update();
void UpdateClock(double delta_time) { clock_.UpdateClock(delta_time); }
void UpdateInternalState(int cycles);
// Renders a scanline of the screen
void RenderScanline();
void Notify(uint32_t address, uint8_t data) override;
// Returns the pixel data for the current frame
const std::vector<uint8_t>& GetFrameBuffer() const { return frame_buffer_; }
auto GetScreen() const { return screen_; }
private:
// Updates internal state based on PPU register settings
void UpdateModeSettings();
// Internal methods to handle PPU rendering and operations
void UpdateTileData();
// Fetches the tile map data from memory and stores it in an internal buffer
void UpdateTileMapData();
// Renders a background layer
void RenderBackground(int layer);
// Renders sprites (also known as objects)
void RenderSprites();
// Fetches the palette data from CGRAM and stores it in an internal buffer
void UpdatePaletteData();
// Applies effects to the layers based on the current mode and register
void ApplyEffects();
// Combines the layers into a single image and stores it in the frame buffer
void ComposeLayers();
// Sends the frame buffer to the display hardware (e.g., SDL2)
void DisplayFrameBuffer();
// ===========================================================
// Member variables to store internal PPU state and resources
Memory& memory_;
Clock& clock_;
// PPU registers
OAMSize oam_size_;
OAMAddress oam_address_;
Mosaic mosaic_;
std::array<BGSC, 4> bgsc_;
std::array<BGNBA, 4> bgnba_;
std::array<BGHOFS, 4> bghofs_;
std::array<BGVOFS, 4> bgvofs_;
struct VMAIN vmain_;
struct VMADDL vmaddl_;
struct VMADDH vmaddh_;
// struct VMDATAL vmdatal_;
// struct VMDATAH vmdatah_;
struct M7SEL m7sel_;
struct M7A m7a_;
struct M7B m7b_;
struct M7C m7c_;
struct M7D m7d_;
struct M7X m7x_;
struct M7Y m7y_;
struct CGADD cgadd_;
struct CGDATA cgdata_;
struct W12SEL w12sel_;
struct W34SEL w34sel_;
struct WOBJSEL wobjsel_;
struct WH0 wh0_;
struct WH1 wh1_;
struct WH2 wh2_;
struct WH3 wh3_;
struct WBGLOG wbglog_;
struct WOBJLOG wobjlog_;
struct TM tm_;
struct TS ts_;
struct TSW tsw_;
struct TMW tmw_;
struct SETINI setini_;
Tilemap tilemap_;
BackgroundMode bg_mode_;
std::array<BackgroundLayer, 4> bg_layers_;
std::vector<SpriteAttributes> sprites_;
std::vector<uint8_t> tile_data_;
std::vector<uint8_t> frame_buffer_;
std::shared_ptr<gfx::Bitmap> screen_;
uint16_t tile_data_size_;
uint16_t vram_base_address_;
uint16_t tilemap_base_address_;
uint16_t screen_brightness_ = 0x00;
bool enable_forced_blanking_ = false;
int cycle_count_ = 0;
int current_scanline_ = 0;
const int cyclesPerScanline = 341; // SNES PPU has 341 cycles per scanline
const int totalScanlines = 262; // SNES PPU has 262 scanlines per frame
const int visibleScanlines = 224; // SNES PPU renders 224 visible scanlines
};
} // namespace emu
} // namespace app
} // namespace yaze
#endif // YAZE_APP_EMU_PPU_H

View File

@@ -0,0 +1,422 @@
#ifndef YAZE_APP_EMU_VIDEO_PPU_REGISTERS_H
#define YAZE_APP_EMU_VIDEO_PPU_REGISTERS_H
#include <array>
#include <cstdint>
#include <vector>
namespace yaze {
namespace app {
namespace emu {
namespace PpuRegisters {
constexpr uint16_t INIDISP = 0x2100;
// OAM Size Register ($2101): Controls the size of the object/sprite, the base
// address, and the name selection for the OAM (Object Attribute Memory).
constexpr uint16_t OBJSEL = 0x2101;
// OAM Address Register ($2102-$2103): Sets the address for accessing OAM data.
constexpr uint16_t OAMADDL = 0x2102;
constexpr uint16_t OAMADDH = 0x2103;
// OAM Data Register ($2104): Holds the data to be written to the OAM at a
// specified address.
constexpr uint16_t OAMDATA = 0x2104;
// OAM Data Read Register ($2138): Allows reading data from the OAM.
// Screen Display Register ($2100): Controls screen on/off and brightness.
// Screen Mode Register ($2105): Defines the screen mode and character size for
// each background layer.
constexpr uint16_t BGMODE = 0x2105;
// Screen Pixelation Register ($2106): Sets the pixel size and screen
// designation for the mosaic display.
constexpr uint16_t MOSAIC = 0x2106;
// BGx VRAM Location Registers ($2107-$210A)
// Define the location in VRAM where the background screen data is stored.
constexpr uint16_t BG1SC = 0x2107;
constexpr uint16_t BG2SC = 0x2108;
constexpr uint16_t BG3SC = 0x2109;
constexpr uint16_t BG4SC = 0x210A;
// BGx & BGy VRAM Location Registers ($210B-$210C):
// Set the base address for BG character data in VRAM.
constexpr uint16_t BG12NBA = 0x210B;
constexpr uint16_t BG34NBA = 0x210C;
// BGx Scroll Registers ($210D-$2114): Control the horizontal and vertical
// scroll values for each background layer.
constexpr uint16_t BG1HOFS = 0x210D;
constexpr uint16_t BG1VOFS = 0x210E;
constexpr uint16_t BG2HOFS = 0x210F;
constexpr uint16_t BG2VOFS = 0x2110;
constexpr uint16_t BG3HOFS = 0x2111;
constexpr uint16_t BG3VOFS = 0x2112;
constexpr uint16_t BG4HOFS = 0x2113;
constexpr uint16_t BG4VOFS = 0x2114;
// Video Port Control Register ($2115): Designates the VRAM address increment
// value.
constexpr uint16_t VMAIN = 0x2115;
// Video Port Address Register ($2116-$2117): Sets the initial address for
// reading from or writing to VRAM.
constexpr uint16_t VMADDL = 0x2116;
constexpr uint16_t VMADDH = 0x2117;
constexpr uint16_t VMDATAL = 0x2118;
constexpr uint16_t VMDATAH = 0x2119;
constexpr uint16_t M7SEL = 0x211A;
constexpr uint16_t M7A = 0x211B;
constexpr uint16_t M7B = 0x211C;
constexpr uint16_t M7C = 0x211D;
constexpr uint16_t M7D = 0x211E;
constexpr uint16_t M7X = 0x211F;
constexpr uint16_t M7Y = 0x2120;
constexpr uint16_t CGADD = 0x2121;
constexpr uint16_t CGDATA = 0x2122;
constexpr uint16_t W12SEL = 0x2123;
constexpr uint16_t W34SEL = 0x2124;
constexpr uint16_t WOBJSEL = 0x2125;
constexpr uint16_t WH0 = 0x2126;
constexpr uint16_t WH1 = 0x2127;
constexpr uint16_t WH2 = 0x2128;
constexpr uint16_t WH3 = 0x2129;
constexpr uint16_t WBGLOG = 0x212A;
constexpr uint16_t WOBJLOG = 0x212B;
constexpr uint16_t TM = 0x212C;
constexpr uint16_t TS = 0x212D;
constexpr uint16_t TMW = 0x212E;
constexpr uint16_t TSW = 0x212F;
constexpr uint16_t CGWSEL = 0x2130;
constexpr uint16_t CGADSUB = 0x2131;
constexpr uint16_t COLDATA = 0x2132;
constexpr uint16_t SETINI = 0x2133;
constexpr uint16_t MPYL = 0x2134;
constexpr uint16_t MPYM = 0x2135;
constexpr uint16_t MPYH = 0x2136;
constexpr uint16_t SLHV = 0x2137;
constexpr uint16_t OAMDATAREAD = 0x2138;
constexpr uint16_t VMDATALREAD = 0x2139;
constexpr uint16_t VMDATAHREAD = 0x213A;
constexpr uint16_t CGDATAREAD = 0x213B;
constexpr uint16_t OPHCT = 0x213C;
constexpr uint16_t OPVCT = 0x213D;
constexpr uint16_t STAT77 = 0x213E;
constexpr uint16_t STAT78 = 0x213F;
struct INIDISP {
uint8_t brightness : 4;
uint8_t forced_blanking : 1;
uint8_t unused : 3;
};
struct OBJSEL {
uint8_t name_base_address : 2;
uint8_t name_secondary_select : 1;
uint8_t sprite_size : 2;
uint8_t unused : 3;
};
struct OAMADDL {
uint8_t address : 8;
};
struct OAMADDH {
uint8_t high_bit : 1;
uint8_t priority_rotation : 1;
uint8_t unused : 6;
};
struct OAMDATA {
uint8_t data : 8;
};
struct BGMODE {
uint8_t bg_mode : 3;
uint8_t bg3_priority : 1;
uint8_t tile_size : 4;
};
struct Mosaic {
uint8_t bg_enable : 4;
uint8_t mosaic_size : 4;
};
struct BGSC {
BGSC() = default;
~BGSC() = default;
explicit BGSC(uint8_t value)
: horizontal_tilemap_count(value & 0x01),
vertical_tilemap_count((value >> 1) & 0x01),
vram_address((value >> 2) & 0x3F) {}
uint8_t horizontal_tilemap_count : 1;
uint8_t vertical_tilemap_count : 1;
uint8_t vram_address : 6;
};
struct BGNBA {
BGNBA() = default;
~BGNBA() = default;
explicit BGNBA(uint8_t value)
: chr_base_address_2(value & 0x0F),
chr_base_address_1((value >> 4) & 0x0F) {}
uint8_t chr_base_address_2 : 4;
uint8_t chr_base_address_1 : 4;
};
struct BGHOFS {
uint16_t horizontal_scroll : 10;
uint8_t unused : 6;
};
struct BGVOFS {
uint16_t vertical_scroll : 10;
uint8_t unused : 6;
};
struct VMAIN {
uint8_t increment_size : 2;
uint8_t remapping : 2;
uint8_t address_increment_mode : 1;
uint8_t unused : 3;
};
struct VMADDL {
uint8_t address_low : 8;
};
struct VMADDH {
uint8_t address_high : 8;
};
struct VMDATA {
uint8_t data : 8;
};
struct M7SEL {
uint8_t flip_horizontal : 1;
uint8_t flip_vertical : 1;
uint8_t fill : 1;
uint8_t tilemap_repeat : 1;
uint8_t unused : 4;
};
struct M7A {
int16_t matrix_a : 16;
};
struct M7B {
int16_t matrix_b : 16;
};
struct M7C {
int16_t matrix_c : 16;
};
struct M7D {
int16_t matrix_d : 16;
};
struct M7X {
uint16_t center_x : 13;
uint8_t unused : 3;
};
struct M7Y {
uint16_t center_y : 13;
uint8_t unused : 3;
};
struct CGADD {
uint8_t address : 8;
};
struct CGDATA {
uint16_t data : 15;
uint8_t unused : 1;
};
struct W12SEL {
uint8_t enable_bg1_a : 1;
uint8_t invert_bg1_a : 1;
uint8_t enable_bg1_b : 1;
uint8_t invert_bg1_b : 1;
uint8_t enable_bg2_c : 1;
uint8_t invert_bg2_c : 1;
uint8_t enable_bg2_d : 1;
uint8_t invert_bg2_d : 1;
};
struct W34SEL {
uint8_t enable_bg3_e : 1;
uint8_t invert_bg3_e : 1;
uint8_t enable_bg3_f : 1;
uint8_t invert_bg3_f : 1;
uint8_t enable_bg4_g : 1;
uint8_t invert_bg4_g : 1;
uint8_t enable_bg4_h : 1;
uint8_t invert_bg4_h : 1;
};
struct WOBJSEL {
uint8_t enable_obj_i : 1;
uint8_t invert_obj_i : 1;
uint8_t enable_obj_j : 1;
uint8_t invert_obj_j : 1;
uint8_t enable_color_k : 1;
uint8_t invert_color_k : 1;
uint8_t enable_color_l : 1;
uint8_t invert_color_l : 1;
};
struct WH0 {
uint8_t left_position : 8;
};
struct WH1 {
uint8_t right_position : 8;
};
struct WH2 {
uint8_t left_position : 8;
};
struct WH3 {
uint8_t right_position : 8;
};
struct WBGLOG {
uint8_t mask_logic_bg4 : 2;
uint8_t mask_logic_bg3 : 2;
uint8_t mask_logic_bg2 : 2;
uint8_t mask_logic_bg1 : 2;
};
struct WOBJLOG {
uint8_t unused : 4;
uint8_t mask_logic_color : 2;
uint8_t mask_logic_obj : 2;
};
struct TM {
uint8_t enable_layer : 5;
uint8_t unused : 3;
};
struct TS {
uint8_t enable_layer : 5;
uint8_t unused : 3;
};
struct TMW {
uint8_t enable_window : 5;
uint8_t unused : 3;
};
struct TSW {
uint8_t enable_window : 5;
uint8_t unused : 3;
};
struct CGWSEL {
uint8_t direct_color : 1;
uint8_t fixed_subscreen : 1;
uint8_t sub_color_window : 2;
uint8_t main_color_window : 2;
uint8_t unused : 2;
};
struct CGADSUB {
uint8_t enable_layer : 5;
uint8_t backdrop : 1;
uint8_t half : 1;
uint8_t add_subtract : 1;
};
struct COLDATA {
uint8_t value : 4;
uint8_t channel_select : 3;
uint8_t unused : 1;
};
struct SETINI {
uint8_t screen_interlace : 1;
uint8_t obj_interlace : 1;
uint8_t overscan : 1;
uint8_t hi_res : 1;
uint8_t extbg : 1;
uint8_t external_sync : 1;
uint8_t unused : 2;
};
struct MPYL {
uint8_t multiplication_result_low : 8;
};
struct MPYM {
uint8_t multiplication_result_mid : 8;
};
struct MPYH {
uint8_t multiplication_result_high : 8;
};
struct SLHV {
uint8_t software_latch : 8;
};
struct OAMDATAREAD {
uint8_t oam_data_read : 8;
};
struct VMDATALREAD {
uint8_t vram_data_read_low : 8;
};
struct VMDATAHREAD {
uint8_t vram_data_read_high : 8;
};
struct CGDATAREAD {
uint8_t cgram_data_read : 8;
};
struct OPHCT {
uint16_t horizontal_counter_output : 9;
uint8_t unused : 7;
};
struct OPVCT {
uint16_t vertical_counter_output : 9;
uint8_t unused : 7;
};
struct STAT77 {
uint8_t ppu1_version : 4;
uint8_t master_slave : 1;
uint8_t sprite_tile_overflow : 1;
uint8_t sprite_overflow : 1;
uint8_t unused : 1;
};
struct STAT78 {
uint8_t ppu2_version : 4;
uint8_t ntsc_pal : 1;
uint8_t counter_latch_value : 1;
uint8_t interlace_field : 1;
uint8_t unused : 1;
};
} // namespace PpuRegisters
} // namespace emu
} // namespace app
} // namespace yaze
#endif // YAZE_APP_EMU_VIDEO_PPU_REGISTERS_H

403
src/app/gfx/bitmap.cc Normal file
View File

@@ -0,0 +1,403 @@
#include "bitmap.h"
#include <SDL.h>
#include <png.h>
#include <cstdint>
#include <memory>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/strings/str_cat.h"
#include "app/core/constants.h"
#include "app/gfx/snes_palette.h"
namespace yaze {
namespace app {
namespace gfx {
namespace {
void GrayscalePalette(SDL_Palette *palette) {
for (int i = 0; i < 8; i++) {
palette->colors[i].r = i * 31;
palette->colors[i].g = i * 31;
palette->colors[i].b = i * 31;
}
}
void PngWriteCallback(png_structp png_ptr, png_bytep data, png_size_t length) {
std::vector<uint8_t> *p = (std::vector<uint8_t> *)png_get_io_ptr(png_ptr);
p->insert(p->end(), data, data + length);
}
bool ConvertSurfaceToPNG(SDL_Surface *surface, std::vector<uint8_t> &buffer) {
png_structp png_ptr = png_create_write_struct("1.6.40", NULL, NULL, NULL);
if (!png_ptr) {
SDL_Log("Failed to create PNG write struct");
return false;
}
png_infop info_ptr = png_create_info_struct(png_ptr);
if (!info_ptr) {
png_destroy_write_struct(&png_ptr, (png_infopp)NULL);
SDL_Log("Failed to create PNG info struct");
return false;
}
if (setjmp(png_jmpbuf(png_ptr))) {
png_destroy_write_struct(&png_ptr, &info_ptr);
SDL_Log("Error during PNG write");
return false;
}
png_set_write_fn(png_ptr, &buffer, PngWriteCallback, NULL);
png_colorp pal_ptr;
/* Prepare chunks */
int colortype = PNG_COLOR_MASK_COLOR;
int i = 0;
SDL_Palette *pal;
if (surface->format->BytesPerPixel > 0 &&
surface->format->BytesPerPixel <= 8 && (pal = surface->format->palette)) {
SDL_Log("Writing PNG image with palette");
colortype |= PNG_COLOR_MASK_PALETTE;
pal_ptr = (png_colorp)malloc(pal->ncolors * sizeof(png_color));
for (i = 0; i < pal->ncolors; i++) {
pal_ptr[i].red = pal->colors[i].r;
pal_ptr[i].green = pal->colors[i].g;
pal_ptr[i].blue = pal->colors[i].b;
}
png_set_PLTE(png_ptr, info_ptr, pal_ptr, pal->ncolors);
free(pal_ptr);
}
auto depth = surface->format->BitsPerPixel;
// Set image attributes.
png_set_IHDR(png_ptr, info_ptr, surface->w, surface->h, depth, colortype,
PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
PNG_FILTER_TYPE_DEFAULT);
png_set_bgr(png_ptr);
// Write the image data.
std::vector<png_bytep> row_pointers(surface->h);
for (int y = 0; y < surface->h; ++y) {
row_pointers[y] = (png_bytep)(surface->pixels) + y * surface->pitch;
}
png_set_rows(png_ptr, info_ptr, row_pointers.data());
SDL_Log("Writing PNG image...");
png_write_png(png_ptr, info_ptr, PNG_TRANSFORM_IDENTITY, NULL);
SDL_Log("PNG image write complete");
png_destroy_write_struct(&png_ptr, &info_ptr);
return true;
}
void PngReadCallback(png_structp png_ptr, png_bytep outBytes,
png_size_t byteCountToRead) {
png_voidp io_ptr = png_get_io_ptr(png_ptr);
if (!io_ptr) return;
std::vector<uint8_t> *png_data =
reinterpret_cast<std::vector<uint8_t> *>(io_ptr);
size_t pos = png_data->size() - byteCountToRead;
memcpy(outBytes, png_data->data() + pos, byteCountToRead);
png_data->resize(pos); // Reduce the buffer size
}
void ConvertPngToSurface(const std::vector<uint8_t> &png_data,
SDL_Surface **outSurface) {
std::vector<uint8_t> data(png_data);
png_structp png_ptr = png_create_read_struct("1.6.40", NULL, NULL, NULL);
if (!png_ptr) {
throw std::runtime_error("Failed to create PNG read struct");
}
png_infop info_ptr = png_create_info_struct(png_ptr);
if (!info_ptr) {
png_destroy_read_struct(&png_ptr, NULL, NULL);
throw std::runtime_error("Failed to create PNG info struct");
}
if (setjmp(png_jmpbuf(png_ptr))) {
png_destroy_read_struct(&png_ptr, &info_ptr, NULL);
throw std::runtime_error("Error during PNG read");
}
// Set our custom read function
png_set_read_fn(png_ptr, &data, PngReadCallback);
// Read the PNG info
png_read_info(png_ptr, info_ptr);
uint32_t width = png_get_image_width(png_ptr, info_ptr);
uint32_t height = png_get_image_height(png_ptr, info_ptr);
png_byte color_type = png_get_color_type(png_ptr, info_ptr);
png_byte bit_depth = png_get_bit_depth(png_ptr, info_ptr);
// Set up transformations, e.g., strip 16-bit PNGs down to 8-bit, expand
// palettes, etc.
if (bit_depth == 16) {
png_set_strip_16(png_ptr);
}
if (color_type == PNG_COLOR_TYPE_PALETTE) {
png_set_palette_to_rgb(png_ptr);
}
// PNG files pack pixels, expand them
if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8) {
png_set_expand_gray_1_2_4_to_8(png_ptr);
}
if (png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS)) {
png_set_tRNS_to_alpha(png_ptr);
}
if (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_GRAY ||
color_type == PNG_COLOR_TYPE_PALETTE) {
png_set_filler(png_ptr, 0xFF, PNG_FILLER_AFTER);
}
if (color_type == PNG_COLOR_TYPE_GRAY ||
color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
png_set_gray_to_rgb(png_ptr);
}
// Update info structure with transformations
png_read_update_info(png_ptr, info_ptr);
// Read the file
std::vector<png_bytep> row_pointers(height);
std::vector<uint8_t> raw_data(width * height *
4); // Assuming 4 bytes per pixel (RGBA)
for (size_t y = 0; y < height; y++) {
row_pointers[y] = &raw_data[y * width * 4];
}
png_read_image(png_ptr, row_pointers.data());
png_destroy_read_struct(&png_ptr, &info_ptr, NULL);
// Create SDL_Surface from raw pixel data
*outSurface = SDL_CreateRGBSurfaceWithFormatFrom(
raw_data.data(), width, height, 32, width * 4, SDL_PIXELFORMAT_RGBA32);
if (*outSurface == nullptr) {
SDL_Log("SDL_CreateRGBSurfaceWithFormatFrom failed: %s\n", SDL_GetError());
} else {
SDL_Log("Successfully created SDL_Surface from PNG data");
}
}
} // namespace
Bitmap::Bitmap(int width, int height, int depth, int data_size) {
Create(width, height, depth, data_size);
}
// Reserves data to later draw to surface via pointer
void Bitmap::Create(int width, int height, int depth, int size) {
active_ = true;
width_ = width;
height_ = height;
depth_ = depth;
data_size_ = size;
data_.reserve(size);
pixel_data_ = data_.data();
surface_ = std::unique_ptr<SDL_Surface, SDL_Surface_Deleter>(
SDL_CreateRGBSurfaceWithFormat(0, width, height, depth,
SDL_PIXELFORMAT_INDEX8),
SDL_Surface_Deleter());
surface_->pixels = pixel_data_;
GrayscalePalette(surface_->format->palette);
}
void Bitmap::Create(int width, int height, int depth, const Bytes &data) {
active_ = true;
width_ = width;
height_ = height;
depth_ = depth;
data_ = data;
pixel_data_ = data_.data();
surface_ = std::unique_ptr<SDL_Surface, SDL_Surface_Deleter>(
SDL_CreateRGBSurfaceWithFormat(0, width_, height_, depth_,
SDL_PIXELFORMAT_INDEX8),
SDL_Surface_Deleter());
surface_->pixels = pixel_data_;
GrayscalePalette(surface_->format->palette);
}
// Creates the texture that will be displayed to the screen.
void Bitmap::CreateTexture(SDL_Renderer *renderer) {
// Ensure width and height are non-zero
if (width_ <= 0 || height_ <= 0) {
SDL_Log("Invalid texture dimensions: width=%d, height=%d\n", width_,
height_);
return;
}
texture_ = std::shared_ptr<SDL_Texture>{
SDL_CreateTexture(renderer, SDL_PIXELFORMAT_RGB888,
SDL_TEXTUREACCESS_STREAMING, width_, height_),
SDL_Texture_Deleter{}};
if (texture_ == nullptr) {
SDL_Log("SDL_CreateTextureFromSurface failed: %s\n", SDL_GetError());
}
SDL_Surface *converted_surface =
SDL_ConvertSurfaceFormat(surface_.get(), SDL_PIXELFORMAT_ARGB8888, 0);
if (converted_surface) {
// Create texture from the converted surface
converted_surface_ = std::unique_ptr<SDL_Surface, SDL_Surface_Deleter>(
converted_surface, SDL_Surface_Deleter());
} else {
// Handle the error
SDL_Log("SDL_ConvertSurfaceFormat failed: %s\n", SDL_GetError());
}
SDL_LockTexture(texture_.get(), nullptr, (void **)&texture_pixels,
&converted_surface_->pitch);
memcpy(texture_pixels, converted_surface_->pixels,
converted_surface_->h * converted_surface_->pitch);
SDL_UnlockTexture(texture_.get());
}
void Bitmap::UpdateTexture(SDL_Renderer *renderer) {
SDL_Surface *converted_surface =
SDL_ConvertSurfaceFormat(surface_.get(), SDL_PIXELFORMAT_ARGB8888, 0);
if (converted_surface) {
// Create texture from the converted surface
converted_surface_ = std::unique_ptr<SDL_Surface, SDL_Surface_Deleter>(
converted_surface, SDL_Surface_Deleter());
} else {
// Handle the error
SDL_Log("SDL_ConvertSurfaceFormat failed: %s\n", SDL_GetError());
}
SDL_LockTexture(texture_.get(), nullptr, (void **)&texture_pixels,
&converted_surface_->pitch);
memcpy(texture_pixels, converted_surface_->pixels,
converted_surface_->h * converted_surface_->pitch);
SDL_UnlockTexture(texture_.get());
}
// Creates the texture that will be displayed to the screen.
void Bitmap::CreateTexture(std::shared_ptr<SDL_Renderer> renderer) {
texture_ = std::shared_ptr<SDL_Texture>{
SDL_CreateTextureFromSurface(renderer.get(), surface_.get()),
SDL_Texture_Deleter{}};
}
void Bitmap::UpdateTexture(std::shared_ptr<SDL_Renderer> renderer) {
// SDL_DestroyTexture(texture_.get());
// texture_ = nullptr;
texture_ = std::shared_ptr<SDL_Texture>{
SDL_CreateTextureFromSurface(renderer.get(), surface_.get()),
SDL_Texture_Deleter{}};
}
void Bitmap::SaveSurfaceToFile(std::string_view filename) {
SDL_SaveBMP(surface_.get(), filename.data());
}
void Bitmap::SetSurface(SDL_Surface *surface) {
surface_ = std::unique_ptr<SDL_Surface, SDL_Surface_Deleter>(
surface, SDL_Surface_Deleter());
}
std::vector<uint8_t> Bitmap::GetPngData() {
ConvertSurfaceToPNG(surface_.get(), png_data_);
return png_data_;
}
void Bitmap::LoadFromPngData(const std::vector<uint8_t> &png_data, int width,
int height) {
width_ = width;
height_ = height;
SDL_Surface *surface = surface_.get();
ConvertPngToSurface(png_data, &surface);
surface_.reset(surface);
}
// Convert SNESPalette to SDL_Palette for surface.
void Bitmap::ApplyPalette(const SNESPalette &palette) {
palette_ = palette;
SDL_UnlockSurface(surface_.get());
for (int i = 0; i < palette.size(); ++i) {
if (palette.GetColor(i).IsTransparent()) {
surface_->format->palette->colors[i].r = 0;
surface_->format->palette->colors[i].g = 0;
surface_->format->palette->colors[i].b = 0;
surface_->format->palette->colors[i].a = 0;
} else {
surface_->format->palette->colors[i].r = palette.GetColor(i).GetRGB().x;
surface_->format->palette->colors[i].g = palette.GetColor(i).GetRGB().y;
surface_->format->palette->colors[i].b = palette.GetColor(i).GetRGB().z;
surface_->format->palette->colors[i].a = palette.GetColor(i).GetRGB().w;
}
}
SDL_LockSurface(surface_.get());
}
void Bitmap::ApplyPaletteWithTransparent(const SNESPalette &palette,
int index) {
auto start_index = index * 7;
palette_ = palette.sub_palette(start_index, start_index + 7);
std::vector<ImVec4> colors;
colors.push_back(ImVec4(0, 0, 0, 0));
for (int i = start_index; i < start_index + 7; ++i) {
colors.push_back(palette.GetColor(i).GetRGB());
}
SDL_UnlockSurface(surface_.get());
int i = 0;
for (auto &each : colors) {
surface_->format->palette->colors[i].r = each.x;
surface_->format->palette->colors[i].g = each.y;
surface_->format->palette->colors[i].b = each.z;
surface_->format->palette->colors[i].a = each.w;
i++;
}
SDL_LockSurface(surface_.get());
}
void Bitmap::ApplyPalette(const std::vector<SDL_Color> &palette) {
SDL_UnlockSurface(surface_.get());
for (int i = 0; i < palette.size(); ++i) {
surface_->format->palette->colors[i].r = palette[i].r;
surface_->format->palette->colors[i].g = palette[i].g;
surface_->format->palette->colors[i].b = palette[i].b;
surface_->format->palette->colors[i].a = palette[i].a;
}
SDL_LockSurface(surface_.get());
}
void Bitmap::InitializeFromData(uint32_t width, uint32_t height, uint32_t depth,
const Bytes &data) {
active_ = true;
width_ = width;
height_ = height;
depth_ = depth;
data_ = data;
data_size_ = data.size();
pixel_data_ = data_.data();
surface_ = std::unique_ptr<SDL_Surface, SDL_Surface_Deleter>(
SDL_CreateRGBSurfaceWithFormat(0, width_, height_, depth_,
SDL_PIXELFORMAT_INDEX8),
SDL_Surface_Deleter());
surface_->pixels = pixel_data_;
GrayscalePalette(surface_->format->palette);
}
} // namespace gfx
} // namespace app
} // namespace yaze

253
src/app/gfx/bitmap.h Normal file
View File

@@ -0,0 +1,253 @@
#ifndef YAZE_APP_GFX_BITMAP_H
#define YAZE_APP_GFX_BITMAP_H
#include <SDL.h>
#include <cstdint>
#include <memory>
#include "absl/container/flat_hash_map.h"
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/strings/str_cat.h"
#include "app/core/constants.h"
#include "app/gfx/snes_palette.h"
namespace yaze {
namespace app {
namespace gfx {
class Bitmap {
public:
Bitmap() = default;
Bitmap(int width, int height, int depth, int data_size);
Bitmap(int width, int height, int depth, const Bytes &data)
: width_(width), height_(height), depth_(depth), data_(data) {
InitializeFromData(width, height, depth, data);
}
void Create(int width, int height, int depth, int data_size);
void Create(int width, int height, int depth, const Bytes &data);
void InitializeFromData(uint32_t width, uint32_t height, uint32_t depth,
const Bytes &data);
void CreateTexture(std::shared_ptr<SDL_Renderer> renderer);
void UpdateTexture(std::shared_ptr<SDL_Renderer> renderer);
void CreateTexture(SDL_Renderer *renderer);
void UpdateTexture(SDL_Renderer *renderer);
void SaveSurfaceToFile(std::string_view filename);
void SetSurface(SDL_Surface *surface);
std::vector<uint8_t> GetPngData();
void LoadFromPngData(const std::vector<uint8_t> &png_data, int width,
int height);
void ApplyPalette(const SNESPalette &palette);
void ApplyPaletteWithTransparent(const SNESPalette &palette, int index);
void ApplyPalette(const std::vector<SDL_Color> &palette);
void WriteToPixel(int position, uchar value) {
if (pixel_data_ == nullptr) {
pixel_data_ = data_.data();
}
pixel_data_[position] = value;
modified_ = true;
}
void WriteWordToPixel(int position, uint16_t value) {
if (pixel_data_ == nullptr) {
pixel_data_ = data_.data();
}
pixel_data_[position] = value & 0xFF;
pixel_data_[position + 1] = (value >> 8) & 0xFF;
modified_ = true;
}
void Get8x8Tile(int tile_index, int x, int y, std::vector<uint8_t> &tile_data,
int &tile_data_offset) {
int tile_offset = tile_index * 64;
int tile_x = x * 8;
int tile_y = y * 8;
for (int i = 0; i < 8; i++) {
int row_offset = tile_offset + (i * 8);
for (int j = 0; j < 8; j++) {
int pixel_offset = row_offset + j;
int pixel_value = data_[pixel_offset];
tile_data[tile_data_offset] = pixel_value;
tile_data_offset++;
}
}
}
void WriteColor(int position, const ImVec4 &color) {
// Convert ImVec4 (RGBA) to SDL_Color (RGBA)
SDL_Color sdl_color;
sdl_color.r = static_cast<Uint8>(color.x * 255);
sdl_color.g = static_cast<Uint8>(color.y * 255);
sdl_color.b = static_cast<Uint8>(color.z * 255);
sdl_color.a = static_cast<Uint8>(color.w * 255);
// Map SDL_Color to the nearest color index in the surface's palette
Uint8 index =
SDL_MapRGB(surface_->format, sdl_color.r, sdl_color.g, sdl_color.b);
// Write the color index to the pixel data
pixel_data_[position] = index;
modified_ = true;
}
void Cleanup() {
// Reset texture_
if (texture_) {
texture_.reset();
}
// Reset surface_ and its pixel data
if (surface_) {
surface_->pixels = nullptr;
surface_.reset();
}
// Reset data_
data_.clear();
// Reset other members if necessary
active_ = false;
pixel_data_ = nullptr;
width_ = 0;
height_ = 0;
depth_ = 0;
data_size_ = 0;
palette_.Clear();
}
auto sdl_palette() {
if (surface_ == nullptr) {
throw std::runtime_error("Surface is null.");
}
return surface_->format->palette;
}
auto palette() const { return palette_; }
auto palette_size() const { return palette_.size(); }
int width() const { return width_; }
int height() const { return height_; }
auto depth() const { return depth_; }
auto size() const { return data_size_; }
auto data() const { return data_.data(); }
auto &mutable_data() { return data_; }
auto mutable_pixel_data() { return pixel_data_; }
auto surface() const { return surface_.get(); }
auto mutable_surface() { return surface_.get(); }
void set_data(const Bytes &data) { data_ = data; }
auto vector() const { return data_; }
auto at(int i) const { return data_[i]; }
auto texture() const { return texture_.get(); }
auto modified() const { return modified_; }
void set_modified(bool modified) { modified_ = modified; }
auto IsActive() const { return active_; }
auto SetActive(bool active) { active_ = active; }
private:
struct SDL_Texture_Deleter {
void operator()(SDL_Texture *p) const {
if (p != nullptr) {
SDL_DestroyTexture(p);
p = nullptr;
}
}
};
struct SDL_Surface_Deleter {
void operator()(SDL_Surface *p) const {
if (p != nullptr) {
p->pixels = nullptr;
SDL_FreeSurface(p);
p = nullptr;
}
}
};
int width_ = 0;
int height_ = 0;
int depth_ = 0;
int data_size_ = 0;
bool freed_ = false;
bool active_ = false;
bool modified_ = false;
void *texture_pixels = nullptr;
uchar *pixel_data_;
Bytes data_;
std::vector<uint8_t> png_data_;
gfx::SNESPalette palette_;
std::shared_ptr<SDL_Texture> texture_ = nullptr;
std::shared_ptr<SDL_Surface> surface_ = nullptr;
std::shared_ptr<SDL_Surface> converted_surface_ = nullptr;
};
using BitmapTable = std::unordered_map<int, gfx::Bitmap>;
class BitmapManager {
private:
std::unordered_map<int, std::shared_ptr<gfx::Bitmap>> bitmap_cache_;
public:
void LoadBitmap(int id, const Bytes &data, int width, int height, int depth) {
bitmap_cache_[id] =
std::make_shared<gfx::Bitmap>(width, height, depth, data);
}
std::shared_ptr<gfx::Bitmap> const &CopyBitmap(const gfx::Bitmap &bitmap,
int id) {
auto new_bitmap = std::make_shared<gfx::Bitmap>(
bitmap.width(), bitmap.height(), bitmap.depth(), bitmap.vector());
bitmap_cache_[id] = new_bitmap;
return new_bitmap;
}
std::shared_ptr<gfx::Bitmap> const &operator[](int id) {
auto it = bitmap_cache_.find(id);
if (it != bitmap_cache_.end()) {
return it->second;
}
return nullptr;
}
auto mutable_bitmap(int id) { return bitmap_cache_[id]; }
using value_type = std::pair<const int, std::shared_ptr<gfx::Bitmap>>;
using iterator =
std::unordered_map<int, std::shared_ptr<gfx::Bitmap>>::iterator;
using const_iterator =
std::unordered_map<int, std::shared_ptr<gfx::Bitmap>>::const_iterator;
iterator begin() noexcept { return bitmap_cache_.begin(); }
iterator end() noexcept { return bitmap_cache_.end(); }
const_iterator begin() const noexcept { return bitmap_cache_.begin(); }
const_iterator end() const noexcept { return bitmap_cache_.end(); }
const_iterator cbegin() const noexcept { return bitmap_cache_.cbegin(); }
const_iterator cend() const noexcept { return bitmap_cache_.cend(); }
std::shared_ptr<gfx::Bitmap> const &GetBitmap(int id) {
auto it = bitmap_cache_.find(id);
if (it != bitmap_cache_.end()) {
return it->second;
}
return nullptr; // or handle the error accordingly
}
void ClearCache() { bitmap_cache_.clear(); }
};
} // namespace gfx
} // namespace app
} // namespace yaze
#endif // YAZE_APP_GFX_BITMAP_H

Some files were not shown because too many files have changed in this diff Show More